
Resveratrol Induces Brain Resilience Against Alzheimer
Neurodegeneration Through Proteostasis Enhancement

Rubén Corpas1,2 & Christian Griñán-Ferré3
& Eduard Rodríguez-Farré1,2

& Mercè Pallàs3 & Coral Sanfeliu1,2

Received: 25 September 2017 /Accepted: 28 May 2018 /Published online: 13 June 2018
# Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Resveratrol is a natural compound that mimics the antioxidant and antiaging effects of caloric restriction, mainly mediated
through SIRT1, a deacetylase that induces longevity and neuroprotection. We aimed to analyze the effects of resveratrol on
the brain status of control non-transgenic (NoTg) and AD transgenic (3xTg-AD) mice to discern the mechanisms involved in a
potential inducement of resilience against age-related neurodegeneration and Alzheimer’s disease (AD). Mice were fed with a
diet supplemented with 100 mg/kg of resveratrol from 2 months of age during 10 months. Resveratrol administration induced
complete protection against memory loss and brain pathology in 3xTg-AD mice, and also induced cognitive enhancement in
healthy NoTg mice. Resveratrol improved exploration and reduced anxiety in both mouse strains, indicative of well-being.
Resveratrol reduced the presence of Aβ and p-tau pathology in the hippocampus of the 3xTg-AD mouse. Proteostasis analysis
showed the following in both NoTg and 3xTg-AD mice: (i) increased levels of the amyloid-degrading enzyme neprilysin, (ii)
reduction of the amyloidogenic secretase BACE1, and (iii) increase of proteasome protein levels and enhancement of proteasome
activity. Resveratrol also increased AMPK protein levels, then upregulating the SIRT1 pathway, as shown by the activation of
PGC-1α and CREB in both mice, resulting in further beneficial changes. Our data demonstrated that resveratrol induces
cognitive enhancement and neuroprotection against amyloid and tau pathologies. Improvement of proteostasis by resveratrol,
in both healthy and ADmice, suggests that it is a mechanism of brain resilience and defense against neurodegeneration caused by
the accumulation of aberrant proteins.
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Introduction

The progressive increase in life expectancy has led to an in-
crease in the incidence of age-related diseases, including de-
mentia [1]. Alzheimer’s disease (AD) is the most common

cause of dementia in the elderly [2, 3], characterized by brain
depositions of amyloid-β (Aβ) and hyperphosphorylated tau
(p-tau), leading to synapse dysfunction, cognitive and memo-
ry deficits, and finally, death [4, 5]. To date, there is no effec-
tive treatment of AD, except for temporarily symptom-
relieving drugs [6, 7]. Finding a treatment is crucial to reduc-
ing the overall effects of aging, increasing health span in
humans.

Resveratrol is a polyphenol found in common dietary
sources such as grapes, berries, peanuts, red wine, and in some
herbal remedies [8, 9]. In animal models, resveratrol exhibits a
wide spectrum of potential therapeutic activities, including
antioxidant, anti-inflammatory, neuroprotective, and
longevity-promoting properties [9–11]. Experimental studies
suggest that resveratrol is active against AD pathogenesis
[12–15]. First clinical trials of dietary supplementation with
resveratrol in AD have been completed, with encouraging
changes such as attenuation of the decline of cerebrospinal
fluid levels of Aβ species [16, 17], and reduction of plasma
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levels of pro-inflammatory markers and attenuation of cogni-
tive and functional decline [17]. Furthermore, improvement of
cognitive performance reported in trials with non-demented
older adults [18, 19] suggests a preventive potential of resver-
atrol. Studies with transgenic mouse models of AD showed
that resveratrol intake protected against Aβ plaque formation
in Tg19959 [20] and APP/PS1 mice [21, 22]. Increased syn-
aptic markers and preservation of recognition memory were
also found in resveratrol-treated APP/PS1 mice [22].
Moreover, in the p25 mouse model of AD and tauopathies,
intracerebroventricular delivery of resveratrol prevented im-
pairment of fear conditioning associative learning and reduced
the levels of markers of apoptosis and astrogliosis [23].

The hypothesis of the most widely accepted mechanism
comprises that resveratrol mimics the antioxidant and antiag-
ing effects of caloric restriction [24, 25], which are mediated
by SIRT1 [22, 26]. SIRT1 is a nicotinamide-adenine dinucle-
otide (NAD+)-dependent deacetylase associated with antiag-
ing pathways [27] that induces protective effects against AD
brain pathology through regulating the acetylation homeosta-
sis of key proteins [28–30]. There is controversy over whether
resveratrol may be a direct activator of SIRT1 [31] or whether
SIRT1 is indirectly activated by other resveratrol-induced
pathways [32, 33]. Recent evidences suggest that resveratrol
increases adenosine monophosphate-activated protein kinase
(AMPK) activity, leading to an increase of NAD+ levels,
which in turn enhances SIRT1 activity [34, 35].

At the cellular level, resveratrol demonstrated protective
effects against oxidative stress and inflammatory processes
induced by Aβ in PC12 cell line [36] and human stem cells
[37]. Resveratrol promotes Aβ clearance through enhance-
ment of proteasome-dependent proteolysis, as shown in cell
lines expressing the 695 isoform of human amyloid precursor
protein (APP), either wild-type or harboring the Swedish mu-
tation [38] and in aCaenorhabditis elegansmodel of AD [39].
Resveratrol was also shown reducing Aβ levels of transgenic
cell line and worm models by autophagy and lysosomal deg-
radation activated by AMPK signaling [21, 39]. Furthermore,
resveratrol may decrease Aβ generation by favoring the non-
amyloidogenic pathway of APP degradation [26].

