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Abstract
The periaqueductal gray matter (PAG), as one of the mostly preserved evolutionary components of the brain, is an axial structure
modulating various important functions of the organism, including autonomic, behavioral, pain, and micturition control. It has a
critical role in urinary bladder physiology, with respect to storage and voiding of urine. The PAG has a columnar composition and
has extensive connections with its cranially and caudally located components of the central nervous system (CNS). The PAG
serves as the control tower of the detrusor and sphincter contractions. It serves as a bridge between the evolutionary higher
decision-making brain centers and the lower centers responsible for reflexive micturition. Glutamatergic cells are the main
operational neurons in the vlPAG, responsible for the reception and relay of the signals emerging from the bladder, to related
brain centers. Functional imaging studies made it possible to clarify the activity of the PAG in voiding and filling phases of
micturition, and its connections with various brain centers in living humans. The PAG may be affected in a wide spectrum of
disorders, including multiple sclerosis (MS), migraine, stroke, Wernicke’s encephalopathy, and idiopathic normal pressure
hydrocephalus, all of which may have voiding dysfunction or incontinence, in certain stages of the disease. This emphasizes
the importance of this structure for the basic understanding of voiding and storage disorders and makes it a potential candidate for
diagnostic and therapeutic interventions.
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Introduction

The PAG is the central gray matter of the midbrain, in contin-
uance with the circumventricular organs, and is to a large
extent analogous to the gray matter of the spinal cord. Due
to its axial location, the PAG is involved in various important
functions, including autonomic [1, 2], behavioral [3], pain [4],
and micturition control. The role of the PAG in the control of

the bladder function encompasses both downstream connec-
tions, as well as connections with the higher brain centers
involved in decision-making. Barrington was the first one to
discover the function of the pontine micturition center (PMC)
(Barrington’s nucleus), and the role of the midbrain in the
control of micturition, though he did not mention the PAG [5].

The PAG has been found to bear functionally separate col-
umns [6], which are also different histopathologically in the
human brain [7]. There are three pairs of columns, namely
ventrolateral (vlPAG), lateral (lPAG), and dorsolateral
(dlPAG), as well as a single dorsomedial column (dmPAG),
in the PAG (Fig. 1). These columns can be functionally divided
into two groups, having opposite autonomic functions: the ven-
trolateral column, which has parasympathetic functions, and the
lateral and dorsolateral columns which have sympathetic func-
tions [8, 9]. Even considering the amount of expression of
specific markers, or distant connections, there exist two distinct
components: the dorsolateral pair of columns, and the remain-
ing columns, including the ventrolateral, lateral, and
dorsomedial pairs [10]. dlPAG is functionally more closely
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related to the midbrain tectum, and the remaining columns may
be considered more closely related to the periventricular struc-
tures [10]. All of the PAG columns have ipsilateral and contra-
lateral reciprocal connections [11]. Internal connections also
exist within each column [11]. Below, we will discuss the role
of the PAG in the control of micturition.

Connections of the PAG

The PAG has extensive connections with the cortex (prefrontal,
cingulate, and insular gyri), diencephalon (thalamus and medial
preoptic area of hypothalamus (MPO)), brainstem (PMC), and
the spinal cord (sacral segments) (Fig. 2) [15, 20–25]. Caudal
connections of the PAG have been investigated by tracing tech-
niques, which are briefly mentioned in this section. The cranial
connections with cortical regions have been discovered mainly
by connectivity analysis in functional imaging studies, which
will be described in the following sections.

PMC, as another important micturition control center, has
bilateral connections with vlPAG [23, 24, 26], as well as re-
ceiving afferents from dlPAG and the MPO [23, 27, 28] (Fig.
2). In parallel, MPO has direct connections with the PAG
[29–31]. The MPO, rich in androgen and estrogen receptors,
is integral to the limbic, or the so-called emotional motor
system, regulating sexual behavior. Since micturition is an
important behavioral signal in animal territorial demarcation,

and the scent of urine may additionally serve as a sexual mes-
sage, the PAG may integrate the micturition and mating
functions.

The dlPAG along with vlPAG receive afferents from spinal
parasympathetic and dorsal commissural nuclei of the lumbo-
sacral cord [12, 32, 33], which have ipsilateral dominance
[32]. This pathway contributes to the awareness of the PAG
to the state of the bladder fullness. Efferent PAG con-
nections project indirectly via PMC to the spinal seg-
ments and are distributed via somatic or autonomic
nerves and ganglia to the detrusor muscle or sphincters
[34].

