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Abstract
Ischemia-reperfusion injury (I/R injury) is a common feature of ischemic stroke which occurs when blood supply is restored after
a period of ischemia. Although stroke is an important cause of death in the world, effective therapeutic strategies aiming at
improving neurological outcomes in this disease are lacking. Various studies have suggested the involvement of different
mechanisms in the pathogenesis of I/R injury in the nervous system. These mechanisms include oxidative stress, platelet
adhesion and aggregation, leukocyte infiltration, complement activation, blood-brain barrier (BBB) disruption, and
mitochondria-mediated mechanisms. Curcumin, an active ingredient of turmeric, can affect all these pathways and exert neuro-
protective activity culminating in the amelioration of I/R injury in the nervous system. In this review, we discuss the protective
effects of curcumin against I/R injury in the nervous system and highlight the studies that have linked biological functions of
curcumin and I/R injury improvement.
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Introduction

Stroke is a major cause of death and disability in the
world. Epidemiological studies have indicate that 80%
of stroke cases are cerebral stroke [1]. The goal of treat-
ment in ischemic stroke is to repair damaged tissues by

restoring blood flow (reperfusion). Although reperfusion
is a signal for the termination of hypoxia, it may subse-
quently increase cell death and damage [2]. Indeed, stroke
can lead to cognitive and memory impairment, motor dys-
functions and, ultimately, dementia and neuronal death.
Several signaling mechanisms are involved in the patho-
physiology of ischemia-reperfusion injury (I/R injury) in-
cluding inflammation, oxidative stress, disruption of the
blood-brain barrier (BBB), mitochondria-mediated mech-
anisms, and leukocyte infiltration [3–6]. Innate and adap-
tive immune systems as well as the platelets, complement
system and coagulation factors are also involved in I/R
injury. After activation of these systems, necrosis and ap-
optosis occur via a number of mechanisms that ultimately
lead to cell death. These processes stimulate the inflam-
matory system and lead to further release of nucleotides
which make phagocytosis progress and ultimately worsen
reperfusion injury [7, 8].

Several lines of experimental evidence have shown that
phytocompounds such as crocin [9], carvacrol [10],
thymoquinone [11], and curcumin [12] as well as different
plants such as Artemisia absinthium, Ocimum basilicum,
Ocimum sanctum, Ginkgo biloba , Gastrodia elata,
Camellia sinensis, Olea europaea, Oleaceae europaea,
and Lavandula officinalis have the potential to be effica-
cious in the treatment of stroke because of their antioxidant,
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free radical-scavenging, anti-thrombotic, anti-apoptotic,
and neuroprotective properties [13].

Previous investigations have indicated that one of the com-
pounds that can be effective in the treatment of stroke is
curcumin. Curcumin is a yellow polyphenolic compound de-
rived from turmeric. Previous reports have proposed that
curcumin can be used as a potential drug for the treatment of
many diseases such as cancer [14–19], diabetes [20, 21], car-
diovascular [22–27], arthritic [28–30], psychological [31, 32],
hepatic [33–36], pulmonary [37–39], and neurodegenerative
disorders [40]. Most of these therapeutic effects have been
attributed to the anti-inflammatory [29, 41, 42], antioxidant
[43], and immunomodulatory [44–47] properties of curcumin.
One of the beneficial features of curcumin is that despite its
daily and long-term use in Asian countries, toxicity has not
been reported [48, 49]. Several studies on the protective ef-
fects of curcumin have been presented in I/R experimental
models [50–52]. For example, it has been shown that admin-
istration of curcumin prevents the negative effects of stroke on
biochemical parameters, neurological scores, apoptosis, and
subsequently infarct volume, edema, and hemorrhage in rats
[53–55]. The aim of the present review was to explore these
protective effects of curcumin against I/R injury in the nervous
system.

