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Abstract
Prenatal treatment with the antiepileptic drug valproic acid (VPA) is associated with a significant risk of somatic anomalies,
neurodevelopmental delays, and 7–10× increase in the incidence of autism spectrum disorders (ASD) in children. Rodents
exposed to VPA in pregnancy show birth defects, deficits in neurodevelopment, and cognitive/social anomalies resembling those
of ASD children. Mechanisms of VPA neurobehavioral toxicity are still unclear but as VPA is a non-selective inhibitor of histone
deacetylases, epigenetic modifications are likely involved. This study was aimed to evaluate the transgenerational impact of
prenatal VPA exposure on mouse early behavioral development, studying F1, F2, and F3 generations after VPA challenge on
gestational day (GD) 10.5. We also analyzed in brain and in peripheral blood mononuclear cells the expression levels of different
endogenous retrovirus (ERV) families, potential biomarkers of derailed brain development, since human ERVs have been
implicated in the pathogenesis of neurodevelopmental disorders (NDDs) such as ASD. Somatic effects of VPA were evident
only in F1 generation and more markedly in the female sex. Across F1 and F2 generations, VPA delayed righting reflex, increased
motor activity, and reduced ultrasonic vocalizations. The behavioral changes in F3 are milder though in the same direction. VPA
increased expression of most ERVs across the three generations in brain and blood. In utero VPA induced neurodevelopmental
alterations moremarked in the maternal lineage that persisted also in F3, suggesting ERVs as possible downstream effectors of the
VPA epigenetic alterations.
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Introduction

Increasing evidence supports an association between prenatal
exposure to antiepileptic drugs (AEDs) and increased risk of

both physical anomalies and neurodevelopmental impairment
[1, 2]. Most women with epilepsy require AEDs to control
seizures for the entire length of the pregnancy; AEDs are also
used to treat neuropathic pain, migraines, and psychiatric dis-
orders. Among AEDs, intake of valproic acid (VPA) during the
first trimester of pregnancy is associated with a significant risk
of congenital malformations (primarily neural tube defects) and
neurodevelopment delay in children. Specifically, prenatal ex-
posure to VPA has been associated to lower IQ, motor, adap-
tive, and emotional problems [3–5], and with a 7–10× increase
in relative risk for autism spectrum disorders (ASD) [6, 7].

Based on this clinical evidence, prenatal exposure to VPA
has been proposed as a drug-induced model of ASD [8], and it
has received increasing attention with regard to behavioral
outcomes and mechanisms by which an environmental factor
impact on early brain development.

Rodents exposed to VPA in utero show birth defects, defi-
cits in neurodevelopment, and cognitive/social anomalies of
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varying degree depending on dose and time of administration
[9, 10]. A single prenatal exposure to VPA, at a range of doses
comprised between 350 and 800 mg/kg and at different em-
bryonic time points, is able to induce significant behavioral
changes: they include delayed reflex development, motor ste-
reotypies, impaired social behavior, and learning deficits [8,
11, 12]. Themechanisms by which VPA causes malformations
and neurotoxicity are still unclear; several hypotheses have
been drawn, including increased production of free radicals,
interference with cell proliferation/migration patterns, alter-
ations of inflammatory and immunologic markers, and altered
folate metabolism [13–16]. More importantly, the role of VPA
in epigenetic regulation has come to light: VPA is a non-
selective inhibitor of histone deacetylase of class I and II
(HDAC1 and HDAC2) expressed in the brain [17]. Changes
in genome activity and expression could be implicated in the
adverse effects of VPA on brain development [18, 19], as
shown for other environmental stressors [20–22]. The potential
for VPA of acting through epigenetic mechanisms is also sup-
ported by a recent study indicating that the autism-like neuro-
behavioral phenotype shows transgenerational epigenetic in-
heritance through the paternal germline in F1 and F2 VPA-
treated mice [23].

The main aim of the present study was to evaluate the
multigenerational impact of prenatal VPA exposure on early
behavioral patterns of laboratory mice, by studying F1, F2, and
F3 generations after a single injection of VPA on gestational
day (GD) 10.5 in F0.We focused on the first 2 weeks of mouse
postnatal life for several reasons: (i) this developmental win-
dow offers the opportunity to identify early behavioral
alterations/delays (motor competences and vocal patterns)
and thus to set the ground for testing of early treatment and/
or interventions; (ii) a large body of clinical evidence recently
points to motor abnormalities as first signs of atypical devel-
opment in genetic variants and idiopathic ASD [24–27] as
well as in ASD high-risk infants [28], also stressing early
motor milestones as potential tools in clinical practice; (iii)
early motor deficits (easily measurable in rodent models)
may influence development of functions that are critical for
social communication development [29–31].

Besides early vocal and motor patterns, we also analyzed
expression of different endogenous retrovirus (ERV) families,
the major subset of retrotransposons, which are the relics of
ancestral retroviral infection to germline cells; they comprise
about 8% of the genome in humans and over 10% in mice
and are stably integrated into the host cellular DNA [32, 33].
Even if the transposition of retroelements is deemed responsible
for the evolution and the genomic instability [34], the vast ma-
jority of human ERV sequences are biochemically inert and
silenced by host cellular machineries. Their activity is tightly
regulated during the life cycle of each individual, and the active
propagation and random insertion into genomic DNA lead to
gene alterations, with consequent uncontrolled expression and

possible involvement in various diseases, including cancer, and
autoimmune and neurological and psychiatric disorders [35].

