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Abstract
As the population of older individuals grows worldwide, researchers have increasingly focused their attention on identifying key
molecular targets of age-related cognitive impairments, with the aim of developing possible therapeutic interventions. Two such
molecules are the intracellular cyclic nucleotides, cAMP and cGMP. These second messengers mediate fundamental aspects of
brain function relevant to memory, learning, and cognitive function. Consequently, phosphodiesterases (PDEs), which hydrolyze
cAMP and cGMP, are promising targets for the development of cognition-enhancing drugs. Inhibitors that target PDEs work by
elevating intracellular cAMP. In this review, we provide an overview of different PDE inhibitors, and then we focus on
pharmacological and physiological effects of PDE3 inhibitors in the CNS and peripheral tissues. Finally, we discuss findings
from experimental and preliminary clinical studies and the potential beneficial effects of the PDE3 inhibitor cilostazol on age-
related cognitive impairments. In the innovation pipeline of pharmaceutical development, the antiplatelet agent cilostazol has
come into the spotlight as a novel treatment for mild cognitive impairment. Overall, the repurposing of cilostazol may represent a
potentially promising way to treat mild cognitive impairment, Alzheimer’s disease, and vascular dementia. In this review, we
present a brief summary of cAMP signaling and different PDE inhibitors, followed by a discussion of the pharmacological and
physiological role of PDE3 inhibitors. In this context, we discuss the repurposing of a PDE3 inhibitor, cilostazol, as a potential
treatment for age-related cognitive impairment based on recent research.
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Introduction

Aging populations continue to expand in many developed
countries [1]. As humans approach their maximum possible
lifespan [2], average lifespan also increases. While this can be
seen as a great technological, medical, and societal success, it
is accompanied by an increase in the number of people suf-
fering from age-related health issues, such as cognitive and
memory decline. Memory decline due to aging negatively
impacts healthy aging, because memory is the basis of a vari-
ety of other higher cognitive functions, including thought,
language, and emotion (reviewed by [3, 4]). Given the exis-
tential aspect of memory, it is not surprising that great efforts
have been made to reverse age-related memory decline.

To date, cognitive impairment has been treated with vari-
ous acetylcholinesterase (AChE)/butyrylcholinesterase
(BChE) inhibitors (e.g., [5, 6]). Among these cholinergic
strategy-based inhibitors (e.g., donepezil, galantamine, and
rivastigmine), donepezil has undergone extensive study [7,
8]. Donepezil is now considered to be the first-line treatment
in patients with mild-to-moderate Alzheimer’s disease (AD)
[7, 8]. Recent studies using a mouse model of AD has provid-
ed new insights on the effects of donepezil. For example,
donepezil effectively ameliorates age-related attentional defi-
cits [9] and reduces soluble amyloid β (Aβ) protein and the
number of plaque deposits [10]. For typical AChE inhibitors,
such as donepezil, however, such protective effects against
cognitive impairment do not persist, becoming less effective
with time [11]. Moreover, many patients experience adverse
drug reactions, such as emetic and other problematic side ef-
fects [11]. While AChE-BChE inhibitors have brought relief
to many dementia sufferers, they have made little impact on
dampening the global tsunami of older individuals with AD.

Researchers have more recently been looking beyond
existing cholinergic-based strategies (reviewed by [12, 13]),
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instead focusing their attention on identifying other molecular
targets for possible therapeutic interventions. Numerous be-
havioral studies have reported that certain psychotropic com-
pounds, including amphetamine, methylphenidate, and fluox-
etine, show some therapeutic efficacy as treatments for age-
related cognitive disorders [14–16]. While such drug
repurposing has its advantages, the downside with these com-
pounds is that patients taking them require close monitoring,
because they possess strong psychotropic effects and
sustained use may produce physical or psychological depen-
dency associated with withdrawal [17].

In recent years, an increasing number of studies have fo-
cused on the cellular cascade triggered by the activation of 3′,
5′-cyclic adenosine monophosphate (cAMP) as an alternative
strategy to treat age-related cognitive deficits. cAMP and its
signal transduction pathways mediate the long-term neuronal
plasticity that underlies learning and memory (reviewed by
[18–20]).