I/R Injury in the Nervous System

Brain ischemia is caused when brain arteries are blocked
acutely and cannot be recovered in a short time [56]. It has
been shown that brain tissue and spinal cord are more sensi-
tive to ischemia compared with other tissue such as the heart
and kidney. In this regard, the blockage of blood flow to the
brain for only 5 min can lead to the death of neurons, while
cell death in cardiac or kidney tissues occurs after 20–40 min
of ischemia [57, 58]. Ischemia-reperfusion (I/R) is the resto-
ration of blood supply to an organ with seriously decreased or
entirely stopped blood flow. Reperfusion is the main treatment
for acute stroke and, at the same time, it can also worsen tissue
damage and limit the recovery of function [8, 59]. Reperfusion
may occur spontaneously after a stroke or it can also be
achieved by thrombolytic therapy or endovascular therapy
[60]. It has been shown in previous studies [61–63] that while
reperfusion may improve complications in some cases, it may
worsen brain injury in others. It has been indicated that the
mechanisms underlying I/R injury include leukocyte infiltra-
tion, platelet activation, oxidative stress, complement activa-
tion, mitochondria-mediated mechanisms, disruption of the
BBB, and ultimately post-ischemic hyperperfusion leading
to edema or hemorrhagic transformation (HT) in the brain
and spinal cord (Fig. 1) [6, 58, 64]. Leucocyte infiltration
plays the main role in initiating the inflammatory process of
cerebral ischemia-reperfusion injury. During reperfusion,

chemical signals trigger binding of leukocytes to endothelial
cells, followed by the production of neutrophil-derived oxi-
dants and matrix metallo-proteinases that impair BBB [65]. It
has been shown that after reperfusion platelets are activated
and produce oxygen radicals and release pro-inflammatory
factors such as platelet-derived growth factor, thromboxane
A2, arachidonic acid metabolites, platelet factor 4, and sero-
tonin [66].

Oxidative stress also plays an important role in the patho-
genesis of cerebral I/R injury. Oxidative stress occurs when
the reactive oxygen species (ROS) surpass the antioxidant
capacity of a cell or tissue. Prior studies have shown that
production of ROS is increased after cerebral I/R injury, and
these species can damage nearly all cellular components such
as membrane lipids, proteins, and nucleic acids [67–69]. In I/
R, due to increased amounts of free radicals, and deterioration
and inactivation of antioxidant enzymes, defensive mecha-
nisms are not enough to protect the tissue. Ischemia causes
cell death through deprivation of oxygen supply, cell energy
evacuation, and accumulation of toxic metabolites in the tis-
sue. In contrast, reperfusion causes more tissue damage than
that caused by ischemia [70, 71]. Cell energy evacuation
causes inhibition of the Na+, K+-ATPase pump in the cell
membrane. Consequently, intracellular Ca2+ ion concentration
increases and activates several Ca2+-dependent enzymes like
phospholipases, proteases, and endonucleases which may be
involved in the production of ROS [72, 73]. Xanthine oxidase,
NADPH oxidase (Nox), mitochondria, and uncoupled nitric
oxide synthase are the main sources of ROS involved in
reperfusion-induced oxidative stress.

Nitric oxide (NO) and superoxide anion (O2
−) are generated

in the brain during I/R via Nox and neuronal nitric oxide syn-
thase (nNOS) activity, respectively. Peroxynitrite (ONOO−)
produced by the interaction between NO and O2

−. ONOO− is
a potent oxidative radical that causes protein nitration and im-
pairment. .OH, another oxidant, which is produced from H2O2,
causes lipid peroxidation and protein, DNA and RNA oxida-
tion, and subsequently cell death. Small amounts of these

Fig. 1 Schematic diagram showing the various mechanisms of ischemia-
reperfusion injury. The mechanisms of ischemia-reperfusion injury
involves leukocyte infiltration, platelet activation, oxidative stress,
complement activation, mitochondrial-mediated mechanisms, disruption
of the BBB, and eventually post-ischemic hyperperfusion leading to ede-
ma or hemorrhagic transformation

1392 Mol Neurobiol (2019) 56:1391–1404



oxidants as signaling molecules are needed for the body but
their increase in I/R injury leads to dysfunction [74–76].

The complement system is another main cause of I/R inju-
ry. It is a part of the innate immune system and consists of
numerous cascades which are involved in the onset of inflam-
mation induced by pathogens and therefore neuronal cell
death. The complement system is implicated in I/R injury
via different pathways including the antibody-dependent clas-
sical pathway, the lectin pathway or the alternative pathway,
which are started by C1q, MBL/ficolins/collectin-11, and
C3b, respectively. All of these pathways may cause the acti-
vation and cleavage of C3 into C3a and C3b. Finally, a com-
plex called membrane attack complex (MAC) is formed
through the act iv i ty of inf lammatory media tors
(anaphylatoxin C5a, distal complement component C5b-9),
which cause various impairments including increased cell
membrane permeability by formation of transmembrane chan-
nels, recruitment of leukocytes to the reperfused tissue, and
induction of endothelial expression of monocyte chemo-
attractant protein-1 (MCP-1), which has a main role in inflam-
mation in the central nervous system (CNS) [77, 78].