Specifically, recent studies have found aberrant transcriptional
activation of ERVs in several neurological disorders (e.g., amyo-
trophic lateral sclerosis, schizophrenia, and bipolar disorders) that
could be, in part, the result of neurodevelopmental alterations
[35–41]. Based on their ability to be mobilized under specific
stimuli, ERVs can be seen as spanning the bridge between ge-
netic predisposition and environmental factors. Their responsive-
ness to environmental conditions is an intrinsic property that
places them at the frontline of the gene-environment interaction.
It is likely that ERVs serve important roles as regulatory elements
in brain development controlling gene networks that become
dysregulated in diseases [42–44].

This hypothesis togetherwith the finding of altered expression
of selected ERV families in children with neurodevelopmental
disorders (NDDs) such as attention deficit hyperactivity disorder
and ASD [45–47] supports the use of ERVs as candidate bio-
markers for NDDs [48]. Furthermore, in agreement with the
clinical findings, we have observed a marked increase of the
expression of murine ERVs from the very early phases of devel-
opment till adulthood both in the BTBR T+tf/J mouse strain (a
widely used model of ASD) and in mice prenatally exposed to a
single injection of 500 mg/kg VPA [49].

In F1, F2, and F3 generations in parallel with the behavioral
assessment, we analyzed expression of several ERVs (ETnI,
ETnII-α, ETnII-β, ETnII-γ, MusD, and IAP) on postnatal day
(pnd) 7, an age at which postnatal ERVexpression can be fully
detected in blood and brain tissues [49].

Materials and Methods

Animals

Male and female mice of the CD-1 strain purchased from
Harlan (San Pietro al Natisone, UD, Italy) were housed under
standard animal housing conditions and reversed light cycle,
as described in [49]. All studies were carried out in accordance
with the European and Italian legislation (2010/63/EU, Dl 26/
2014, specific authorization 223/2011-B to GC).

VPA Exposure in F0 Mothers

After breeding, females were inspected daily for the presence
of the vaginal plug (GD 0). On GD 10.5, pregnant females
were randomly assigned to one of the two treatments [Vehicle
(VEH) 0.9% NaCl] and VPA, 500 mg/kg in VEH by subcu-
taneous injection as described in [49]. Proportion of term
pregnancies, gestation length, litter size, sex ratio, and neona-
tal mortality were alsomeasured to exclude potential effects of
the treatment on reproductive performances.

The day of birth was defined as pnd 0.
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Production of F1, F2, and F3 Generations

Offspring from 20 dams (10 VEH and 10 VPA) were used for
assessment of VPA effects in F1. At adulthood, male-female
pairs from F1 generation were bred to generate three F2 exper-
imental groups to evaluate the differential contribution of the
two VPA parental exposures on behavioral phenotype and
ERVexpression profile in the following generation. To gener-
ate F2-VPA offspring via the paternal lineage (F2-VPA/PL),
we crossed male F1-VPA offspring with female F1-VEH off-
spring. To obtain F2-VPA offspring via the maternal lineage
(F2-VPA/ML), we crossed female F1-VPA offspring with
male F1-VEH offspring. F1 control males and females were
crossed to obtain the F2-VEH lineage (F2-VEH) (see
Fig. 2(a)).

To generate the three experimental groups of F3 generation,
we crossed female F2-VPA/ML with male F2-VEH (F3-VPA/
ML), male F2-VPA/ML with female F2-VEH (F3-VPA/PL),
and, lastly, female F2-VEHwith male F2-VEH (F3-VEH) (see
Fig. 2(i)).

Only behaviorally, naive offspring were used for breeding
and molecular analysis, thereby avoiding possible confounds
arising from using handled breeders.

Behavioral Assessment in the Neonatal Stage of F1,
F2, and F3 Offspring

For each generation, one female and one male offspring from
each litter (F1: VEH = 20, VPA = 20; F2: VEH = 14, VPA/
PL = 14, VPA/ML = 14; F3: VEH = 10, VPA/PL = 6, VPA/
ML = 12) were tested on pnd 4, 7, 10, and 12. For identifica-
tion purposes, on pnd 4, pups were tattooed on the paw with
animal tattoo ink (Ketchum permanent Tattoo Inks green
paste, KetchumManufacturing Inc., Brockville, ON, Canada).

All behavioral procedures were carried out during the dark
phase of the cycle between 9:00 a.m. and 2:00 p.m. under red
dim lights.

Recording of Ultrasonic Vocalizations in Isolated Pups

Ultrasonic vocalizations (USVs) are an important tool to as-
sess emotional development and communication between
mother and infants, as they elicit pup retrieval by the parents
and maternal licking [50, 51]. On each day of testing, a single
pup was placed into an empty glass container (diameter 5 cm;
height 10 cm), placed inside a sound-attenuating Styrofoam
box, and USVs were assessed during a 3-min test. An ultra-
sound microphone (Avisoft Ultrasound Gate condenser mi-
crophone capsule CM16, Avisoft Bioacoustics, Berlin,
Germany) sensitive to frequencies of 10–180 kHz was placed
through a hole the cover of the Styrofoam box (about 20 cm
above the pup) to record USVs, settings as in [52]. Parameters
analyzed for each test day included number and duration of

calls, frequency, and amplitude at the maximum of the
spectrum.