In this review, we present a brief summary of cAMP sig-
naling and different PDE inhibitors in the context of drug
repurposing. We then focus our discussion on the pharmaco-
logical and physiological role of phosphodiesterase 3 (PDE3)
inhibitors. In this context, we also discuss, based on recent
research, using the PDE3 inhibitor cilostazol as a potential
therapeutic intervention for cognitive impairments.

cAMP and Memory

Regulation of cAMP Like other homeostatic mechanisms, reg-
ulation of intracellular concentration of cAMP is achieved
through a balancing of its synthesis via adenylate cyclase
and its hydrolysis via phosphodiesterases (PDEs). A major
downstream target of cAMP is cAMP-dependent protein ki-
nase (PKA) [21]. Activated PKA phosphorylates a variety of
proteins to evoke tightly controlled physiological reactions.
The phosphorylation of cAMP response element-binding pro-
tein (CREB) bound to cAMP response element (CRE) on
genes triggers the recruitment of other transcriptional compo-
nents and then initiates transcription of downstream genes
[22–25]; reviewed in [18, 26, 27]. cAMP also directly binds
to and regulates the function of ion channels, such as
hyperpolarization-activated cyclic nucleotide-gated channels
[28] and a few other cyclic nucleotide-binding proteins, in-
cluding Epac1 and Epac2 [29]. PDEs are enzymes that hydro-
lyze cyclic nucleotides, including cAMP and/or cGMP, by
breaking their phosphodiester bond [30, 31]. The inhibition
of PDE leads to an elevated level of intracellular cAMP and
cGMP concentrations (reviewed in [32]).

cAMP-Regulated Memory The cAMP-PKA-CREB signaling
pathway plays a variety of physiological roles (reviewed by
[33, 34]). In the CNS, the pathway mediates the long-term

neuronal plasticity that underlies learning and memory
(reviewed by [18–20]). Furthermore, the endogenous CREB
antagonist, inducible cAMP early repressor (ICER), which
suppresses the function of CREB during transcription, plays
an important role in memory [35, 36]. The CREB system
works as an accelerator, while the ICER system works as a
suppressor of memory function [35]. As observed in other
physiological systems, the ICER system acts to prevent the
storage of excessmemories [35, 36]. Despite the abundance of
evidence that CREB would be a promising molecule to target
for memory enhancement, not many direct CREB-regulating
drugs have been isolated [37]. Although enhancing CREB
functions may lead to enhanced neural plasticity and memory,
it also non-specifically affects all body tissues, including those
having non-nervous system functions [33]. This is because
cAMP and its downstream components exist ubiquitously
throughout the body (reviewed by [38, 39]).

Basic research on therapeutic interventions for cognitive
decline have been conducted on a large library of small mol-
ecules, with the aim of identifying drugs that maintain and/or
prolong the CREB activity induced by memory-related neu-
ronal activity. For this purpose, PDEs have attracted attention
for memory enhancement and maintenance, since they are
important for regulating cAMP levels in specific brain re-
gions. Different PDE families reside in different tissues, per-
mitting tissue-specific therapeutic targeting. PDE inhibitors
enhance synaptic plasticity by elevating the concentration of
intracellular cAMP (reviewed by [40]). For these reasons,
PDE inhibitors are promising candidates for therapeutic relief
of cognitive impairment. This approach of treating cognitive
decline is a manifestly different strategy from existing
cholinergic-based strategies [20, 41–45].

PDE Inhibitors for Relieving Cognitive
Impairment

PDE and Memory Since the first isolation and biochemical
characterization of a PDE in the early 1970s [46, 47], 11 major
PDE families have been identified. In mammalian tissues,
they have been characterized according to their pharmacolog-
ical function, substrate specificity, tissue localization, and
gene characteristics (Table 1, [48]).

Among the 11 types of PDEs, PDE6 and PDE11 are not
expressed in the CNS. Therefore, these two PDEs likely will
not be relevant targets for memory enhancement [50]. Recent
studies demonstrate that several inhibitors selective for certain
PDEs ameliorate or enhance memory and cognitive functions
in rodent models. Examples include inhibitors of PDE2 (bay
60-7550, reviewed by [51]); PDE4 (rolipram, reviewed by
[52, 53]); PDE5 (sildenafil and zaprinast, reviewed by [54]);
PDE7 (S14, [55, 56]); PDE9 (bay 73-6691, [57–59]); and
PDE10 (MP-10, SEP-39, and TAK-063, reviewed by [60]).