Mitochondrial mechanisms play an important role in me-
diating cerebral I/R injury in several ways such as ROS gen-
eration, apoptosis, and necrosis [67, 79]. Studies have shown
that disruption of BBB occurs in cerebral reperfusion injury
and this leads to edema and hemorrhagic transformation fol-
lowing hyperperfusion [80, 81]. Within the CNS, astrocytes
are fundamental for processes such as the development and
maintenance of the BBB, promotion of neurovascular cou-
pling, recruitment of cells through the release of chemokines,
release of gliotransmitters, regulation of calcium levels, re-
lease and transport of glutamate by calcium signaling through
the GLAST and EAAT transporters, maintenance of brain
general metabolism, control of cerebral pH, uptake of
GABA (γ-aminobutyric acid) by specific transporters, and
the production of antioxidant enzymes [3, 5, 82–85]. During
I/R, astrocyte undergoes morphological changes and turn into
a reactive-like hyperplasic state. This may result in the forma-
tion of a glial scar [86] and secretion of various inflammatory
and damaging molecules that may worsen the still intact ner-
vous tissue and expands the penumbra towards the healthy
brain tissue. It is important to note that neurons are more
susceptible to I/R injury than astrocytes, since these cells have
a lower antioxidant capacity and require a great deal of meta-
bolic coupling with astrocytes to combat oxidative stress [85],
especially during an I/R event. Previous studies have shown
mitochondrial dysfunction in astrocytes upon glucose depri-
vation in an in vitro model of ischemia. The reported mito-
chondrial dysfunction was reflected by reduced mitochondrial
mass, increased oxidative stress, and reduced mitochondrial
membrane potential [87, 88]. On the contrary, other studies
pointed that improving mitochondrial function in astrocytes
by targeting neuroglobin, a protein of globin family, aimed at

protecting neurons is an important experimental strategy to
counteract inflammatory stimuli [89–91].

Potential Therapeutic Strategies in Stroke:
Curcumin

Curcuma longa L., generally known as turmeric, is a native
plant of South Asia, India, and Indonesia and is mainly grown
in South India [92]. It belongs to the ginger family. The main
bioactive constituents of turmeric are curcuminoids that in-
clude demethoxycurcumin (DMC), bisdemethoxycurcumin
(BDMC), and curcumin. Curcumin is the predominant
curcuminoid which can constitute as high as 80% of total
curcuminoids in turmeric [93, 94]. Commercial extracts of
curcumin are a mixture of all three mentioned curcuminoids
[95]. Curcumin is used as a spice, food preservative, and col-
oring agent while having a long history of use in the
Ayurvedic medicine for the treatment of various diseases
[96]. Vogel and Pelletier for the first time isolated impure form
of curcumin in 1815, and its chemical structure was discov-
ered by Milobedzka and Lampe in 1910 as diferuloylmethane
or 1,6-heptadiene-3,5-dione-1,7-bis (4-hydroxy-3-
methoxyphenyl)-(1E, 6E) (Fig. 2) [97]. Curcumin has a light
yellow color and is used as a natural coloring agent in the food
industry (the code for this usage is E100) [98]. Because of low
oral absorption of curcumin and its rapid metabolism in the
liver, consumption of curcumin with piperine has been sug-
gested as an efficient strategy to increase the bioavailability of
curcumin [99, 100]. Also, micellar surfactants and phospho-
lipid complexed have been shown to increase the absorption
of curcumin by significant orders [101, 102].

Curcumin is a pleiotropic molecule and has numerous mo-
lecular and cellular targets by which it can exert its biological
effects. These targets include growth factor receptors, tran-
scription factors, protein kinases, adhesion molecules,
apoptosis-related proteins, inflammatory cytokines, enzymes
like ATPase, cyclooxygenase-2 (COX-2), and matrix metallo-
proteinases [103]. Spectroscopic results showed that curcumin
binds to human serum albumin with a strong affinity [104].
Furthermore, curcumin has been reported to possess wide
range of biological activities including antioxidant [105], an-
tivenom [106], antimicrobial [107], anti-HIV [108], anti-
tumor [109], anti-inflammatory [110], antiprotozoal [111],
nephroprotective [112], and antirheumatic [113] activities plus
therapeutic effects against myocardial infarction [114], skin
diseases [115], and cystic fibrosis [116].