Spontaneous Movements and Righting Reflex

Concomitant with the USV recording on pnd 4, 7, 10, and 12,
the spontaneous movements of the pups were also assessed.
Frequency and duration of each behavioral item were ana-
lyzed by using NOLDUS OBSERVER software V 10 XT
(Noldus Information Technology, Wageningen, NL, USA) to
score the videos. In accordance with previous studies focused
on neonatal rodent behavior [53, 54], the following behavioral
patterns were scored: locomotion (general translocation of the
body of at least 1 cm in the glass container), head rising (a
single rising of the head up and forward), face washing (fore-
paws moving back and forth from the ears to the snout and
mouth), wall climbing (alternating forelimb placing move-
ments on the wall of the container), and curling (roll, vigorous
side-to-side rolling movements while on the back). The
righting reflex was assessed by placing the pup on its back
over a flat surface: the time needed to return to the natural
position (all four paws on the floor) was measured using a
stopwatch. The reflex was tested once in each day of assess-
ment with a cutoff latency of 60 s.

Somatic Growth

At the end of the 3-min recording session, each pup was
assessed for somatic growth from pnd 4 to 12, as previously
described [52, 53]. Each pup was weighed, its body and tail
length and axillary temperature recorded.

Homing Test

On pnd 11, one female and one male offspring from each litter
assigned to the different treatments (unhandled siblings of
pups used for sensorimotor assessment) were separated from
the dam and kept for 30 min in an incubator (Elmed Ginevri
0GB 1000, Roma, Italy) at 28 ± 1 °C. Individual pups were
then transferred to a Plexiglas arena (36 × 22.5 cm, walls
10 cm high) maintained at 28 ± 1 °C, with the floor subdivided
by black lines in 12 quadrants. Wood shavings from the home
cage were evenly spread under the wire-mesh floor on one
side of the arena (14 × 22.5 cm, goal arena) and the pup was
placed close to the wall on the opposite side. The time taken
by the pup to reach the goal area (containing nest litter) was
recorded (cut off time 3 min), as described by [55]. In addi-
tion, the pup’s overall activity during the 3-min test period was
analyzed by using NOLDUS OBSERVER software V 10 XT
(Noldus Information Technology, Wageningen, NL, USA) to
score the time spent in the goal area and locomotor activity by
square crossings.
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Evaluation of ERV Expression in Brain and Blood
Samples of Mice from F1, F2, and F3 generations

At pnd 7, animals of both sexes (F1: VEH = 17, VPA = 16; F2:
VEH = 4, VPA/PL = 10, VPA/ML = 10; F3: VEH = 6, VPA/
PL = 8, VPA/ML= 4) were euthanized by decapitation; brains
were removed from the skull, immediately frozen in dry ice,
and stored at − 80 °C until use. Blood samples were collected
and stored at − 80 °C in heparinized tubes.

Total RNA from brain and blood samples was extracted;
retro-transcribed and obtained cDNA was used to perform
quantitative real-time PCR in order to evaluate the transcrip-
tional levels of six ERV families (ETnI, ETnII-α, ETnII-β,
ETnII-γ, MusD, and IAP) as described in [49].

RNA Extraction from Blood and Brain Samples

Total RNA isolation from whole blood samples was per-
formed using NucleoSpin RNA Blood kit (Machenery-
Nagel, Dueren, Germany) according to the manufacturer’s
instructions and starting from 200 μl. When the volume of
the sample was less than 200 μl, it was added with
phosphate-buffered saline. RNA isolation from brain samples
was performed using NucleoSpinTriPrep (Machenery-Nagel,
Dueren, Germany) according to the manufacturer’s instruc-
tions and starting from 30 mg or less of tissue. After adding
the appropriate volume (10%w/v) of lysis buffer and 1 mM of
1,4-dithiothreitol (Sigma Aldrich, St. Louis, MO, USA), sam-
ples were homogenized using the plunger of a syringe and by
passing through a syringe needle. Contaminating DNA was
removed by a DNase treatment and all RNA samples were
stored at − 80 °C until analysis was performed.

RT (Real-Time) PCR

DNase-treated RNA obtained from blood and brain samples
was reverse-transcribed into cDNA using Improm-II Reverse
Transcription System (Promega, Fitchburg, Wisconsin, USA)
according to the manufacturer’s protocol. For the reaction,
250 ng of RNA obtained from brain samples and an amount
of RNA corresponding to 5 μl of initial blood sample were
used. The transcriptional levels of six ERV families (ETnI,
ETnII-α, ETnII-β, ETnII-γ, MusD, and IAP) were quantita-
tively assessed by real-time PCR. The assays were performed
in a Bio-rad instrument (CFX96 Real-Time System, Biorad,
Hercules, CA, USA) using SYBR Green chemistry (iTaq
Universal SYBR green Supermix, Biorad) with specific prim-
er pairs.

To set-up the real-time reaction, a serial dilution (10-fold)
was done to calculate efficiencies and correlation coefficient,
by formula [efficiency = 10 (−1/slope)] and all primer pairs used
showed an efficiency ranging 0.96 to 0.97.