Mol Neurobiol (2019) 56:4306–4316 4307



Many studies have been conducted to determine the effects of
the PDE4-selective inhibitor rolipram on cognitive function
(reviewed by [52, 53]). These studies stem from the
pioneering work of Wachtel [61], who discovered rolipram
and found that it has antidepressant effects. Recent studies
have extended the therapeutic potential of rolipram to a variety
of CNS disorders, including AD, Parkinson’s disease, and
schizophrenia (reviewed by [52]). Due to its beneficial and
promising effects in a number of pre-clinical studies, rolipram
underwent a number of clinical trials on depression relief
(reviewed by [52]). Clinical development of PDE4 inhibitors,
however, has been mostly terminated because of their potent
emetic side effects in humans [62]. In order to be clinically
useful as an anti-dementia drug, it is important for it to have
few or no side effects. Currently, several new PDE4-specific
inhibitors have been developed that in effect have a wider
therapeutic window, because the emetic side effects have been
reduced (GEBR-7b, HT-0712, and roflumilast, reviewed by
[42]).

Characterization of PDE3

Enzymatic and Kinetic Properties Recently, PDE3 inhibitors
have attracted much attention for treating cognitive decline
because of their multiple pharmacological actions [20,
63–65]. Among all the PDEs, PDE3 is distinguished by hav-
ing the highest affinities for both cAMP and cGMP (Table 2)
[68, 69]. Because PDE3 exhibits this high affinity in a mutu-
ally competitive manner (Table 2) [68, 69], it is known also as
cGMP-inhibited PDE [69, 70]. The presence of a 44-amino-
acid insertion in the catalytic domain is a unique characteristic

of PDE3 (reviewed by [32]). There are no major differences in
the Michaelis-Menten kinetics value of PDE3 for cAMP and
cGMP; Km values for cAMP and cGMP are 0.47 and
0.29 μM, respectively [67]. This means that PDE3 binds
cAMP and cGMP with similar affinity. However, cAMP is
hydrolyzed at a 2- to 10-fold higher rate than cGMP; Vmax
values for cAMP and cGMP are 8.5 and 2.0 μmol/min/mg,
respectively [48]. cGMP’s low Vmax value compared to
cAMPmakes cGMP a competitive inhibitor for cAMP hydro-
lysis [71]. This, in turn, results in an increase in cAMP in the
presence of similar local concentrations of cAMP and cGMP
[72].

Genes and Distribution The cDNAs for two distinct but relat-
ed PDE3 isoforms have been cloned from human [73, 74] and
rabbit [75], namely PDE3A and PDE3B. In humans, PDE3A
and PDE3B genes are located on chromosomes 11 and 12,
respectively [74, 76, 77]. Although these two PDE3 isoforms
have similar structures and pharmacological and kinetic prop-
erties (Table 2) [48, 78, 79], they have different tissue distri-
butions (Table 3). Because of its distribution in peripheral
tissues, PDE3A is mainly implicated in cardiovascular func-
tion and fertility; it is abundant in platelets, heart, vascular
smooth muscle, and oocytes. On the other hand, because of
the prominent distribution of PDE3B in adipocytes, hepato-
cytes, and developing spermatocytes, it is mainly implicated
in lipolysis [69, 81, 82]. In the CNS, both PDE3A and PDE3B
are localized in hippocampus, cortex, and olfactory bulb.
However, PDE3A, but not PDE3B, is distributed within stri-
atum, amygdala, and hypothalamus [83].