Neuroprotective Effects of Curcumin

It has been shown that curcumin has protective effects against
neuronal damage risk factors like inflammation [117], free
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radicals [118], ischemia [119], amyloid [120], and apoptosis
[121]. Previous research has also shown that curcumin regu-
lates adhesion molecules, cytokines, protein kinases, and en-
zymes that are related to inflammation [122, 123]. Studies
have revealed that curcumin can improve many neurological
disorders such as anxiety, depression, neuronal injury,
Alzheimer’s disease, Parkinson’s disease, multiple sclerosis,
Huntington’s pathology, head trauma, and stroke [124].
Moreover, curcumin has been proposed as a potential candi-
date to increase the cholinergic activity of neurons in
streptozotocin-induced dementia in rats [125].

Docosahexaenoic acid (DHA) is an omega-3 fatty acid that
is essential for development and protection of the brain. DHA
deficiency is related to some neurological disorder like anxi-
ety [126, 127]. Wu et al. showed that curcumin raises the
levels of enzymes such as FADS2 and elongase 2 which are
involved in the synthesis of DHA in both liver and brain
tissues, and increases the production of DHA [128].
Numerous studies reported that curcumin protects cerebellar
granule cells, hippocampal cells, and retinal cells against glu-
tamate excitotoxicity [129, 130]. One prior study determined
that curcumin can improve cognitive impairment by acting
through the brain-derived neurotrophic factor (BDNF) system
in a rat traumatic brain injury (TBI) model. In this regard,
curcumin may increase BDNF protein levels, which then ac-
tivate TrkB phosphorylation and hence promote neuronal sur-
vival [131]. Furthermore, it has been suggested that curcumin
promotes neuronal damage induced by chronic stress via up-
regulation of serotonin receptor 1A (5-HT1A receptor)
mRNA and BDNF [132]. Curcumin has beneficial actions
on seizures via its function as a free radical scavenger and
an antioxidant [133]. For example, Ono et al. reported that
curcumin treatment significantly increased glutathione
(GSH) levels in the brain tissue of epileptic mice. GSH is

one of the free radical scavengers which protect cells against
oxidative damage [134].

Curcumin also regulates monoamine neurotransmission
and oxidation in the brain, neuroinflammation, and hypo-
thalamus–pituitary–adrenal (HPA) axis and, through these
effects, it can act as an antidepressant [135]. Recently, a
randomized double-blind study on 123 subjects with de-
pression showed that curcumin supplementation for
12 weeks could reduce the symptoms of depression in com-
parison with the control group [136]. It is also hypothesized
that neuroprotection of curcumin might be mediated via
BDNF/tyrosine kinase B (TrkB)MAPK/PI-3K-cyclic
AMP response element binding protein (CREB) signaling
pathway. In this sense, Wang et al. confirmed the effect of
curcumin on the activation of this signaling cascade and
showed that this compound induced the viability of cul-
tured rodent cortical neurons [137].

It is proven that curcumin has anti-inflammatory, antioxi-
dant, and anti-amyloid activity; therefore, it can be useful in
the treatment and/or prevention of Alzheimer’s disease (AD)
as shown previously [138]. Previous works have indicated
that curcumin inhibits lipoxygenase and COX-2, two enzymes
that are responsible for the synthesis of the pro-inflammatory
leukotrienes, prostaglandins, and thromboxanes [139].
Another factor that is involved in the pathophysiology of
AD is cholesterol, which is involved in β-amyloid (Aβ) de-
position. It has been shown that the use of curcuminoids
(500 mg/day) for 7 days decreased the levels of serum choles-
terol and lipid peroxides in healthy volunteers [140].
Furthermore, Yang et al. reported that in AD mice model,
administration of curcumin decreased the level of Aβ by
40% in comparison with control mice [141]. Several studies
support the clinical application of curcumin in Parkinson’s
disease (PD) [142, 143]. Aggregation of oxidized DNA is

Fig. 2 Chemical structure of
curcumin
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involved in the pathophysiology of PD [144] and transition
metal ions such as Fe (II/III) and Cu (II) inhibit DNA repair
enzymes [145]. As such, curcumin can reverse such inhibition
of DNA repair enzymes both in vitro and in vivo [143].
Furthermore, the antioxidant activity of curcumin protects
substantia nigra neurons, improves striatal dopamine levels
and chelates Fe2+ in the 6-OHDA rat model of PD [142].

Protective Effects of Curcumin
Against Neurological I/R Injury

Curcumin has many protective effects against neurological
IRI in brain and spinal cord. In this section, we will address
some signaling mechanisms that are sought to be protective
upon treatment with curcumin.