One of the molecular changes of aging that might contrib-
ute to the development of AD is the deficiency in cellular
control mechanisms that degrade aberrant proteins [40].
Clearance of Aβ and tau through proteolytic mechanisms in-
clude ubiquitin-proteasome system (UPS), autophagy-
lysosomal system, and extracellular proteases [41].
Furthermore, protein folding stress in the endoplasmic reticu-
lum may activate the unfolded protein response aimed to re-
store proteostasis, preferentially through autophagy in the AD
brain [42], or trigger apoptosis of irreversible damaged cells
[43]. However, the stress responsivity of the different AD
mouse models is highly variable [44]. UPS is the primary
selective mechanism to maintain proteostasis in eukaryotic

cells and is involved in many nerve cell functions, such as
plasticity and memory [45, 46]. Increasing evidence postu-
lates functional alterations of UPS and its molecular compo-
nents as causes of early changes in AD pathology [47]. Heat
shock protein 70 (Hsp70) facilitates the ubiquitination of ab-
errant proteins through interaction with the carboxyl-terminus
of Hsp70 interacting protein (CHIP) and the E3 ligase [48].
Polyubiquitinated proteins are recognized by the proteasome
complex for subsequent proteolytic degradation by the 20S
catalytic core [49, 50].

Studies with AD mouse models were needed to confirm
resveratrol-induced cognitive improvement and further unveil
its mechanism of action against AD-like neurodegeneration.
We aimed to analyze the effects of the administration of res-
veratrol in mice as a preventive and therapeutic agent, with
emphasis in APP processing and UPS activity, and their ef-
fects on learning and memory. For this purpose, we treated
both control non-transgenicmice (NoTg) and triple-transgenic
mice for AD (3xTg-AD) with a daily dose of 100 mg/kg of
resveratrol during 10 months. Our results demonstrated that
resveratrol administration induced complete protection
against memory loss and brain pathology in AD mice.
Furthermore, we showed that resveratrol induced proteostasis
enhancement in both 3xTg-AD and healthy NoTg mice. We
propose that proteostasis enhancement increases brain resil-
ience against neurodegeneration. New insights into the mech-
anisms of resveratrol in preclinical studies may aid in the
design of preventive strategies against AD.

Materials and Methods

Animals

Male 3xTg-ADmouse strain harboring familial ADmutations
of the APP (APPSwe) and the Presenilin 1 (PS1M146V), and a
tau gene mutation (TauP301L) [51] was used in the present
study. These mice mimic many of the critical hallmarks of
AD as Aβ and tau pathologies, impaired learning and memo-
ry, presence of behavioral and psychological symptoms of
dementia (BPSD)-like, and oxidative stress [30, 52].
Furthermore, 3xTg-AD mice reproduce the temporal course
and areas affected by amyloid and tau pathology of AD neu-
ropathology [53]. Control NoTg mice had the same genetic
background hybrid 129 × C57BL/6 than 3xTg-AD mice [51].
Genotypes were confirmed by PCR analysis of DNA obtained
from tail biopsies. Animals were individually housed in
Makrolon® cages under standard laboratory conditions of
food and water ad libitum, 22 ± 2 °C, and 12 h:12 h light-
dark cycle. Animal breeding, treatment, and behavioral stud-
ies were performed at the University of Barcelona Animal
House (UB, Barcelona, Spain). Animal handling and experi-
mental procedures were approved by the Ethics Committee
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for animal experimentation (CEEA) of the University of
Barcelona (UB) (Ref: DAAM 6523, CEEA), in accordance
with the Decree 214/1997 of the Generalitat of Catalonia and
the Directive 2010/63/EU of the European Union for animal
experiments.

Resveratrol Administration

At 2 months of age, mouse standard diet (2018 Teklad Global
18% Protein Rodent Maintenance Diet, Harlan) was supple-
mented with 1 g/kg of trans-resveratrol (Mega Resveratrol,
Candlewood Stars, Inc., CT, USA). Resveratrol groups (RV)
received 100 mg/kg body weight/day during 10 months. The
period of 2 to 12 months of age covers a broad period of the
AD pathology progression in 3xTg-AD mice, from the pre-
symptomatic to the advanced pathology phase. Control
groups (Ct) received standard diet. The experimental groups
were as follows: NoTg-Ct (n = 14), NoTg-RV (n = 12), 3xTg-
Ct (n = 10), and 3xTg-RV (n = 10). No significant differences
were found among the treatment groups in diet intake or in
body weight along the study (not shown).