Real-time PCR reaction included 0.20 μl of cDNA, for-
ward and reverse primers at 150 nM each for ERVs and
10 μl of iTaq Universal SYBR green Supermix, in a total
volume of 20 μl. The reaction was conducted for 1 cycle at
95 °C for 3 min, then for 40 cycles at 95 °C for 45 s and at
60 °C for 1 min. Each sample was analyzed in triplicate and a
negative control (no template reaction) was included in each
experiment, to check out any possible contamination. The
housekeeping glyceraldehyde 3-phosphate dehydrogenase
gene (GAPDH) was used to normalize the results. Each ex-
periment was completed with a melting curve analysis to con-
firm the specificity of amplification and the lack of any non-
specific product and primer dimer. Quantification was per-
formed using the threshold cycle (Ct) comparative method:
the relative expression was calculated as follows: 2− [ΔCt

(sample) − ΔCt (calibrator) = 2−ΔΔCt, where ΔCt (sample) = [Ct (tar-
get gene) − Ct (housekeeping gene)]. For the analysis in brain
and blood samples, the ΔCt (calibrator) was the mean of ΔCt
of all brain or blood samples from VEH mice at pnd 7.

Statistical Analysis

Except for homing latency data analyzed by non-parametric
Mann-Whitney test, all behavioral and somatic data were an-
alyzed by a mixed model ANOVA [56] with repeated mea-
sures with prenatal treatment as the between-litter fixed factor,
sex as the within-litter fixed factor, and pnd as the repeated
measures factor.

The Mann-Whitney test was used to compare the ERVs’
transcriptional levels, in brain and blood samples within each
generation and across them. For paired post hocs, either
Bonferroni correction for six comparisons (Mann-Whitney)
or Tukey test (ANOVA main effect or interactions) was ap-
plied and considered statistically significant when p < 0.05.

Finally, to estimate the strength of the association between
ERVs expression and behavioral outcome and to evaluate
whether this association was affected by VPA across genera-
tions, we initially performed two principal component analy-
ses (PCA) separately, either within ERVs or within behavioral
responses in the overall set of mice. First, we selected
ETnII-β, ETnII-γ, MusD, and IAP families, applying
natural-log transformation and two behavioral items, locomo-
tion and USVs, the measurement that resulted more sensitive
to VPA across generations. PCA allowed to create variables
(components of PCA) mutually unrelated within either ERVs
or behavior. Scores on the first three components within ERVs
and on the two components within behavioral responses were
computed, and correlation between ERVs and behavioral re-
sponses in the overall group and within each generation was
estimated using the Pearson linear correlation coefficient.

Subsequently, a canonical correlation analysis (CCA) [57]
was performed considering three components of ERVs on one
side and the two components of behavioral responses on the

Mol Neurobiol (2019) 56:3736–3750 3739



other side in the overall group and within each generation.
Furthermore, to disentangle the contribution of either maternal
or paternal lineage, the same analysis was conducted first
pooling both lineages and then excluding VPA/PL mice from
F2 and F3 generations.

Results

VPA Affects Somatic and Behavioral Development
of F1 Offspring

VPA did not affect bodyweight and temperature from pnd 4 to
12 (Supplementary Fig. 4 a–b), but significantly influenced
both body and tail length, an effect more marked in the female

sex [treatment × sex interaction, body length F(1, 18) = 6.94,
p = 0.01; tail length F(1, 18) = 6.01, p = 0.02].

VPA female pups had shorter body length than VEH fe-
male pups on pnd 4 (p < 0.05), 7, and 10 [ps < 0.01, treatment
× sex × age interaction F(3, 54) = 4.18, p = 0.0098, Fig. 1(a)].

Tail length was decreased in VPA pups [F(1, 18) = 7.76,
p = 0.01]. Specifically, VPA male pups had shorter tail length
on pnd 12 (p < 0.01), while VPA female pups had shorter tail
length on pnd 4 (p < 0.05), 7, and 10 [ps < 0.01, treatment ×
sex × age interaction F(3, 54) = 4.04, p = 0.01] attaining the
VEH values by pnd 12 (Fig. 1(b)). All VPA exposed offspring
of both sexes (20 out of 20) at weaning showed the typical
Bcrooked tail^ phenotype (first signs of this malformation
were evident from pnd 12).

As for sensorimotor development, latency to righting on a
surface in VPA female pups was significantly longer than in
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growth and spontaneous
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VEH pups at different postnatal
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VEH female pups at pnd 4 [p < 0.01, treatment × sex × age
interaction F(3, 54) = 3.01, p = 0.03 Fig. 1(c)]. The analysis of
spontaneous movements indicated a main effect of VPA on
selected motor responses suggesting a hyperactive profile:
VPA pups spent more time in locomotion than VEH pups
[F(1, 18) = 6.12, p = 0.02, Fig. 1(e)]. In addition, VPA female
pups exhibited higher head rising frequency than VEH fe-
males [p < 0.01, treatment × sex F(1, 18) = 5.27, p = 0.03,
Fig. 1(d)].