Effect of Curcumin Against I/R Injury in Brain

Administration of curcumin (300 mg/kg ip) prior to reper-
fusion in rat middle cerebral artery occlusion (MCAO)
model reduced infarct size and brain edema at 24 h, im-
proved microvascular hemodynamics, and restored blood
velocity and shear rate. Treatment with curcumin also im-
proved neurological function and subsequently neurologi-
cal scores at 24 h. The main protective effect of curcumin
was recognized in the striatum, where the highest reduction
in infarct size and brain edema was observed [146]. In an-
other study, significant impairment of the motor perfor-
mance was seen in the embolic occlusion of the MCAO
model of rats [147]. Increased neurological defects and re-
duced dwell-time on the rotarod occurred in animals which
may be due to neural damage in the cerebellum that regu-
lates motor coordination [148, 149]. Results from another
study showed that occlusion-induced ischemia caused se-
vere neurobehavioral deficits in animals and the defects
were significantly smaller in curcumin-treated animals at
3, 7, and 12 day after stroke. It has been shown that
curcumin did not improve neurobehavioral recovery at
1 day after stroke, possibly because of the dose and admin-
istration route used. Furthermore, curcumin treatment in-
creases BrdU (marker of migrating cells) labeled cells
12 days after MCAO, suggesting rapid migration of new
cells into the ischemic region and indicating DNA replica-
tion [150]. Investigators suggest that 12 day-period is suit-
able for observing a major part of neurogenesis and migra-
tion that occurs after stroke in rats [151]. In a recent study
conducted by Altinay et al., cellular damage indices such as
shrunken cytoplasm, atrophic neurons, and damaged nuclei
were present in hematoxylin and eosin-stained forebrain
sections of stroke animals and these parameters were found
to be reduced upon administration of curcumin [53]. It has
also been demonstrated that astrogliosis plays a main role in

the pathology of cerebral ischemia [5, 152, 153]. In this
regard, Kalani et al. showed that curcumin-loaded embry-
onic stem cell exosomes (MESC-exocur) normalized
astrogliosis and improved neuronal survival following I/R
injury in mice. Moreover, tight junction protein loss in-
duced by IRI was alleviated in mice treated with MESC-
exocur [54]. Major findings from another study indicated
that a single-dose administration of FeTPPs, curcumin, or
minocycline improved 24-h post-stroke bleeding at the re-
perfusion site in diabetic animals and this was associated
with reduced matrix metallo-proteinases-9 activity [55].
Dietary supplementation with curcumin (2.0 g/kg) for
2 months reduced neuronal death in the hippocampal CA1
region in an experimental I/R-induced brain ischemia mod-
el [154]. Furthermore, reduction in locomotor count and
decrease in grip strength were improved in middle cerebral
artery (MCA)-occluded rats following intranasal delivery
of curcumin, DMC, and BDMC [155]. A summary of pro-
tective effects of curcumin in I/R injury is displayed in
Table 1.

Effect of Curcumin Against I/R Injury in Spinal Cord

Lin et al. showed that curcumin strongly reduced RANTES
production in reactive astrocytes both in vitro and in vivo, and
this may contribute to its neuroprotection during spinal cord
ischemia. The authors also indicated that curcumin inhibited
neuronal loss and astrocyte activation, and improved neuro-
logical deficits [160]. Similarly, administration of curcumin
significantly decreased axonal damage, neuronal degenera-
tion, and glial cell infiltration parameters in I/R-induced spinal
cord ischemia in rabbits [158]. In a recent study conducted by
Gokce et al., rats from the I/R injury group that received saline
treatment exhibited histological changes related to ischemic
injury including widespread edema, diffused hemorrhage and
congestion and neuronal damage, as evidenced by pyknosis,
intense axonal swelling, loss of cytoplasmic features, and cy-
toplasmic eosinophilia. On the contrary, curcumin (200 mg/kg
for 7 days before induction of I/R injury) markedly reduced
these pathological changes in rats (153, 154), suggesting that
curcumin protects spinal cord tissue in these animals against
injury. Moreover, the mean number of normal motor neurons
in the anterior spinal cords decreased in rats sufferring from
spinal cord IRI while curcumin-treated rats had significantly
greater numbers of normal motor neurons than rats sufferring
from spinal cord IRI (153, 154). Furthermore, the authors also
showed that ultrastructural abnormalities in white and gray
matter induced by I/R injury such as severe interruptions
and separations in small, medium, and large myelinated
axons, separations and interruptions in myelin configuration,
swollen neuronal mitochondria, and perineural edema were
less severe in curcumin-treated animals. The severity of
hind-limb motor dysfunction after spinal cord I/R injury in
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Table 1 Summary of studies reporting protective effects of curcumin against ischemia-reperfusion injury in the nervous system

Animal IR model Main target or
tissue

Curcumin
administered
dose

Treatment time Results Reference

Focal cerebral
ischemia

(MCAO)

Brain 30, 100, and
300
mg/kg

Once (30 min.
after MCAO)

Curcumin treatment: (1) reduced
infarct volume, edema, and MDA
level, (2) increase SOD activity,
(3) improve physiological parameters.