Behavioral and Cognitive Tests

Animals were tested for behavior and cognitive improvement
at 10months of the chronic resveratrol treatment, at 12months
of age. The behavioral tests were carried out at the Unitat
d’Experimentació Animal of the Faculty of Psychology of
the University of Barcelona (Campus Mundet, UB). Selected
BPSD-like symptoms and cognitive tests were analyzed as
previously described [54, 55]. Briefly, the Bopen field^ test
was used to evaluate vertical and horizontal locomotor activity
and general behavior in a white chamber during 5 min. The
BBoissier’s four hole-board^ test was utilized to evaluate ex-
ploratory behavior by measuring head-dipping during 5 min.
The Bdark and light^ test was employed to assess anxiety
during 5 min in a black compartment connected to a lit com-
partment. The Bnovel object recognition^ (NOR) test was
used to evaluate recognition memory, and is based on the
spontaneous tendency of rodents to spend more time explor-
ing a novel object than a familiar one. The animals were sub-
mitted to a 10-min acquisition trial in the presence of two
identical novel objects (A1 + A2). A 10-min retention trial
occurred 2 h later, replacing object A1 with object B; and
another 10-min retention trial took place 24 h later, replacing
object A2 with object C. Discrimination index was calculated
as [novel (t) – familiar (t)]/[total time (t) at novel + familiar].
The BMorris water maze^ (MWM) test was employed to as-
sess spatial learning and memory, and consisted of 1 day of
cue learning, 6 days of learning acquisition, and 1 final day of
memory retrieval. Animals were trained to locate the hidden
platform in a circular water tank by relying on distinctive
landmarks as visual cues (four trial sessions of 60 s per day).

On the last day, the platform was removed and the mice per-
formed a 60-s probe trial to test learning retention. A comput-
erized tracking system (SMART, Panlab S.A., Barcelona,
Spain) was employed tomeasure escape latency, and distances
and quadrants covered. At the end of the behavioral tests, the
animals were decapitated under light anesthesia and the hip-
pocampus and cerebral cortex were dissected and stored at −
80 °C for further analysis.

Western Blotting

Protein extracts from hippocampus and cerebral cortex were
obtained in 50 mM Tris/HCl (pH 7.6), 150 mM NaCl, 1%
Triton X-100, 1 mM phenylmethylsulfonyl fluoride, 1 mM
dithiothreitol, and 10 μg/mL aprotinin. Aliquots of 30 μg of
protein were analyzed for Western blot analysis by standard
procedures [30, 56]. The following antibodies were employed
for immunodetection: Aβ clone 6E10, sAPPα, sAPPβ, C-
terminal fragment of APP (APP-CTF), a disintegrin and me-
talloproteinase 10 (ADAM10), AMPK, phosphorylated
AMPK (p-AMPK), beta-site APP cleaving enzyme 1
(BACE1), cAMP response element-binding protein (CREB),
phosphorylated CREB (p-CREB), Hsp70, insulin-degrading
enzyme (IDE), neprilysin, acetylated p53 (ac-p53), peroxi-
some proliferator-activated receptor-γ coactivator 1α (PGC-
1α), proteasome 20S core subunits, postsynaptic density pro-
tein 95 (PSD95), SIRT1, synaptophysin, acetylated tau (ac-
tau), p-tau clone AT8, total tau clone HT7, and ubiquitin.
Details of primary antibodies used are presented in
Supplementary Table 1. Secondary antibodies were
peroxidase-conjugated (1:2000) (GE Healthcare).
Quantitative values of the correspondent bands were detected
by a chemiluminescence method using VersaDoc Imaging
System 5000 (Bio-Rad, USA). Optical density of the studied
proteins was normalized to actin or tubulin. Protein levels
were calculated and expressed relative to the amount in the
NoTg-Ct mouse group.

Proteasome Activity Assay

Proteasomal activity was evaluated in the brain cortex by
the Proteasome-Glo™ Assay Systems (Promega, USA).
Cortex tissues in ice-cold PBSE (PBS, 5 mM EDTA,
pH 7.4) at a ratio of 1:10 (buffer/tissue; v/w) were soni-
cated on ice for 20 s with a 1-s pulse length, twice, using
a pulsed homogenizer. Obtained tissue lysates were cen-
trifuged at 13,000 g for 10 min at 4 °C, and the superna-
tants were subjected to protein quantification employing
the Bradford assay. The supernatants were diluted with
cold PBSE at a concentration of 0.2 mg/ml total protein.
A total of 10 μg of protein (50 μl of 0.2 mg/ml diluted
extract) was added to 50 μl of the luminescent reagent
containing the Ultra-Glo™ Luciferase and the specific
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luminogenic substrate (Suc-LLVY-Glo™ for the
chymotrypsin-like activity assay, Z-LRR-Glo™ for the
trypsin-like activity assay, or Z-nLPnLD-Glo™ for the
caspase-like activity assay) in a 96-well plate. Solutions
were mixed for 30 s at 400 rpm and incubated for 30 min
at room temperature. The resulting luminescence was
measured twice with an integration time of 1 s utilizing
the Orion II Microplate Luminometer (Titertek-Berthold,
Germany). In this setup, luminescence signal intensity
corresponded to proteasomal proteolytic activity. A
proteasomal inhibitor was used (MG-132, 10 μM) to cal-
culate unspecific background activity.

Statistical Analysis

Results are expressed as mean ± SEM. Data were ana-
lyzed with analysis of variance (ANOVA) procedures;
factors were genotype and treatment. Two-way repeated
measures ANOVA was employed to analyze the acquisi-
tion task of the MWM test. All other data were analyzed
by regular two-way ANOVA followed by main effect
analysis for comparison of groups where interaction be-
tween factors was present. Statistical analyses were per-
formed using GraphPad Prism 6 and IBM SPSS Statistics
v23.