The vlPAG as theMajor PAG Columnwith Connections
to the Bladder

The vlPAG has direct connections with the spinal segments
[35]. It is also the main column receiving afferents from the
lumbosacral cord, which have ipsilateral dominance [32] and
originate from laminae V, VII, and VIII [35]. Spinal neurons
throughout the cord projected more to the lPAG and the
vlPAG rather than to the dlPAG or the dmPAG, and
specially segments from the S1-S3 projected to the cen-
tral portion of the lPAG and the vlPAG [13]. Indeed,
only few neurons, mainly located in the lumbosacral
segments, project to the dorsomedial and dorsolateral
PAG columns [36]. The quantity of projections weighs
toward the ventrolateral column, more than to the other
columns, and there exists evidence showing the higher signif-
icance of the role of the vlPAG, regarding the control of
bladder function.

Further evidence regarding the importance of vlPAG in
micturition control is as follows. Most c-Fos reactivity is in-
duced in the vlPAG after chemical irritation [37] or electrical
stimulation (unpublished data) of the bladder. c-Fos is a tran-
scription factor expressed after neuronal activation. Electrical
stimulation of the pelvic nerves in the cat evoked maximum
field potentials in vlPAG [38]. Studies in cats confirm that it is
the vlPAG, of which the electrical or chemical (DL-
homocysteine) stimulation results in the contraction of the
bladder [24]. Chemical stimulation of the vlPAG by D,L-
homocysteic acid (DLH) in rats increases the frequency of
micturition [39]. On the other hand, stereotaxic injection
of the inhibitory mediator cobalt chloride into the cau-
dal vlPAG reversibly attenuates bladder contractions and
external urethral sphincter (EUS) electromyographic ac-
tivity in rats [40]. Injection of other inhibitory or stim-
ulatory agents, CoCl2 and L-glutamate, into the vlPAG
leads to suppression or stimulation of voiding in rats,
respectively [41]. Taking these studies into account, it is most
likely that the vlPAG would be the primary station of the
ascending PAG afferents, and it may secondarily relay these
signals to the other PAG columns [11].
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Fig. 1 Schematic representation of a coronal section through the caudal
part of the rat PAG, showing columnar segmentations. Two pairs of
columns with major functional contribution in micturition, namely
dorsolateral and ventrolateral, are highlighted in red and blue,
respectively. 1. Dorsomedial column. 2. Dorsolateral column (red). 3.
Lateral column. 4. Ventrolateral column (blue). 5. Area of dorsal raphe
and some cranial nerve nuclei. 6. Central aqueduct
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PAG and the Function of the Bladder

Functional studies regarding the control of the PAG over the
bladder encompass electrical or chemical stimulation of the
PAG, single-unit recordings in the PAG, or indirect evaluation
of the function by measuring the neuronal markers c-Fos or
nerve growth factor (NGF). We can differentiate two major
columns, the ventrolateral and the dorsolateral columns, for
playing the main role in the micturition-related PAG
functions.

Studies Featuring the Function of the Ventrolateral
Column of PAG

Some studies have a top-down design, in such a way that
central electro-stimulation at PAG is accompanied by periph-
eral evaluation of function at bladder level. Electrical

stimulation of the vlPAG elicits either contraction or inhibition
of the bladder [42]. The optimum sites for evoking bladder
contractions were located in and close to the laterodorsal teg-
mental nucleus (LDT) (which is the same structure function-
ally called PMC), and in the PAG, just dorsal or dorsolateral to
the LDT, in rats [42]. Electrical stimulation of the ventral PAG
elicits neuronal firing at the postganglionic nerves of the blad-
der [43]. Studies in cats confirm that electrical or chemical
(DL-homocysteine) stimulation of vlPAG results in contrac-
tion of the bladder [24].