To date, a relatively large number of selective PDE3 inhib-
itors have been developed. Representative selective PDE3

Table 1 Classification of PDE
subtypes in mammalian tissues
and inhibitorsa

Type Number of
isoforms

Localization Substrate
specificity

Representative inhibitor

Peripheral tissue CNS

PDE1 3 + + cAMP/cGMP IC224, vinpocetine

PDE2 1 + + cAMP/cGMP BAY60-7550, EHNA

PDE3 2 + + cAMP/cGMP Amrinone, cilostamide, cilostazol,
milrinone

PDE4 4 + + cAMP GEBR-7b, HT-0712, roflumilast,
rolipram

PDE5 1 + + cGMP Sildenafil, tadalafil, verdenafil,
zaprinast

PDE6 3 + − cGMP (Sildenafil)b

PDE7 2 + + cAMP BRL50481, IC242

PDE8 2 + + cAMP Dipyridamole

PDE9 1 + + cGMP BAY73-6691

PDE10 1 + + cAMP/cGMP MP-10, SEP-39, TAK-063

PDE11 1 + − cAMP/cGMP (Tadalafil)b

a Revised from [48]
b Inhibition of PDE6 and PDE11 could be caused by non-specific inhibition of sildenafil and tadalafil [49]
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inhibitors and their IC50 values are summarized in Table 3,
and their chemical structures are shown in Fig. 1. Since
PDE3A and PDE3B have similar inhibitory potencies, their
inhibitors do not distinguish between PDE3A and 3B [72].
These characteristics of PDE3 and its inhibitors suggest that
it might be repurposed for treating cognitive decline.
Physiological studies of PDE3 inhibitors show that they have
been useful in treating other conditions of cognitive decline
[20, 63–65].

Physiological Roles of PDE3

Peripheral TissuesBecause PDE3 was found to be involved in
the regulation of cardiac and vascular smooth muscle contrac-
tility, the clinical history of PDE3 inhibitors followed this
theme, initially being used in the treatment of cardiovascular
disease. Milrinone [84] and amrinone [85] have been used to
treatment congestive heart failure resulting from dilated car-
diomyopathy; these PDE3 inhibitors behave as positive
inotropes by inhibiting the hydrolysis of cAMP, resulting in
increased myocardial contractility [86, 87].

The clinical significance of PDE inhibitors can be found in
results derived from the treatment of other medical conditions,
not just in the treatment of congestive heart failure. Because of
its effectiveness in decreasing platelet aggregation, cilostazol
has been used in several countries to treat chronic peripheral
arterial occlusion [88, 89]. In the USA, cilostazol was ap-
proved by the US Food and Drug Administration (FDA) in
1999 for the treatment of intermittent claudication [90, 91]. In
addition to its use for treating peripheral arterial occlusive
disease, cilostazol’s use has been expanded as therapeutics
for other diseases. A recent study showed that cilostazol

prevents secondary stroke in patients who had experienced a
cerebral infarction [92].

CNS In addition to its peripheral mechanism of action,
cilostazol is attractive because of its pharmacological actions
in the CNS (Table 4), as it may directly affect memory circuits.
Imaging studies of the human brain have revealed that struc-
tural and functional declines in the hippocampus are promi-
nent during the course of aging [102, 103]. Thus, chronolog-
ical age is a significant risk factor for dementia [104, 105].
These changes may explain why age-related decline in mem-
ory is observed mainly in hippocampal-dependent declarative
memory (reviewed by [106, 107]). For these reasons, behav-
ioral tests that tap into hippocampal-dependent memory are
frequently used in rodents to evaluate pharmacological inter-
ventions aimed at treating human dementia [108, 109].

In studies using a mouse model of AD, in which Aβ25–35
is injected intracerebroventricularly, oral administration of

Table 2 Enzymatic and kinetic
properties and localization of
PDE3 isoforms

Isoform

PDE3A PDE3B

Km (μM)

cAMP 0.18a–0.24b 0.47b

cGMP 0.02a–0.09b 0.29b

Vmax (μmol/min/mg)

cAMP 3.0a 8.5c

cGMP 0.28-0.35a 2.0c

Localization

Peripheral tissue Heart, vascular smooth muscle,
platelets, oocytes, kidney

Vascular smooth muscle, adipocytes,
hepatocytes, spermatocytes

CNS Hippocampus, striatum, cortex,
olfactory bulb, amygdala,
hypothalamus

Hippocampus, cortex, olfactory bulb

a Values are from [66]
b Values are from [67]
c Values are from [48]