[148]

Focal embolic
model

Brain 100, 200, and
300
mg/kg

4 h post-ischemia (once)
4 h after clot

implant (once)

Curcumin reduced infarct volume,
improved the sensory motor function,
and attenuated the nitrosative stress.

[147]

MCAO/R Cerebrovascular
endothelium

300 mg/kg 1 h prior to
reperfusion (once)

Curcuminoid treatment reduced neutrophil
rolling and adhesion to the cerebrovascular
endothelium and improve shear rate.

[146]

Focal cerebral
ischemia

(MCAO)

Brain 25 mg/kg Once daily for a
period of 3
days after 30 min
of ischemia

Brain edema, infarct size, and Evans Blue
leakage reduced by curcumin treatment.
It also decreased oxidative damage and
ameliorated autophagy in genetically
hyperhomocysteinemia mice after
IR injury.

[149]

Occluding
bilateral
common
carotid arteries
(BCCAO)

Brain 25 and
50 mg/kg

Treatment began 5
days before BCCAO
and continued for
another 3 days

Curcumin treatment as solid lipid
nanoparticles significantly ameliorated
I/R-induced oxidative and nitrosative stress.

[156]

MCAO Brain 300 mg/kg Starting 1 h after stroke
and continuing for 7 day

Curcumin stimulated neurogenesis by
activating the Notch signaling pathway

[150]

BCCAO Forebrain 300 mg/kg Oral curcumin every day
for 21 days before ischemia
and three times 300 mg/kg
intraperitoneal curcumin
treatments during the 72-h
reperfusion period after
ischemia

Curcumin increased enzyme activities of
superoxide dismutase, glutathione
peroxidase, and catalase and decreased
xanthine dehydrogenase and
malondialdehyde enzyme activities and
concentrations of interleukin-6 and
TNF-alpha. It also reduced apoptotic index.

[53]

Occlusion of the
common
carotid arteries
(CCA)

Brain 30 mg/kg For 2 months Curcumin significantly attenuated
ischemia-induced neuronal death and glial
activation. Curcumin administration also de-
creased lipid peroxidation, mitochondrial
dysfunction, and the apoptotic indices.

[154]

Occlusion of the
common
carotid arteries
(CCA)

Brain 10 μl Curcumin-loaded mouse
embryonic stem cell
exosomes (MESC-exocur)
was administered after an
hour of IR, twice a day
for 7 days

MESC-exocur reduced neurological score,
infarct volume, edema, inflammation,
astrogliosis, N-methyl-D-aspartate
receptors expression, vascular
inflammation and alleviated tight and
adherent junctions.

[54]

MCAO Cerebral macro
vessels

250 mg/kg Single dose, immediately
after reperfusion

Post-stroke infarct volume, edema,
hemorrhage, neurological deficits,
and matrix metallo-proteinases activity
were evaluated by administration of
curcumin.

[55]

Abdominal aorta
occlusion
followed by
reperfusion

Spinal cord 50 mg/kg Single dose injected 10 min
before abdominal aorta
occlusion

Curcumin improved neurological function,
reduced cell apoptosis and MDA levels,
and increased SOD activity.

[157]

Abdominal aorta
occlusion
followed by
reperfusion

Between L-3 and
L-5 of spinal
cord

200 mg/kg Single dose of curcumin
immediately administered
after reperfusion

Curcumin treatment improved motor
dysfunction and histological damage
and significantly prevented the
ischemia-reperfusion-induced elevation
of nitrite/nitrate and TNF-α. It also
improved SOD, glutathione, and CAT levels.

[158]

Abdominal aorta
occlusion
followed by
reperfusion

Spinal cord 200 mg/kg Daily, for 7 days before
induction of IR injury

Curcumin decreased inflammatory cytokine
expression, improved oxidative stress and
lipid peroxidation, increased antioxidant

[159]
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rats was determined using the Basso, Beattie, and Bresnahan
grading scale. Animals in the I/R injury group showed severe
neurological deficits and decreased score, while treatment
with curcumin increased the abovementioned score [58, 157,
159].