Inversely, some other studies have a down-top design, i.e.,
peripheral electro-stimulation is accompanied by central eval-
uation. Electrical stimulation of the pelvic nerves in the cat
evokes maximum field potentials in vlPAG [38]. Since the
regions activated by the pelvic nerve stimulation differ from
those activated by stimulation of the sensory pudendal or su-
perficial perineal nerves, it is possible that specific pathways
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Fig. 2 Major central pathways of micturition. The bladder distension
signals first reach the ventrolateral column of the PAG [12, 13]. This
may trigger the PMC and induce the contraction of the bladder without
any interference from the higher brain centers, which may be the
underlying reason of infantile incontinence, or the often-reflexive mictu-
rition in rats. The thalamus does not receive direct signals from the blad-
der or the spinal cord. Instead, these sensory signals must first synapse in
the PAG. The vlPAG projects to the intermediodorsal nucleus of the
thalamus, and then the insula, in rat [14]. These signals finally reach the
medial prefrontal cortex [15]. The projections from medial prefrontal
areas predominantly reach the dorsolateral PAG columns [16]. It is note-
worthy to mention that the existence of the prefrontal cortex in rodents is
controversial. The involvement of the medial preoptic area [17, 18] may
provide additional safe signaling for the start of voiding, or may even

serve as a coordinating center to harmonize the voiding with mating or
territorial demarcation behavior [19]. There is a profound network of
intercolumnar connections in the PAG [11] which bind the corti-
cal and peripheral feedback loops and provide continued process-
ing of the incoming signals of the level of the bladder fullness,
monitoring the environmental states, and decision for the feasible
opportunity to void. The brain pathways have been shown by var-
ious circuits [15, 20–22] according to characteristics found in functional
imaging. Note the decision-making and reflexive micturition feedback
loops, active in higher- and lower-order animals respectively. VL ventro-
lateral column, DL dorsolateral column, IMD intermediodorsal nucleus
of the rat thalamus (analogous to mediodorsal nuclei of the human thal-
amus), MPO medial preoptic area of hypothalamus
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exist for different nerve inputs to the PAG [38]. However, in
another study, electrical stimulation of afferents in the pelvic
nerve of the rat evoked field potentials in the dorsal part of the
PAG [43].

Single-unit recordings in PAG columns either with or with-
out stimulation of the bladder derived some information re-
garding the PAG neuronal activity. The vlPAG shows three
different patterns of neuronal firing rate during the micturition:
increased firing rate, decreased firing rate, or no correlation
with the micturition [44]. These neurons may correspond to
specific functions they have during the micturition, with some
of them contracting the detrusor, some relaxing the sphincter,
some receiving afferent sensory signals, and others unrelated
to the micturition. A similar study accompanied by
intravesical pressure recordings was conducted in cats [45].
However, only 16 out of 84 neurons that were recorded were
located in the PAG. The rest of the neurons were in adjacent
midbrain areas. Nevertheless, this study emphasizes the exis-
tence of neurons in ventrolateral and lateral columns of the cat
PAG, with firing patterns which change, corresponding to
specific phases of micturition [45].

Chemical stimulation or suppression of the PAG exerts
similar effects over the bladder. As detailed above, chemical
stimulation of vlPAG increases the frequency of micturition in
rats [39, 41] and contracts the detrusor muscle in cats [24]. On
the other hand, chemical inhibition of vlPAG attenuates the
detrusor and EUS contractions in rats [40, 41]. Similarly, bi-
lateral electrolytic lesion of vlPAG and lPAG in cat attenuates
detrusor contractions [45].

Neuronal activation may also be evaluated by specific
markers such as c-Fos or NGF expression. Either anatomical
manipulation or chemical irritation of the bladder may induce
increased neuronal activity in the PAG. Increased c-Fos [46]
or NGF [47] reactivity in vlPAG was observed after the in-
duction of stress urinary incontinence by transabdominal
urethrolysis in rats. Chemical bladder irritation, which is a
painful stimulus, induced c-Fos expression in the PAG,
though the exact PAG column was not stated [48].

Studies Featuring the Function of the Dorsolateral
Column of PAG

Some studies proposed the possibility of the existence of a
specific micturition-suppressing region in dlPAG, acting via
GABAergic inhibition of PMC [49]. Electrical stimulation of
dlPAG elicits various types of reactions from the bladder.
Electrical stimulation of the dorsal part of the PAG, including
the dorsomedial and the dorsolateral columns, in rats, resulted
a higher frequency of voiding, as well as some behavioral
responses such as tense immobility, accompanied by exoph-
thalmos and running and jumping responses [50]. A similar
result, as bladder contraction, was encountered after electrical
stimulation of points concentrated at the superior collicular