While displaying these spontaneous movements, VPA
pups tended to emit a lower number of calls than VEH [F(1,
18) = 3.34, p = 0.08, Fig. 1(f)]. Duration of calls evidenced a
significant treatment × sex × pnd interaction [F(3, 54) = 3.71
p = 0.0168] with VPA females showing shorter call duration
than VEH at pnd 10 (p < 0.05, Supplementary Fig. 4c).

On pnd 11 during the homing test, VPA male pups took
longer to reach the nest area, indicative of worse performance
than VEH pups (p < 0.05, Fig. 1(g)).

VPA Affects Behavioral Development of F2 and F3
Offspring

No effects on somatic growth were observed in F2 and F3
generations. In F2, some behavioral alterations were found in
both parental lineages, while others were specific for either the
PL or ML. In detail, F2-VPA/PL showed longer latencies of
righting than VEH pups [p < 0.01, main effect F(2, 18) =
3.968, p < 0.05, Fig. 2(b)] and exhibited longer duration of
curling than VEH (p < 0.01) and ML offspring on pnd 4
[p < 0.05, treatment × age F(6, 54) = 1.95, p = 0.08, Fig.
2(c)]. The increased duration of curling was possibly related
to the deficit in righting reflex. In line with what observed in
F1 generation, both VPA/ML and VPA/PL offspring spent
more time in locomotion than VEH offspring [ps < 0.01, main
effect F(2, 18) = 12.05, p = 0.0005, Fig. 2(d)). Similarly, both
VPA parental lineages showed increased head rising move-
ments in comparison to controls [ps < 0.01, main effect ofF(2,
18) = 6.04, p = 0.0098, Fig. 2(e)]. Pnd 7 is the age at which
this effect is larger [p < 0.01, treatment × age interaction F(6,
54) = 3.62, p = 0.0043].

Two behavioral responses evidenced effects of antenatal
VPA/ML.Wall climbing durationwas longer in VPA/ML than
VEH from pnd 7 to 12 [p < 0.05, main effect F(2, 18) = 3.815,
p = 0.0416, Fig. 2(f)]. Face washing frequency was higher in
VPA/ML than in VPA/PL pups at pnd 10 and 12 (p < 0.05,
main effect F(2, 18) = 2.792, p = 0.08, Fig. 2(g)), whereas
differences between VPA/ML and VEH just missed statistical
significance.

VPA/PL pups emitted a lower number of USVs than VEH
[p < 0.05, main effect F(2, 18) = 4.17, p = 0.03, Fig. 2(h)]. It is
worth noting that also VPA/ML tended to vocalize less than
VEH pups, an effect just missing statistical significance.

In F3 offspring, differences in time spent in locomotion
between VPA/ML and VEH just missed statistical signifi-
cance [main effect F(2, 11) = 2.34, p = 0.14, Fig. 2(l)]. VPA/
PL emitted a lower number of ultrasounds compared to VEH
[p < 0.05, main effect of treatment F(2, 10) = 2.88, p = 0.10,
Fig. 2(m)).

Of note, in both F2 and F3 offspring, no significant sex
differences were evidenced.

ERV Expression Is Modified by VPA Exposure in Brain
and Blood Samples Within Each Generation

Figure 3 shows ERVexpression levels after VPA exposure in
brain (left panel) and blood samples (right panel) of F1, F2, and
F3 mice at pnd 7.

Overall, in F1, offspring VPA prenatal exposure markedly
increased the transcriptional activity of all ERVs in compari-
son to VEH offspring both in brain (ps < 0.05) and in blood
(ps < 0.05) tissue (Table 1). Interestingly within VPA off-
spring, females showed the highest levels of expression for
most of the ERVs considered both in brain and blood samples
(ps < 0.01, Supplementary Table 4), while no differences be-
tween sexes were observed in VEH mice.

In both brain and blood, F2 VPA mice (either PL or ML)
showed higher levels of expression than VEH mice for all the
ERVs families considered (ps < 0.05), and moreover, VPA/
ML offspring showed significantly higher expression levels
for most of the ERVs than VPA/PL (ps < 0.01, Table 1).

Within the VPA/ML group, females showed higher ERV
expression compared to males both in brain and blood sam-
ples (ps < 0.01, Supplementary Table 4), whereas no sex dif-
ferences were observed either within the VPA/PL or VEH
groups.

In keeping with F1 and F2, higher levels of expression of
most ERVs were found in F3-VPA/ML and VPA/PL groups
both in brain and blood in comparison with VEH group (ps <
0.01, Table 1). Finally, in both brain and blood samples, VPA/
ML expression levels were significantly higher than VPA/PL
for all ERVs (ps < 0.01). Some differences in ERVexpression
levels between sexes were also identified in F2 and F3 of the
VPA group (Supplementary Table 4).

ERV Expression Is Modified by VPA Exposure in Brain
and Blood Samples Across Generations

Both in brain and blood, ERV expression was significantly
higher in F1-VPA than in F2-VPA/PL for most of the ERVs
(ps < 0.01, except for ETnI in brain), whereas F1-VPA and F2-
VPA/ML values were substantially overlapping for all ERVs.

When comparing F2-VPA/ML with F3-VPA/ML, three out
of the six families were significantly higher in F2 (EtnI,
EtnII-β, EtnII-γ, ps < 0.01) in the blood; five out of the six
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families were significantly higher in F2 (EtnII-α, EtnII-β,
EtnII-γ, MusD, and IAP, ps < 0.01) in the brain.