Results

Resveratrol Administration Induced Beneficial Effects
on BPSD-Like Behavior

Ten-month resveratrol treatment induced a significant protec-
tive effect against the AD-like pathology underlying BPSD-
like behavioral alterations in 12 month-old mice (Fig. 1a–e).
In the open field test, 3xTg-Ct mice demonstrated lower ver-
tical explorations (rearings) compared to NoTg mice (Fig. 1a).
Resveratrol administration increased the number of total
rearings in both NoTg-RV and 3xTg-RV mice [genotype,
F(1, 39) = 48.29, p < 0.0001; and treatment, F(1, 39) = 4.219,
p = 0.0467]. Moreover, 3xTg-Ct mice showed lower horizon-
tal mobility compared to NoTg mice (Fig. 1b). Resveratrol
treatment also increased the total distance covered in both
strains [genotype, F(1,42) = 40.75, p < 0.0001; and treatment,
F(1,42) = 7.343, p = 0.0097]. In the Boissier’s four hole-board
test, 3xTg-Ct mice showed higher latency for first-hole explo-
ration compared to NoTg mice (Fig. 1c). Resveratrol treat-
ment reduced latency in both NoTg-RV and 3xTg-RV mice
[genotype, F(1,42) = 28.88, p < 0.0001; and treatment,
F(1,42) = 6.349, p = 0.0156]. In the dark and light box test,
3xTg-Ct mice presented a higher anxiety response compared
to NoTg mice (Fig. 1d, e). Resveratrol administration in-
creased, in both mice, strains the number of entries into the

Fig. 1 Resveratrol treatment induced protection against BPSD-like
behavior. Total number of rearings (a) and distance covered (b) in the
open field test. Latency of first-hole exploration (c) in the Boissier’s four
hole-board test. Number of entries in the lit area (d), and time spent in the

lit area (e) in the dark and light box test. Values are mean ± SEM (n = 10–
14). Statistical analysis: two-way ANOVA, effect of genotype &&p <
0.01 and&&&p < 0.001; and effect of treatment $p < 0.05 and $$p < 0.01
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lit area (Fig. 1d) [genotype, F(1,42) = 11.89, p = 0.0013; and
treatment, F(1,42) = 5.027, p = 0.0303] and the time spent in
the lit area (Fig. 1e) [genotype, F(1,42) = 9.360, p = 0.0039;
and treatment, F(1,42) = 4.844, p = 0.0333].

Resveratrol Administration Induced Beneficial Effects
on Cognitive Behavior

Ten-month resveratrol treatment induced a significant protec-
tive effect against the AD-like pathology involved in learning
and memory capacities (Fig. 2a–f). Cognition was preserved
in 12-month-old 3xTg-RV mice, in addition to inducing cog-
nitive enhancement effects in NoTg-RV mice. In the NOR
test, 3xTg-Ct mice exhibited a deficit of recognition memory,
while NoTg-RVand 3xTg-RVmice increased their capacity to
remember familiar objects at 2 h (Fig. 2b) [genotype,
F(1,36) = 4.195, p = 0.0479; and treatment, F(1,36) = 8.826,
p = 0.0053] and at 24 h (Fig. 2c) [treatment, F(1,36) = 6.759,
p = 0.0134; and interaction genotype × treatment, F(1,36) =
4.256, p = 0.0464]. In the MWM test, the distances covered to
locate the platform decreased along the 6 days of place-task
acquisition (Fig. 2d) in 3xTg-RV mice, similar to NoTg mice;
however, two-way repeated measures ANOVA did not show

significant differences between groups. Nevertheless, in learn-
ing retrieval, 3xTg-Ct mice swam at random in the pool un-
aware of the former position of the escape platform, while
both NoTg groups and that of the 3xTg-RV mice remembered
the quadrant where the platform was situated (Fig. 2e) [geno-
type, F(1,42) = 5.537, p = 0.0234; and interaction genotype ×
treatment, F(1,42) = 6.645, p = 0.0135], indicating better
memory response after resveratrol treatment. In addition, res-
veratrol administration increased swimming speed in both
strains (Fig. 2f) [treatment, F(1,42) = 4.081, p = 0.0498].

Resveratrol Administration Induced Neuroprotective
Effects Against Amyloid-β Pathology

Analysis of immunoblotting from hippocampus tissue showed
higher protein levels of total APP (Fig. 3a) in 3xTg-AD mice as
compared with NoTg mice [genotype, F(1,20) = 48.59, p <
0.0001], as expected. Furthermore, the levels of amyloidogenic
peptides, such as APP-CTF (Fig. 3b) [genotype, F(1,20) = 41.45,
p < 0.0001; treatment, F(1,20) = 8.680, p= 0.0080; and interac-
tion genotype × treatment, F(1,20) = 6.687, p = 0.0177], Aβ
(Fig. 3c) [genotype, F(1,15) = 10.45, p = 0.0056; treatment,
F(1,15) = 6.976, p = 0.0185; and interaction genotype ×