Table 3 IC50 values for PDE3 inhibitorsa

Inhibitor IC50 (μM) Diseases applied

PDE3A PDE3B

Amrinone 16.7 31.2 Congestive heart failure

Cilostamideb 0.027 0.050

Cilostazol 0.2 0.38 Peripheral arterial occlusion,
intermittent claudication

Milrinone 0.45 1.0 Congestive heart failure

a Adapted from [67]
b Although cilostamide has strong inhibitory effects, its clinical develop-
ment has been terminated because of its strong cardiotropic side effects,
such as increasing heart rate [80]
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cilostazol significantly ameliorated deficits in several tasks
[64, 93]. Cilostazol administration also rescued the Aβ25–
35-induced impairment in spontaneous alternation task perfor-
mance. This test is an ethologically based task that requires
short-term working memory to correctly alternate maze arm
traversals on successive trials [93]. Similarly, cilostazol ame-
liorated spatial memory impairment in the Morris water maze
task [64] and in the radial arm maze task [98]. These latter two
tasks both assess long-term spatial memory. However, differ-
ent types of motivation are required to perform these tasks:
escaping an aversive situation (water) in the Morris water
maze task [110, 111] and eliminating a hungry state in the
radial arm maze task [112]. Notably, the Morris water maze
task is one of the most widely used tasks to assess spatial
memory in rodents (reviewed by [113]).

The beneficial effect of cilostazol on memory performance
was also observed in associative learning, specifically,

contextual fear conditioning [100]. This task requires the asso-
ciation of an aversive stimulus and a particular neutral context
(reviewed by [114]). We reported that cilostazol administration
ameliorated the impaired contextual fear memory in
senescence-accelerated mouse prone 8 (SAMP8). SAMP8
possesses a distinct feature, the early-onset of age-related cog-
nitive impairment, compared to that of the normal aging con-
trol senescence-accelerated mouse resistant 1 (SAMR1) [100].
Considering the dissociable contributions of the hippocampus
and amygdala in fear memory [115, 116], cilostazol adminis-
tration appears to preferentially ameliorate hippocampus-
dependent memory, not amygdala-dependent fear. In addition
to showing that hippocampus-dependent memory is enhanced
[64, 93, 98, 100], we recently reported that long-term, mixed-
in-feed administration of cilostazol for 10months enabled aged
C57BL/6Jmice tomaintain spatial memory performance in the
Morris water maze task to the same level as that of middle-
aged mice [101]. Surprisingly, in young mice, cilostazol can
enhance performance in the Morris water maze and in a con-
textual fear-conditioning task [45]. Importantly, cilostazol had
no detectable side effects on emotional states or physical abil-
ity, such as locomotion, swimming, and pain sensitivity [45,
100, 101]. These physiological studies on cilostazol show that
PDE inhibitors could possibly be repurposed for treating other
conditions of cognitive decline that are related to disrupted
hippocampal function.

Multiple Pharmacological Actions In concert with the hypoth-
esis that the cAMP-PKA-CREB signaling pathway mediates
long-term neuronal plasticity underlying learning and

Cilostazol

Amrinone

MilrinoneCilostamide

Fig. 1 Chemical structures of representative PDE3-specific inhibitors

Table 4 CNS-related effects of
cilostazol administrationa Disease/model Task/evaluation Effect of cilostazol Reference

Mouse, Aβ25–32 injection (i.c.v.) Spontaneous alternation Ameliorate [93]

Mouse, Aβ25–32 injection (i.c.v.) Morris water maze Ameliorate [64]

Human, Alzheimer and
cerebrovascular disease

ADAS, Wechsler Memory
Scale, Trail Making Test

Maintain [94]

Human, MCIa MMSE Suppress the decline [63]

Mouse, young Morris water maze, fear
conditioning

Ameliorate [45]

Rat, chronic cerebral hypoperfusion Radial arm maze Ameliorate [95]

Rat, ischemia/reperfusion Morris water maze Ameliorate [96]

Rat, L-methionine injection (p.o.) Morris water maze Ameliorate [97]

Mouse, chronic cerebral
hypoperfusion

Radial arm maze Ameliorate [98]