In the comparison between F2-VPA/ML and F3-VPA/PL,
four out of the six families were significantly higher in F2

(EtnI, EtnII-β, MusD, IAP, ps < 0.01) in the blood; three out
of the six families were significantly higher in F2 (EtnI,MusD,
IAP, ps < 0.01) in the brain.

All paired comparisons are reported in Table 2.
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Fig. 2 F2 and F3 generations: spontaneous movements shown by pups of
F2- and F3-VPA/PL (paternal lineage) and VPA/ML (maternal lineage)
during a 3-min session at pnd 4, 7, 10, and 12. (a) Breeding used to
generate F1 and F2 (PL andML) offspring. (b) Latency to right on surface:
VPA/PL showed a deficit in righting reflex. (c) Total duration of curling
(roll, vigorous side-to-side rolling movements while on the back) on pnd
4: longer duration of curling inVPA/PL is in linewith increased latency to
righting. (d) Total duration of locomotion. (e) Frequency of head rising
episodes. (f) Total duration of wall climbing (alternating forelimb placing

movements on the wall of the container). (g) Frequency of face washing
episodes (forepaws moving back and forth from the ears to the snout and
mouth). (h) Mean number of USVs. (i) Breeding used to generate F3 (PL
andML) offspring. (l) Total duration of locomotion. (m)Mean number of
USVs. All data (values pooled across pnd 4–12 except for b) are
expressed using box plots with dots for individual data; N: F2-VEH =
14, F2-VPA/PL = 14, F2-VPA/ML = 14; F3-VEH = 10, F3-VPA/PL = 6,
F3-VPA/ML = 12; *p < 0.05, **p < 0.01 either PL or ML vs Veh;
$p < 0.05 ML vs PL
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Canonical Correlation Analysis

The CCA results are reported in Table 3. The canonical cor-
relation between PCA components on ERVs and those on

behavioral responses is moderate to strong in all generations;
importantly, it improves in F2 and F3, when excluding PL.
PCA data are shown in Supplementary Results and
Supplementary Fig. 5.
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(gray box plots) and F2 offspring
(gray box plots, blue bold PL
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Discussion

Gestational VPA exposure produced transgenerational chang-
es in both behavioral development and ERV expression that

last, with fading of epigenetic memories across generations,
till the third one (F3). Offspring from MLs showed more
marked transcriptional effects compared to PLs both in F2
and F3 generations.

Table 1 ERVs’ transcriptional levels: comparisons between VEH and VPA groups within each generation

ETnI ETnII- αααα ETnII- ββββ ETnII- γγγγ MusD IAP

001

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

001

001

001

p = 0.85

p = 0.051

.001

p = 0.26

001

001

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.

p < 0.001 p = 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.

p = 0.008 p < 0.001 p < 0.001 p < 0.001 p < 0.001

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

p < 0.001 p < 0.001 p < 0.0001 p < 0.001 p < 0.001 p < 0

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

001p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

F1

F3

VEH vs  VPA (M & F pooled)

VEH vs VPA/ML (M & F pooled)

Brain 

Blood 

Blood 

Brain 

Blood 

Brain 

Blood 

F2

VEH vs VPA/PL (M & F pooled)

VEH vs VPA/ML (M & F pooled)

VPA/PL vs VPA/ML (M & F pooled)

VEH vs VPA/PL (M & F pooled)

VPA/PL vs VPA/ML (M & F pooled)

Brain 

Blood 

Brain 

Blood 

Brain 

Blood 

Brain 

Data are p values obtained inMann-WhitneyU tests between ERVexpression in two treatment groups [male (M) and female (F) data pooled]; in gray not
significant comparisons (following Bonferroni correction)

Table 2 ERVs’ transcriptional levels: comparisons between VPA groups across generations

ETnI ETnII- αααα ETnII- ββββ ETnII- γγγγ MusD IAP

001

p = 0.042 p < 0.001 p = 0.002 p < 0.001 p < 0.001 p < 0.001

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.

p = 0.89 p = 0.004 p = 0.56 p = 0.032 p = 0.019 p = 0.17

p = 0.005 p = 0.076 p = 0.74 p = 0.129 p = 0.151 p = 0.003

p < 0.001 p = 0.251 p = 0.508 p = 0.021 p < 0.001 p < 0.001

p < 0.001 p < 0.001 p = 0.010 p = 0.011 p < 0.001 p < 0.001

p = 0.203 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

p < 0.001 p = 0.014 p < 0.001 p < 0.001 p = 0.014 p = 0.032

p = 0.003 p = 0.010 p = 0.554 p = 0.015 p < 0.001 p < 0.001

p = 0.842 p = 0.001 p = 0.446 p < 0.001 p < 0.001 p < 0.001

p = 0.159 p = 0.003 p = 0.189 p < 0.001 p = 0.002 p = 0.425

p < 0.001 p = 0.002 p < 0.001 p = 0.288 p > 0.999 p = 0.831

F1-VPA vs         
F3-VPA/ML 

Brain (M & F pooled)

Blood (M & F pooled)

Brain (M & F pooled)

Blood (M & F pooled)