Fig. 2 Resveratrol administration induced protection against cognitive
loss. NOR test at times 0 h (a), 2 h (b), and 24 h (c). MWM test with
distances covered to reach platform (d), distance covered in platform
quadrant after removal (e), and swimming speed (f). Values are mean ±
SEM (n = 8–14). Statistical analysis: c, e Two-way ANOVA, *p < 0.05

and ***p < 0.001 compared to NoTg mice; #p < 0.05 and ##p < 0.01
compared to control treatment; d two-way repeated measures ANOVA;
b, f two-way ANOVA, effect of genotype &p < 0.05; and effect of treat-
ment $p < 0.05 and $$p < 0.01
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treatment, F(1,15) = 4.709, p = 0.0465], and sAPPβ (Fig. 3d)
[genotype, F(1,23) = 4.528, p = 0.0443; and interaction genotype
× treatment, F(1,23) = 9.954, p = 0.0044], were increased to a
higher degree in 3xTg-Ct compared to NoTg mice, as character-
ized for AD pathogenesis. Resveratrol treatment induced a de-
crease in amyloid pathology, by a recovery of theAPP-CTF (Fig.
3b), Aβ (Fig. 3c), and sAPPβ (Fig. 3d) protein levels in 3xTg-
RV mice, due to a decrease of BACE1 secretase levels (Fig. 3e)
[treatment, F(1,19) = 4.993, p = 0.0377] and the increase of the
neprilysin protease (Fig. 3f) [treatment, F(1,20) = 5.334, p =

0.0317] in both strains. These results confirm the effect of res-
veratrol on Aβ pathology mitigation. The attenuation of the
amyloidogenic pathway and the increased proteostasis exerted
an effect on both strains treated with resveratrol; however, no
significant changes were observed in the levels of the
neuroprotector sAPPα peptide (Supplementary Fig. 1a).
Resveratrol increased secretase ADAM10 levels with borderline
statistical significance (Supplementary Fig. 1b) [treatment,
F(1,16) = 4.218, p = 0.0567]. Protease IDE was reduced in
3xTg-AD mice, but resveratrol did not change levels

Fig. 3 Resveratrol treatment protects against Aβ and tau pathology in
hippocampus. Western blot analysis of total APP (a), APP-CTF (b), Aβ
oligomers (c), sAPPβ (d), BACE1 (e), neprilysin (f), total tau (g), p-tau
(h), and ac-tau (i) in the hippocampus of 3xTg-AD and NoTg mice.
Values are mean ± SEM (n = 4–8). Statistical analysis: a, d, f, g two-

way ANOVA, effect of genotype &&&p < 0.001; and effect of treatment
$p < 0.05; b, c, e, h, i two-way ANOVA, **p < 0.01 and ***p < 0.001
compared to NoTg mice; #p < 0.05 and ##p < 0.01 compared to control
treatment
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(Supplementary Fig. 1c) [genotype, F(1,14) = 4.789, p =
0.0461].

Resveratrol Administration Induced Neuroprotective
Effects Against Tau Pathology

Analysis of immunoblotting from hippocampal tissue re-
vealed elevated protein levels of total tau (Fig. 3g) in
3xTg-AD mice as compared with NoTg mice [genotype,
F(1,20) = 24.36, p < 0.0001], as expected. The protein
levels of p-tau (Fig. 3h) [genotype, F(1,24) = 10.72, p =
0.0032; treatment, F(1,24) = 10.11, p = 0.0040; and inter-
action genotype × treatment, F(1,24) = 5.313, p = 0.0301],
and of ac-tau (Fig. 3i) [genotype, F(1,25) = 12.53, p =
0.0016; treatment, F(1,25) = 8.924, p = 0.0062; and inter-
action genotype × treatment, F(1,25) = 5.562, p = 0.0265]
were increased to a greater degree in 3xTg-Ct compared
to NoTg mice, as characterized for AD pathogenesis.
Resveratrol treatment protected against tau pathology, in
that, it normalized p-tau (Fig. 3h) protein levels in 3xTg-
RV mice, due to a decrease of ac-tau (Fig. 3i) protein
levels in 3xTg-RV mice. Deacetylation of tau protein al-
lows it to be degraded by the UPS. These results confirm
the effect of resveratrol on tau pathology mitigation.

Resveratrol Administration Enhanced
Ubiquitin-Proteasome System Activity

Immunoblotting analysis demonstrated higher Hsp70 protein
levels (Fig. 4a) [genotype, F(1,20) = 35.84, p < 0.0001; treat-
ment, F(1,20) = 6.283, p = 0.0209; and interaction genotype ×
treatment, F(1,20) = 7.517, p = 0.0126] and ubiquitinated pro-
teins levels (Fig. 4b) [genotype, F(1,18) = 5.867, p = 0.0262;
treatment, F(1,18) = 10.53, p= 0.0045; and interaction genotype
× treatment, F(1,18) = 6.450, p = 0.0205] in 3xTg-Ct compared
to the hippocampus of NoTg mice. Resveratrol treatment re-
stored Hsp70 (Fig. 4a) and ubiquitinated (Fig. 4b) protein levels
in 3xTg-RV mice. Moreover, resveratrol treatment induced an
enhancement of proteasome 20S core subunits levels (Fig. 4c)
[treatment, F(1,28) = 12.34, p = 0.0015] in the hippocampus of
NoTg-RVand 3xTg-RV mice. A tendency to a decrease in pro-
teasome protein levels in 3xTg-Ct mice did not reach signifi-
cance. Besides, resveratrol also induced enhancement of protea-
some 20S core subunits levels (Fig. 4d) [treatment, F(1,20) =
11.02, p = 0.0034] in the cerebral cortex of both strains.
Accordingly, resveratrol treatment induced an increase of
trypsin-like activity (Fig. 4e) [treatment, F(1,29) = 7.638, p =
0.0098] in the cerebral cortex of both strains, but no changes
were detected in chymotrypsin-like (Supplementary Fig. 2a)
and caspase-like activity (Supplementary Fig. 2b). These results