Human, MCIa MMSE, CDR-SB Suppress the decline [99]

Mouse, accelerated senescence Fear conditioning Ameliorate [100]

Mouse, normal aging Object recognition, Morris
water maze

Maintain [101]

a Concurrent administration of cilostazol with donepezil [63] or with AChE inhibitor (details unknown) [99]

i.c.v., intracerebroventricular; p.o., per os; ADAS, Alzheimer’s Disease Assessment Scale; MCI, mild cognitive
impairment; MMSE, Mini-Mental State Examination; CDR-SB, Clinical Dementia Rating Sum of Boxes
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memory [18, 25, 117], cilostazol increases the number of
phosphorylated CREB-positive cells in the dentate gyrus of
the hippocampal region [45, 100]. This finding is significant
when the flow of sensory information from higher cortical
areas is processed in the hippocampus. Sensory and other
information is first funneled into the dentate gyrus for further
information processing in the hippocampus [118]. Long-term
cilostazol administration may maintain this type of informa-
tion processing at the early stages of hippocampal processing
to somewhat normal levels, a function that normally declines
during the course of aging. This could be accomplished via
modulation of the cAMP pathway in this first stage of hippo-
campal memory processing, which occurs in the dentate
gyrus.

Brain-derived neurotrophic factor (BDNF) gene, which is
among the genes regulated in a CREB-dependent manner, is
highly expressed in the hippocampus [119]. BDNF is known
to be a potent regulator of memory [120, 121], and an inducer
of neurogenesis in the dentate gyrus [122, 123]. Manipulating
BDNF levels in the dentate gyrus could be a possible mecha-
nism for retarding cognitive decline. Disruption in BDNF ex-
pression leads to age-related cognitive impairment [124] and
decreased neurogenesis, which can be reversed by exogenous
BDNF administration [125]. Cilostazol administration might
ameliorate memory dysfunction through a cilostazol-induced
increase in the number of hippocampal neurons, especially in
the dentate gyrus [45, 100, 126–128].

Cilostazol may also contribute to maintenance of blood-
brain barrier (BBB) integrity or to dampening of its age-
related decline [100]. Disruption of the BBB leads to CNS
inflammation (reviewed by [129, 130]), which then can start
a cascade of age-related impairment in cognitive functions
(reviewed by [131–133]). Cilostzol’s beneficial effects can
potentially improve the brain environment, boosting memory
function [100]. Furthermore, cilostazol may contribute to the
maintenance of a healthy brain environment by enhancing the
clearance of accumulations of Aβ. This has been demonstrat-
ed in a mouse model of cerebral amyloid angiopathy [65].
Consistent with this finding is that cilostazol suppresses Aβ-
induced neurotoxicity in human-derived SH-SY5Y cells
grown in culture [134]. Cilostazol also reduces Aβ production
in human induced-pluripotent stem cell (iPSC)-derived neu-
rons [135]. Overall, cilostazol has a number of pharmacolog-
ical actions that could be leveraged in new and beneficial ways
to stave off cognitive decline.

Drug Repurposing to Treat Age-Related
Cognitive Impairment

Therapeutic Intervention for MCI In addition to pre-clinical
studies, some preliminary clinical studies on the effects of
cilostazol on MCI and in AD patients have been conducted.

In retrospective [63] and case control [99] studies of MCI
patients, patients who took donepezil combined with
cilostazol showed significantly slowed cognitive decline com-
pared to those who took donepezil alone [63, 99]. Similarly,
cilostazol-treated patients with AD and cerebrovascular dis-
ease showed increased regional cerebral blood flow in the
right cingulate cortex [94]. Also, cognitive function assessed
with widely used AD cognitive assessment tests showed that
this improvement was maintained over 6 months [94]. Based
on these positive findings, a clinical trial is now underway
(Spring 2018) in Japan to treat MCI patients with cilostazol
(ClinicalTrials.gov NCT02491268, UMIN Clinical Trials
Registry UMIN000017764; [136]).