Molecular Mechanisms Underlying Protective
Effects of Curcumin Against I/R Injury

There are several molecular mechanisemes underlying protec-
tive effects of curcumin against I/R injury as described in
details below.

The Effect of Curcumin on Inflammation
and Oxidative Stress

In the early stages of I/R injury, inflammation accelerates the
process of injury and determines the severity of cerebral dam-
age [161]. Oxidative stress and overproduction of reactive
oxygen species (ROS) is a constant feature and an important
mechanism of I/R injury [162]. Althogh ROS play several key
roles in normal physiology, excessive production of these spe-
cies may contribute to the pathophysiology of I/R injury as the
brain tissue is very sensitive to oxidative damage. Previous
studies have identified that administration of curcumin im-
proved I/R injury due to its antioxidant effects [163–165].
Morover, significantly prevented cerebral I/R injury (CIRI)
via ameliorating oxidative damage [155, 166]. Possible mech-
anisms of the protective effect of curcumin against oxidative
stress include decreasing lipid peroxidation (a sensitive mark-
er of oxidative damage), enhancement of protein synthesis,
scavenging of free radicals, increasing glutathione (GSH) con-
tent, and preservation of cell membrane integrity [155, 166,
167]. Jia et al. reported that peroxiredoxin 6 (PRDX6) upreg-
ulation by curcumin treatment attenuated ischemic oxidative
damage through transcription factor specific protein 1 (SP1)
induction in rats after stroke [166]. Another study showed that
curcumin induced the expression of thioredoxin (an

antioxidant protein) and protected neurons from oxygen-
glucose deprivation-induced death in an in vitro model of I/
R [168]. Among potential mediators of ischemic brain pathol-
ogy are inflammatory cytokines such as IL-1β, IL-6, TNF-α,
prostaglandin E2 (PGE2), NO, COX-2 and inducible nitric
oxide synthase (iNOS). In this sense, curcumin protects the
brain from ischemia via suppression of inflammatory cyto-
kines like TNF-α and IL-6 [169].

Anti-apoptotic Effect of Curcumin

Apoptosis is one of the major pathways that can lead to the
process of cell death after I/R injury [153]. Curcumin contrib-
utes to neuronal protection possibly through anti-apoptotic
mechanisms [170]. Oxidative stress affects the mitochondrial
outer membrane and, as a consequence, Bax moves from the
cytosol to mitochondria and cytochrome c is released into
cytosol, and this translocation is regulated by B-cell lympho-
ma 2 (Bcl-2) protein. Release of cytochrome c into cytosol
leads to the formation of apoptosome, a complex composed of
apoptotic-protease activating factor-1, procaspase-9, and ATP.
Formation of apoptosome leads to the activation of
procaspase-9 and, consequently, activation of procaspase-3.
Eventually, caspase-3 leads to DNA fragmentation
[171–173]. Interestingly, curcumin increased the levels of
anti-apoptotic Bcl-2 protein in mitochondria and reduced sub-
sequent translocation of cytochrome c into cytosol, therefore
attenuating the downstream caspase activation (Fig. 3) [170].
It has been suggested that the mitochondrial pathway is an
important target of curcumin. Ischemia-induced mitochondri-
al dysfunction in neurons can be detected by measuring the
release of cytochrome c from mitochondria. Qun Wang et al.
demonstrated that administration of curcumin completely sup-
pressed the ischemia-induced release of cytochrome c [154].
Another mechanism through which curcumin prevents cere-
bral I/R injury is increasing silent information regulator 1
(Sirt1) expression, a key neuroprotective molecule that is in-
volved in protection against cerebral I/R. In this regard,

Table 1 (continued)

Animal IR model Main target or
tissue

Curcumin
administered
dose

Treatment time Results Reference

defense mechanism activity and
prevented apoptosis.

Abdominal aorta
occlusion
followed by
reperfusion

Spinal cord 100 mg/kg It administrated 30
min before ischemia
and continued
postoperatively
at days 1 and 2.

Curcumin administration reduced
MDA levels in the spinal cord as
well as increased SOD and GPx levels.
Histopathological changes improved
by curcumin treatment and neurological
outcome scores were significantly better.

[58]
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activation of Sirt1 leads to the deacetylation of p53 and atten-
uation of apoptosis in the ischemic brain [169].