Fig. 4 Resveratrol administration enhances the activity of the ubiquitin-
proteasome system. Protein analysis of Hsp70 (a), ubiquitinated proteins
(b), and proteasome 20S core subunits (c) in the hippocampus of 3xTg-
AD and NoTgmice. Protein analysis of proteasome 20S core subunits (d)
and proteasome trypsin-like activity (e) in the cerebral cortex tissue of

3xTg-AD and NoTg mice. Values are mean ± SEM (n = 5–11). Statistical
analysis: a, b two-way ANOVA, **p < 0.01 and ***p < 0.001 compared
to NoTg mice; ##p < 0.01 compared to control treatment; c, d, e two-way
ANOVA, effect of treatment $$p < 0.01
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showed the neuroprotective effects of resveratrol for aberrant
proteins disposal by enhancement of the brain proteasome
function.

Resveratrol Administration Activates SIRT1 Pathway
Regulators

Immunoblotting analysis did not show significant variations
of SIRT1 protein levels in the hippocampus of both strains, or
after resveratrol treatment (Fig. 5a). However, SIRT1 activity
was confirmed by the diminution of p53 acetylated in both
strains after resveratrol treatment, indicative of SIRT1
deacetylation action (Fig. 5b) [treatment, F(1,20) = 9.208,
p = 0.0065]. Moreover, resveratrol treatment incremented p-
AMPK protein levels (Fig. 5c) [treatment, F(1,23) = 8.867,
p = 0.0067] in both strains, which subsequently produces an
increase of the substrate NAD+, indicative of SIRT1 pathway
activation. Resveratrol promoted the increase of p-CREB
(Fig. 5d) [treatment, F(1,20) = 15.75, p = 0.0008] by SIRT1
pathway in both strains. Moreover, PGC-1α protein levels
were lower in 3xTg-AD compared to NoTg mice, indicative
of mitochondria dysfunction (Fig. 5e); however, resveratrol
administration increased protein levels in both strains [geno-
type, F(1,23) = 8.937, p = 0.0065; treatment, F(1,23) = 7.419,
p = 0.0121].

Resveratrol Administration Does Not Modulate
Neurotrophism or Plasticity

Immunoblotting demonstrated that PSD95 (Supplementary
Fig. 3a) [genotype, F(1,16) = 21.79, p = 0.0003], and
synaptophysin (Supplementary Fig. 3b) [genotype,
F(1,23) = 5.960, p = 0.0227] protein levels were higher in
NoTg as compared with 3xTg-AD hippocampal tissue.
However, resveratrol treatment had no effect, and protein
levels were unchanged.

Discussion

Chronic administration of resveratrol in the 3xTg-AD mouse
model of AD, and in normal NoTg mice, confirmed its poten-
tial usefulness for the treatment and prevention of AD, and
further extended previous mechanisms in findings from in
vitro [38, 57, 58] and in vivo studies [20, 22, 23, 26, 59, 60].

Our results showed that resveratrol administration induced
total protection against cognitive loss in 3xTg-AD mice and
memory enhancement in control mice, in hippocampus-based
tests of learning and memory. The hippocampus is an area
selectively affected by AD [61], and the deterioration of hip-
pocampal circuits contributes greatly to the devastating effects
of memory loss in the disease [62]. Several regions of cerebral

Fig. 5 Resveratrol administration activates SIRT1 pathway by activation
of p-AMPK. Protein analysis of SIRT1 (a), ratio of p53 acetylated to total
p53 (b), ratio of p-AMPK to total AMPK (c), ratio of p-CREB to total
CREB (d), and PGC-1α (e) in the hippocampus of 3xTg-AD and NoTg

mice. Values are mean ± SEM (n = 5–7). Statistical analysis: two-way
ANOVA, effect of genotype &&p < 0.01; and effect of treatment $p <
0.05, $$p < 0.01, and $$$p < 0.001
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cortex are also deeply affected by AD pathology [63]. Both
hippocampus and cerebral cortex have shown accumulation of
Aβ and p-tau and neurodegenerative changes in 12-month-old
3xTg-AD mice [53].

The spatial learning and memory analyzed in the MWM
test are considered to be associated with optimal functioning
of hippocampal circuits [64, 65]. Untreated 3xTg-AD mice
exhibited deficient learning and impaired retention in the
MWM task, as reported previously [52]. This task, which is
dependent on the dorsal hippocampus [66], revealed total pro-
tection in 3xTg-AD mice by means of resveratrol administra-
tion. Furthermore, 3xTg-AD mice showed impairment of rec-
ognition memory evaluated by the NOR test [67], a task in-
volving the hippocampus and brain cortex regions [68, 69].
Recognition memory was also preserved by resveratrol ad-
ministration in 3xTg-ADmice. The neuroprotection of resver-
atrol against cognitive impairment in 3xTg-AD mice con-
firmed previous studies in the SAMP8 mouse model of path-
ological aging and AD [26, 59] and in APP/PS1 AD transgen-
ic mice [22]. Furthermore, recognition memory was generally
improved by resveratrol, demonstrating cognitive enhance-
ment in NoTg mice. Benefits of resveratrol administration
were also proven by reversal of the abnormal behaviors in-
cluded in the BPSD phenotype, which comprise very preva-
lent neuropsychiatric symptoms in patients with AD [70]. In
these non-cognitive behaviors, resveratrol also exhibited ben-
eficial effects in NoTg mice, which is indicative of enhanced
well-being, such as increased exploration and decreased anx-
iety behaviors. Considering the results of cognitive and non-
cognitive behavior, a preventive and therapeutic effect of res-
veratrol against AD dementia has been demonstrated. The
benefits in neuronal activity demonstrated in control-strain
mice suggest an enhancement in brain resilience that would
decrease the risk of AD.