F1-VPA   vs        
F2-VPA/PL 

F1-VPA   vs        
F2-VPA/ML 

F2-VPA/ML vs   
F3-VPA/PL

F2-VPA/ML vs   
F3-VPA/ML 
F1-VPA vs         
F3-VPA/PL

Brain (M & F pooled)

Blood (M & F pooled)

Brain (M & F pooled)

Brain (M & F pooled)

Blood (M & F pooled)

Brain (M & F pooled)

Blood (M & F pooled)

Blood (M & F pooled)

Data are p values obtained in Mann-WhitneyU tests between ERVexpression in VPA groups across generations [male (M) and female (F) data pooled];
in gray not significant comparisons (following Bonferroni correction)
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Our data on early physical, sensorimotor, and behavioral
screening of VPA effects in F1 are consistent with previous stud-
ies [15, 58]. Indeed,VPA treatment induced in pups of both sexes
the tail malformation known as crooked tail phenotype [23, 59]
together with hyperactivity previously observed in adulthood
[11, 59, 60] and a weak reduction of vocalization rates [61–63].

Importantly, the behavioral effects by prenatal VPA upon
mouse pups confirm that early motor impairments can be an
important ASD feature. They now start to be considered as
Bcore clinical feature^, potentially useful also for diagnostic
purposes or phenotypic delineation [25, 64]. These impair-
ments range from atypical righting (including inability to turn
over) firstly evidenced in a retrospective study [65] to in-
creased head turning movements [30] and laying and gait
asymmetries [66, 67]. As a whole, it can be easily anticipated
that such key role of motor domain will be certainly instru-
mental for preclinical studies in rodent models, and primarily
for those interested in early phases of behavioral development
because of the similarities of early motor and vocal repertoire
between the two mammal species.

As our experimental design included both males and fe-
males, we could also identify sex differences in developmental
effect of VPA that so far have been scarcely considered. F1-
VPA female pups are delayed in somatic growth as well as in
displaying a fully fledged righting reflex, indicative of a mild
delay in integration between vestibular and motor systems,
compensated later on [68]. In VPA female pups, head rising
increased, an early sign of repetitive/stereotypic-like move-
ments, already observed in adult female rats exposed prenatally
to VPA [14]. In line with previous studies, F1-VPA male pups
showed a deficit in early olfactory discrimination [11, 62, 63,
69]; a timely establishment of olfactory discrimination capabil-
ities can be critical for development of adult social recognition,
reportedly impaired in the VPA model [23, 62, 63].

In F1 generation, the direct prenatal exposure to VPA during
fetal life increased expression of ERVs in both brain and blood,
in agreement with our previous data [49], and in both sexes.
The VPA effects, however, were significantly larger in females,

in agreement with the larger epigenetic effect of prenatal VPA
recently reported in female fetal brains, ascribed to sexually
dimorphic trimethylation of H3K4 induced by VPA [70].

Some of the motor behavior alterations induced by VPA in
F2 (bothML and PL) were already found altered in F1, namely
increased locomotion and head rising. Interestingly, the mag-
nitude of the VPA effects is comparable in both generations,
and VEH values from F1 and F2 are substantially overlapping.

Besides locomotion and head rising, in F2 generation, addi-
tional behavioral patterns are influenced by VPA, with differ-
ent profiles depending on whether VPA exposure came from
the PL or ML. VPA effects in F2 ML offspring seem more in
line with a hyperactive profile whereas those in F2 PL suggest
delayed maturation of motor and vocal competences.

At the transcriptional level, VPA increased the expression
of most ERVs in either F2-VPA/PL or F2-VPA/ML. VPA ef-
fects through ML resulted of greater magnitude than PL and
entirely comparable to those detected in F1-VPA. The greater
effectiveness of the ML in mediating VPA multigenerational
effects is in agreement with the larger effects of VPA in fe-
males in F1: indeed, these same F1 females are dam breeders
for F2-VPA/ML offspring and in our previous study the higher
increases in ERV expression observed at pnd 7 persisted till
adulthood [49].

As in F1 and F2, higher levels of ERVexpression were also
observed in tissues from F3-VPA offspring of both lineages,
supporting a transgenerational effect of prenatal VPA exposure.

The behavioral data indicate that in F3 generation VPA in-
fluences the same domains affected in the previous generations,
namely locomotion and vocalizations, inducing an increase in
locomotion (in ML offspring) and a decrease in the number of
USVs (in PL offspring). These F3 behavioral effects are un-
doubtedlymilder that those observed in F2 and F1, and probably
hampered by the limited sample size in these groups. However,
canonical correlations of molecular and behavioral components
support the view that F3 data, despite the limited number, are
coherent with those from previous generations.

So far, data on transgenerational effects of VPA exposure
were available for PL only and were focused on male offspring
[23]: the rationale for this a priori choice was to exclude abnor-
mal maternal nurturing behaviors in VPA-treated offspring (but
such maternal behavior alterations have not been documented so
far [15, 61]). By contrast, our experimental design allowed us, for
the first time, to evaluate the neurotoxic effects of prenatal VPA
exposure and potential effects on neurodevelopment in both
sexes and throughout generations. It is worth of note that ASD
prevalence in children exposed toVPA during pregnancy is char-
acterized by an even (1:1) male to female ratio [71], so also VPA
effects in females could be relevant for preclinical settings.
Moreover, we were interested to evaluate the neurotoxicity and
potential impact of a therapeutic agent used in reproductive age
as VPA on the germline cells in both lineages, beyond the direct
risk of VPA exposure for fetal neurodevelopment [72, 73].