The Effect of Curcumin on Mitochondrial Biogenesis

It has been documented that mitochondrial number/mass, mi-
tochondrial biogenesis, and the mitochondrial uncoupling
protein 2 (UCP2) (an inner mitochondrial membrane anion
carrier protein implicated in protecting neurons against cere-
bral ischemia injury), were significantly downregulated in rats
with I/R injury, and these changes were reversed by curcumin
pretreatment. It has also been demonstrated that mitochondrial
biogenesis was increased in the MCAO reperfusion model of
rats upon treatment with curcumin [174].

The Effect of Curcumin on Endoplasmic Reticulum

It has been suggested that in response to CIRI, numerous
predisposing factors of endoplasmic reticulum stress (ERS)
are activated in neurons including depletion of ER Ca2+, ag-
gregation of proteins, decreased protein degradation, and ac-
cumulation of lipid peroxidation products in ER and Golgi
structures [175]. ERS may induce pro-apoptotic processes
and lead to apoptosis [176, 177]. DNA damage-inducible
153 (GADD153) and caspase-12 are among the main drivers
of ERS-mediated apoptosis [178]. GADD153 is a signaling
molecule which is involved in the development of apoptosis

through several pathways such as affecting intracellular Ca2+

metabolism and downregulating Bcl-2 [178–180]. Caspase-
12 is another important factor in ERS-mediated apoptosis.
Caspase-12 is released from the ER during ERS and subse-
quently activates the caspase cascade and apoptosis. The pre-
cise mechanism of curcumin’s effect on ERS inhibition is still
unknown, and this may be related to decreasing the activity of
nuclear factor (NF)-κB, increasing the expression of PRDX6
or activating the sirtuin type 1 pathway. It has been shown that
curcumin can improve ERS via decreasing the expression of
the GADD153 and caspase-12, thereby exhibiting protective
effects against CIRI in rats [178].

The Effect of Curcumin on Blood-Brain Barrier
Integrity

After stroke, there is an increase in the permeability of the
vessels and this causes BBB disruption and vasogenic edema.
Previous studies have indicated that NO contributes to
ischemia-induced disruption of BBB. NO is a free radical
which is involved in the pathogenesis of cerebral ischemia
due to its neurotoxic effects. NO reacts with O2

− quickly and
produces ONOO− [181–183]. ONOO− is a toxic anion that
produces hydroxyl radicals. These radicals impair key en-
zymes of the tricarboxylic acid cycle, mitochondrial respira-
tory chain, mitochondrial Ca2+ metabolism and induce DNA
damage, leading to endothelial injury. Jiang et al. showed that

Fig. 3 The propose mechanism of anti-apoptotic effect of curcumin.
Oxidative stress affects the mitochondrial outer membrane, Bax moves
from the cytosol to mitochondria, and cytochrome c is released into
cytosol. This translocation is regulated by Bcl-2 proteins. Release of
cytochrome c into cytosol leads to the formation of a complex composed

of apoptotic-protease activating factor-1, procaspase-9, and
ATP (apoptosome), and this leads to the activation of procaspase-9 and
then procaspase-3. Curcumin increases the levels of anti-apoptotic Bcl-2
protein in mitochondria and reduces the translocation of cytochrome c
into cytosol, thereby exerting its anti-apoptotic effects
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curcumin prevented ONOO−−mediated BBB disruption and
improved cerebral I/R injury (179). The authors hypothesized
that curcumin acts via reducing ONOO− production by
inhibiting iNOS expression in astrocytes or by a direct route
preventing cerebral capillaries’ endothelial cell injury induced
by ONOO− [183, 184]. In general, curcumin has been shown
to prevent I\R-induced disruption of BBB via numerous
mechanisms such as inhibiting the cytotoxicity of SIN-1 on
BCECs, reducing water content of the brain in ipsilateral
hemisphere, preventing the absorbance of Evans blue dye af-
ter focal cerebral ischemia, inhibiting iNOS expression in cul-
tured astrocytes, and blocking NF-κB activation [183–185].

Conclusions

In the present review, we discussed the neuroprotective effects
of curcumin against I/R injury. Accumulating evidence has
shown that curcumin ameliorate I/R injury through different
mechanisms such as mitigation of inflammation, apoptosis
and ERS, and enhancement of mitochondrial biogenesis.
Nevertheless, prospective studies are needed to further eluci-
date how curcumin could exert its protective effects against
cerebral I/R injury and possible therapeutic applications there-
of. In particular, supportive evidence from randomized con-
trolled trials would be crucial.
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