Analysis of brain pathological changes in 3xTg-AD mice
demonstrated that resveratrol induced a decrease in amyloid
and tau pathologies to levels similar to those in the control
strain. Only higher levels of APP and total tau were observed
in all 3xTg-AD mouse groups compared to NoTg mice, in
agreement to their transgene expression [51]. Western blot
immunodetection results of amyloidogenic fragments (Aβ
and CTF) were conclusive of total protection. The fight
against the cerebral excess of Aβ is one of the main objectives
of therapies in clinical studies [71]. The origin of the excess of
Aβ in the brain is not known, although both increased gener-
ation and unbalanced degradation are assumed [72]. The non-
amyloidogenic pathway appears to be neuroprotective, while
the amyloidogenic pathway generates neurotoxic Aβ peptides
[73]. Both pathways compete with each other, since increasing
α-secretase activity reduces production of the Aβ peptides
[74, 75]. BACE1 is regarded as a key target for therapeutic
interventions in AD because it is one of the main responsible
for Aβ generation in the brain [76, 77]. Targeted deletion of

BACE1 in APP transgenic mice completely abolishes the pro-
duction and deposition of Aβ and also rescues memory defi-
cits [78].We found a reduction of the amyloidogenic secretase
BACE1 by resveratrol in both 3xTg-AD and NoTg strains,
thus indicating a shift to the non-amyloidogenic pathway of
APP processing. Peptide sAPPβwas higher only in 3xTg-AD
and resveratrol reduced the protein levels. One of the most
important amyloid-degrading enzymes is neprilysin, which
plays a major role in degrading Aβ. Administration of resver-
atrol promoted the increase in neprilysin protein levels, con-
tributing to the anti-amyloidogenic effect of resveratrol in both
strains. Gene or cell therapy-mediated increase of neprilysin is
sufficient to ameliorate AD-like phenotypes in several mouse
models [79–81]. Our results suggest that resveratrol reduced
Aβ load through the decrease of amyloidogenic secretase
BACE1 and by means of the increase of amyloid-degrading
enzyme neprilysin levels. Supplementation of resveratrol also
induced a trend toward increasing the levels of ADAM10 in
both strains, altogether contributing to neuroprotection and
cerebral resilience. SIRT1 decreases Aβ production [30, 82,
83]; therefore, activation of SIRT1 might at least partially
mediate the anti-amyloid pathological effects of resveratrol.
Resveratrol revealed outstanding protection against tau pa-
thology in 3xTg-AD mice. Tau pathology is proposed to be
triggered by amyloid pathology in the AD brain [84].
However, 3xTg-AD neurons, in addition to the APP and
PS1 familial AD genes, express a human tauopathy gene, thus
stressing tau pathology in this mouse model. Tau is one of the
therapeutic targets in AD [85]. We found that the increase of
p-tau levels in 3xTg-ADmice was paralleled by an increase in
tau acetylation. Acetylation of lysine residues has been report-
ed as a novel modification in the brain tissue of patients with
AD and familial tauopathies [86–88]. Resveratrol administra-
tion reduced p-tau levels in 3xTg-AD mice, which may occur
through the deacetylation of the tau protein by SIRT1, thereby
favoring degradation of p-tau by the proteasome pathway. It is
known that activation of SIRT1 pathway has a positive effect
on the reduction of p-tau formation [86] and mice with a
SIRT1 deletion show an accumulation of ac-tau in the brain
[86, 88].

The enhancement of proteolysis systems shown here by
resveratrol may be chief in both prevention and therapy
against AD and in neurodegenerative diseases coursing with
the accumulation of aberrant proteins. We found a normaliza-
tion of Hsp70 and ubiquitin levels in 3xTg-AD and a signif-
icant increase of proteasome levels and enzymatic activity in
both NoTg and 3xTg-AD mice. UPS is the major proteolytic
system that degrades aberrant proteins, including Aβ and p-
tau [50]. Loss of proteasome activity increases the risk of AD,
representing a clear link between this neurodegenerative dis-
ease and the aging process [40]. Functional proteasome de-
grades ubiquitin-taggedmisfolded or aggregated proteins. Our
results are in agreement with the previous observation that
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resveratrol promotes the intracellular degradation of Aβ in
cell lines by a mechanism that implicates the proteasome
[38]. SIRT1 is known to be involved in the maintenance of
quality control of proteins mediated by UPS in vitro [30, 89];
however, an effect of resveratrol on UPS activation had not
been reported previously in vivo. The chaperone Hsp70 is
involved in the degradation of aberrant proteins through inter-
action with CHIP and the ubiquitin E3 ligase [48, 90, 91].
Resveratrol induced a further decrease of Hsp70, in agreement
with SIRT1 regulation [48], and also normalized ubiquitinated
protein levels in 3xTg-AD mice, suggesting a recovery of
UPS functionality. Proteasome 20S core subunits levels were
decreased in 3xTg-AD mice, indicating impairment of the
proteasome function, in agreement with previous results in
AD brain tissue [92] and in hippocampal homogenates of
3xTg-AD mice [93]. Resveratrol enhanced the levels of pro-
teasome 20S core subunits in both hippocampus and cortex
tissue of NoTg and 3xTg-AD mice, and trypsin proteasomal
activity in cerebral cortex of both strains of mice, suggesting
an enhancement of UPS functionality. Some neurofibrillary
tangles of p-tau are ubiquitinated [94, 95], and neuronal death
appears to be the end-point for neurofibrillary degeneration
[96]. The increased yield of proteasome protein levels in brain
tissue of 3xTg-ADmice would lead to the total degradation of
aberrant Aβ and p-tau proteins, so that ubiquitinated proteins
and Hsp70 were restored to baseline levels. Resveratrol also
induced proteostasis enhancement in NoTg mice; thus, this is,
to our knowledge, the first time reported that resveratrol in-
creases proteasome function and ameliorates AD-like pathol-
ogy in vivo. We highlight the increase of both the proteasome
and neprilysin in the strain of NoTgmice, which would induce
resilience against the accumulation of abnormal proteins.