In the stream of innovative pharmaceutical develop-
ment, drug repurposing has slowly come into the spotlight
[137, 138]. The time required for drug development is
shorter for repurposed drugs because pre-clinical and most
clinical drug-safety trials can be largely skipped for an
already-approved drug [137, 138]. Examples include using
thalidomide, originally developed for insomnia or gastritis,
to treat multiple myeloma [139]; sildenafil, originally de-
veloped for angina pectoris, to treat erectile dysfunction
[140]; and raloxifene, originally developed for breast can-
cer, to treat osteoporosis [141]. Similarly, cilostazol, orig-
inally developed to treat symptoms of intermittent claudi-
cation in individuals with peripheral vascular disease [90,
91], may be repurposed as a new medication to treat cog-
nitive impairment.

Potential Combination Therapy With pharmacological ap-
proaches in treating diseases, using a combination of two or
more drugs is often more effective than using a single drug
[142]. Such a strategy, however, has not been applied to the
clinical treatment of cognitive impairment. The main purpose
of combination therapy is (1) to achieve a synergistic thera-
peutic effect, (2) to reduce drug doses and side effects normal-
ly present with higher doses, and (3) to minimize or delay the
induction of drug resistance [143]. Reducing dose and side
effects is an important issue, especially for the elderly, because
drug metabolism is often slower in older patients, and thus
leads to stronger effects and stronger side effects [144, 145].
Together with its established safety profile [89, 90], cilostazol
also has the advantage of being available in a generic. This can
translate to lower cost of medical care for elderly patients
[146]. The combined use of a PDE inhibitor and an AChE
inhibitor has already been shown to enhance, to some extent,
cognitive function both in animal models of chronic cerebral
hypoperfusion [147], and in patients with moderate AD [148]
and MCI [63, 99]. Concurrent administration of a PDE inhib-
itor with another anti-dementia drug, such as donepezil, may
lead to pharmacological combination therapy for cognitive
disorders, including vascular dementia and progressive neu-
rodegenerative disorders.
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Conclusions and Final Comments

Thanks to modern medical achievements, the population of
older people continues to growworldwide. Unfortunately, this
growth is accompanied by a rapid increase in the number of
people with dementia. In 2015, it was estimated that 46.8
million people worldwide were living with dementia and cog-
nitive impairment, or cognitive decline [1]. That number is
projected to double every 20 years, reaching 74.7 million in
2030 and 131.5 million in 2050 [1]. As aging is a significant
risk factor for dementia [104, 105], it is urgent to find a way to
prevent or slow down the incidence of dementia.

To achieve healthy aging, society must address issues salient
to the aging population, such as the prevention of age-related
diseases (reviewed by [149]). It is well-known that exercise
[150, 151], or a combination of cognitive training and exercise
(the portmanteau, cognicise; reviewed in [152]), is beneficial
for maintaining memory functions. However, there are older
people with locomotive syndromes, who have difficulties
exercising regularly, or who are hospitalized. As these people
cannot benefit from exercise, their inactivity can increase their
risk for dementia (reviewed in [153]). Monotherapy or concur-
rent administration of cilostazol with existing cholinergic-based
drugs may represent a ray of hope for people with locomotor
difficulties or those who are hospitalized. Cilostazol has been
routinely prescribed around the world for more than two de-
cades, and its safety is well established [89, 90]. Minor adverse
effects occur with cilostazol, including headache, diarrhea, and
palpitations [154]. However, these symptoms rarely require
discontinuation of the drug, as they are mild to moderate in
severity and often transient [155]. In addition, several studies
report that patients treated with cilostazol are not at increased
for bleeding [156, 157].Moreover, cilostazol has been shown to
increase cerebral blood flow [94, 158], decrease the size of
cerebral infarcts [159], and ameliorate the degradation of
BBB integrity [100, 160]. It is reasonable, therefore, to con-
clude that cilostazol might also be effective for treating vascular
dementia. In fact, cilostazol administration has been shown to
ameliorate cognitive impairment in a rodent model of vascular
dementia [96, 97, 100]. Further basic study of cilostazol in the
context of learning and memory will enhance our knowledge
and understanding of its molecular mechanism of actions in the
CNS. Randomized controlled trials with proven basic evidence
will elevate cilostazol as a new therapeutic candidate for
treating different types of cognitive impairment in humans.
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