Table 3 Canonical correlations between PCA scores computed on ln-
ERVs and behavioral outcome

Including PLs Excluding PLs

N Correlation N Correlation

Overall data 39 0.4064 29 0.3982

F1 11 0.6502 – –

F2 16 0.5758 10 0.8766

F3 12 0.7512 8 0.8706

Correlation values are Pearson’s r computed on the best linear combina-
tion of ERVs’ PCA scores and the best linear combination of behavioral
outcome PCA scores. Analyses were performed on all data pooled (F1 +
F2 + F3) and within each generation (F1, F2, F3)
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Unexpectedly, in F1, prenatal VPA effects are larger in
females than in males for somatic and motor development,
as well as for ERVs expression. These results may appear in
disagreement with previous data [10]; however, it is notewor-
thy that in most of the previous studies, only male data were
reported [23, 60, 62, 63, 74–76]; when females were included,
VPA effects were either different or of a minor extent from
those of VPA males, but still significant [14, 15, 77]..Recent
molecular data support a specific Bvulnerability^ of the female
sex, as they indicate that some epigenetic effects induced by
gestational VPA in offspring are greater in female than in male
fetal brain [70]. For example, expression levels of androgen
receptor in the developing cerebellum are more markedly al-
tered by VPA in neonate females than in males [78].

Our data, also supported by correlational analysis, point to the
importance of including females and MLs in prenatal/
transgenerational VPA studies [10]. Differences between PL
and ML as for transgenerational effects on neurodevelopment
are still an underexplored field and they warrant further investi-
gation [22].

Our study presents some limitations that need to be ad-
dressed in future studies. First, our experimental design, fo-
cused on ML, can be considered some-how sub-optimal for
the study of PL, because of the absence of F3 offspring coming
from F2-VPA/PL parents. Secondly, behavioral transmission
of VPA effects through ML cannot be ruled out in the absence
of systematic scoring of early maternal cares; extensive data,
however, showed that maternal behavior is not altered in F0
VPA dams [15, 61], thus making it unlikely that it represents a
target of VPA transgenerational effects. Finally, whether the
observed early behavioral alterations are predictive of ASD-
like phenotype at adulthood is not known.

Biological bases for the larger VPA effects on ERVexpres-
sion in females within F1 and along MLs could include both
VPA-induced downregulation of HDACs as well as other
mechanisms not mediated by inhibition histone deacetylation,
but by other transcription modulators (e.g., PAX6, Mecp2)
[23, 79], involving early DNA damage [63] or mitochondrial
DNA (mtDNA) defects [80–82]. To these mechanisms, the
two sexes may result differently vulnerable, as it is the obvious
case of mtDNA damage, to which female germline only is
exposed (but see also [83]).

Furthermore, the increased expression of ERVs observed
could be due to an increase in their copy number. Such intrigu-
ing hypothesis is in line with previous data showing that (i) in
mice, ERVs can Bcooperate^ with other ERV and non-ERV
elements (LINE) by a mechanism of complementation in trans,
thus increasing their intrinsic capability to retrotranspose and,
consequently to determine insertional mutagenesis in the germ
line [84, 85]; (ii) in humans, it is known that—although the
majority of ERVs are defective, fixed in the host, and ceased
to proliferate millions of years ago—the most recently integrat-
ed ERV-K (HML2) continued to proliferate in the germline of

our ancestors [86], inducing polymorphisms in the population
[87–89], also with differential rate in the two sexes [90]; (iii)
polymorphisms in humans were described also for ERV-H [91],
that we have found highly expressed in ASD patients [45].

In our model, the ERVs copy number variations could oc-
cur in somatic as well as in germline cells, thus providing an
explanation for the differences in ERVs expression between
F1 and F2–F3 generations. A greater upregulated ERVexpres-
sion in females could also be due to prominent rearrangement
or new insertions in X rather than in Y chromosome. Further
studies on copy number variations of ERVs sequences across
generations and on the epigenetic status could contribute to
unravel this point.

Putative pathogenic effects mediated by ERVs in neurological
and psychiatric conditions in humans have been already de-
scribed [92]. ERVs may alter cellular function in the developing
brain bymeans ofmultiplemechanisms, includingmodulation of
DNA stability and transcription, alteration of cell signaling path-
ways, and activation of immune system [93–96]. Our previous
study showed in offspring directly exposed to VPA in utero,
together with ERVoverexpression, high levels of proinflamma-
tory cytokines, such as IL-1β, IL-6, and TNF-α, already from
intrauterine life and in the neonatal brain. A hypothesis worth to
be investigated in future transgenerational in vivo studies con-
cerns the implication of immuno-inflammatory pathways in the
epigenetic effects of VPA, in line with the maternal immune
activation hypothesis [22].

Proofs that ERVs are mechanistically involved in neu-
robehavioral alterations caused by VPA in pregnancy are
still lacking. Anyhow, the substantially comparable profile
of ERV expression in brain and blood tissues in pups ex-
posed to VPA across generations, candidate ERVs blood
transcriptional levels as a stable peripheral biomarker, even
at early life stages, of derailed brain development.
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