and intercollicular levels, in an area involving the deep layers
of the superior colliculus, the dlPAG, and the tegmental retic-
ular formation, neighboring the most lateral border of the
PAG, in cat [51]. Nevertheless, this may be an erroneous con-
clusion due to inadvertent diffusion of electrical current to
other PAG columns. In fact, electrical stimulation or glutamate
microinjection within either ventrolateral, lateral, or dorsolat-
eral columns evoked the rise of the intravesical pressure, as
well as an increase in blood pressure [52]. Another reason
behind this discrepancy between different studies may be the
difference in cranio-caudal location of the stimulation sites.
For example, a similar study in cat mentioned rostral part of
dorsal PAG and caudal part of ventral PAG to be the main
sites, at which high-frequency electro-stimulation causes
inhibition of micturition [45].

Other Functional Studies

Some other studies show that stimulation of either the vl- or
dlPAG would suppress the contraction of the bladder. Deep
brain stimulation (DBS) in vlPAG attenuates or completely
suppresses the voiding in rats and humans [53]. Similar phys-
iological activities such as rhythmic straining reflexes or def-
ecation, alongside with micturition, are inhibited by electrical
stimulation of the ventral or dorsal PAG, dorsal raphe nucleus,
and central tegmental field, with similar threshold intensities,
in dogs [54]. These studies show that the electrical stimulation
of various midbrain structures, and not only specific PAG
columns, may suppress some pelvic functions. Such equivocal
results may be due to a possible jamming effect over the nor-
mal electrical circuitry, contributing to the negative impact of
DBS on micturition [39]. One possible explanation is the dis-
ruption of the normal coordinated voiding activity in the
detrusor and sphincter muscles, after DBS.

Since the micturition reflex is under unconscious control
during sleep, and nocturnal enuresis is a common associated
disorder, it would be interesting to investigate the function of
PAG during sleep, and the associated changes in detrusor con-
tractions. Simultaneous recordings of the detrusor pressure,
EUS electromyogram (EMG), cortical electroencephalogram
(EEG), and single-unit activity in the PAG in rats reveal that
during slow-wave EEG activity (SWA), voiding becomes
more irregular and detrusor voiding pressure threshold and
voiding volume threshold, and the duration of the bursting
activity in the EUS EMG is raised, all in line with maintaining
continence during sleep [55]. SWA is associated with slower
neuronal firing rate in the PAG as well. Different sleep-like
brain states are associated with changes in urodynamic prop-
erties, suggesting changing excitability of the micturition cir-
cuitry in the PAG. This may uncover some underlying factors
in the pathophysiology of nocturnal enuresis [55].

In summary, the PAG receives ascending sensory signals
from the bladder and can modulate the bladder function by its
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descending efferent connections. Such bilateral connections
may be important in conducting reflexive micturition in ro-
dents, or the immature human. This comprises a feedback
loop, with PAG continuously monitoring the state of bladder
fullness, and induction of voiding in a suprathreshold-filled
bladder (Fig. 2).

The Role of Distinct Cell Groups in PAG
Function

To better understand the organization of neural circuits, differ-
ent cell populations contributing to various neural pathways
are investigated (Table 1). The PAG, like most other brain
regions, has a variety of distinct cell groups and has immense
connections with its cranially and caudally located CNS struc-
tures, related to the control of the micturition. Among these
cell groups are dopaminergic, serotoninergic, glutamatergic,
and GABAergic neurons, and cells expressing neuronal nitric
oxide synthase (nNOS). Dopamine, serotonin, and glutamate
are stimulatory neurotransmitters, and GABA and nNOS are
inhibitory neurotransmitters. PAG neurons express receptors
for all of these neurotransmitters (Table 1).

The vlPAG has distinct groups of glutamatergic cells which
can stimulate other centers [62]. Chemogenetic or optogenetic

stimulation of glutamatergic neurons in the vlPAG leads to
detrusor contraction and voiding [64]. By contrast,
chemogenetic or optogenetic activation of vlPAG
GABAergic neurons delayed detrusor contraction and
inhibited voiding [64]. The vlPAG GABAergic cells stimulat-
ed in this experiment were most probably interneurons [75].
On the other hand, the main inhibitory GABAergic input to
the vlPAG, relevant to the micturition, projects from dlPAG
[49]. Glutamatergic cells of the vlPAG also control other im-
portant functions, including freezing [75] and nociception
[76], which are controlled by two separate cell groups in the
vlPAG [75]. Whether these cell groups are different from
those vlPAG glutamatergic cells controlling voiding, or have
some overlap, remains to be elucidated.