Although resveratrol was initially shown to directly activate
SIRT1 in an assay utilizing a fluorophore-linked substrate [97],
recent studies have shown that resveratrol indirectly activates
SIRT1 due to its effect on cAMP signaling [34]. SIRT1 is a
nuclear localization protein [98] that catalyzes the deacetylation
of histones and several transcription factors through the con-
sumption of the substrate NAD+ [29, 99]. Resveratrol is thought
to elicit its beneficial effects through upregulation of the AMPK/
SIRT1 pathway [100–102]. It is suggested that resveratrol en-
hances AMPK activity, which in turn increases NAD+ concen-
tration, resulting in the activation of SIRT1 [34, 35, 103].
Accordingly, AMPK-deficient mice showed to be resistant to
themetabolic effects of resveratrol [101].We found higher levels
of p-AMPK in the hippocampus of both resveratrol-treated
groups of mice; however, we did not observe changes in
SIRT1 protein levels. In the inducible p25 transgenic mouse
model of AD and tauopathies, introduction of resveratrol directly
into the brain ventricles prevented learning impairment, reduced
hippocampal neurodegeneration, and decreased acetylation of
the SIRT1 substrate p53 [23]. SIRT1 induces neuroprotective
effects against AD pathology through regulating the acetylation

homeostasis of key proteins [29]. Accordingly, a decrease in p53
acetylation indicates SIRT1 activation in mouse hippocampus.

The cyclic-AMP responsive element-binding protein
(CREB) is a basic leucine zipper transcription factor and a
downstream target of ERK signaling during hippocampal-
dependent learning [104]. The transcription of several down-
stream neuroprotective molecules is regulated by p-CREB.
Deficiencies in CREB signaling have been linked to neurode-
generative processes and AD [105]. In previous studies, elevat-
ed p-CREB levels were found in the hippocampal CA1 region
of resveratrol-treated rats [106]. Furthermore, it has been dem-
onstrated that resveratrol can modulate learning and memory
function by modulating SIRT1 and regulating p-CREB expres-
sion [60]. SIRT1 can regulatemitochondrial biogenesis, contrib-
uting to the maintenance of functional mitochondria [107]. It is
also well-established that SIRT1 regulates the activity and acet-
ylation status of PGC-1α [103, 108, 109], and many studies
have pointed out the ability of resveratrol to upregulate PGC-
1α activity [110], which results in beneficial changes in the
mitochondrial function [100, 111, 112]. Previous studies indi-
cate the deficiencies of mitochondrial complexes in 3xTg-AD
mice [54] and elevated levels of oxidative lesions and alterations
of antioxidant enzymes [52, 113]. In this regard, we cannot
discard some contribution of direct antioxidant mechanisms of
reveratrol or other protective effects of this pleiotropic molecule
[14, 114]. Mitochondrial dysfunction is a molecular marker of
aging that establishes a connection between aging and the risk
of AD [115, 116]. Mitochondrial dysfunction can be ameliorat-
ed by inducing PGC-1α via resveratrol-mediated modulation of
AMPK [117, 118]. The enhancement of AMPK [35], PGC-1α
[119] and CREB [60] pathways in all the mice treated with
resveratrol corroborates the beneficial changes in mitochondrial
function and plasticity processes, which will induce effector
ways of protecting mitochondria, thus increasing the resilience
of the brain.

Conclusions

In summary, diet supplementation with resveratrol led to com-
plete protection against memory loss in 3xTg-AD mice and to
cognitive enhancement in healthy NoTg mice. Furthermore,
resveratrol improved non-cognitive behaviors indicative of
well-being in both mouse strains. Analysis of resveratrol ad-
ministration in AD and healthy mice led to the uncovering of
the following novel resveratrol mechanisms in vivo: (i) acti-
vation of neprilysin and downregulation of BACE1, which
reduces amyloid load; (ii) enhancement of UPS, which leads
to a reduction of aberrant amyloid and tau proteins; and (iii)
upregulation of AMPK/SIRT1 pathways, leading to an in-
crease of PGC-1α and CREB. A schematic representation of
the proposedmechanisms activated by resveratrol in this study
is depicted in Fig. 6. The results depicted here suggest
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resveratrol-induced activation of SIRT1 as the main pathway
inducing potent neuroprotective effects. This natural polyphe-
nol has a potential in AD prevention by increasing brain resil-
ience against aberrant proteins.
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