Excitatory Signaling

In this section, we mention glutamatergic, dopaminergic, and
serotoninergic neuronal signaling, arising from PAG and
influencing micturition.

Glutamate serves as an excitatory neurotransmitter [77]. Its
extracellular levels have been shown to be increased in PAG,
after bladder distension or voiding, by microdialysis studies
[58, 61]. Glutamatergic cells may project back to brainstem
structures related to the control of the bladder contraction, to

Table 1 Synthesis of neurotransmitters and the expression of their receptors in the PAG, and their functional significance

Synthesis1 Receptor1 Role in micturition (all experiments were performed on rats)

Dopamine ✓ [56] ✓ [57] Inhibitory:
■ Application of a D1 receptor antagonist into the PAG facilitated the micturition reflex [58].

Serotonin ✓ [59] ✓ [60] No role detected so far:
■ It seems to be responsible for nociception in the PAG [61].

Glutamate ✓ [62] ✓ [63] Excitatory:
■ Chemogenetic or optogenetic stimulation of vlPAG glutamatergic neurons leads to
voiding and detrusor contraction [64].

■ Glutamatergic vlPAG cells were activated after bladder electro-stimulation [65].
■ Glutamate microinjection within the PAG evoked a rise of intravesical pressure [41, 52].
■ Saline infusion into the bladder with consequent induction of the micturition
reflex resulted in increased extracellular glutamate levels in the PAG [61].

GABA ✓ [66, 67] ✓ [68, 69] Inhibitory:
■ Chemogenetic or optogenetic activation of vlPAG GABAergic neurons delays
detrusor contraction and inhibits voiding [64].

■ Microinjection of a GABA agonist into the vlPAG of the rat depressed reflex voiding
frequency, whereas microinjection of a GABA antagonist into the same region increased
reflex voiding frequency [70].

Opioid ✓ [71] ✓ [72] Inhibitory:
■ Injection of a μ receptor agonist into the caudal vlPAG abolished volume-evoked
micturition [73].

■ Intracerebroventricular injection of morphine or a μ agonist showed consistent
inhibition of spontaneous urinary bladder contractions [74].

The check (✓) mark positively denotes that the chemical mediator identified is either synthesized in the PAG, or the PAG bears receptors for them, in
conjunction with their respective references
1 Capability to synthesize and the bearing of specific receptors for a particular neurotransmitter imply the existence of efferent or afferent pathways
incorporating that particular neurotransmitter in the PAG
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fulfill a micturition reflex, or to higher cortical regions to
undergo further analysis and decision-making. The vlPAG
receives afferents from the lumbosacral cord [32] and has
direct connections with the PMC [32], which then controls
the micturition by its efferents to sacral parasympathetic seg-
ments. This circuit is especially very active in rodents and
probably in the immature human infant, while higher
decision-making brain centers are still underdeveloped.
vlPAG glutamatergic cells probably stimulate the PMC, after
receiving suprathreshold sensory signals from a full bladder.
As a clinical correlate, multiple system atrophy (MSA), which
is an extrapyramidal disease, has micturition symptoms in-
cluding frequency, urgency, incontinence, or incomplete blad-
der emptying, as part of its manifestation. The number of
glutamatergic cells in the ventrolateral, lateral, dorsomedial,
and to a lesser extent dorsolateral PAG columns was shown to
be decreased in MSA [78].

The role of dopaminergic neurotransmission over micturi-
tion is controversial. Microinjection of SCH-23390, a dopa-
mine antagonist, into the PAG, had contrary results over mic-
turition in two different studies [58, 79]. The PAG dopaminer-
gic neurons mostly project rostrally to higher brain regions
[80, 81]. There is a loss of putative wake-active PAG dopami-
nergic neurons in patients suffering from either MSA or de-
mentia with Lewy bodies, which may contribute to excessive
daytime sleepiness in these disorders [82]. Both of these con-
ditions have micturition problems. As micturition is in coor-
dination with the sleep-wake cycle, their possible role on mic-
turition must be indirect, via influence over other autonomic
systems.

Serotoninergic cells are abundant in the brain. The evi-
dence regarding the role of serotonin in the regulation of mic-
turition is very limited. Few serotoninergic neurons are pres-
ent in the PAG, which are particularly scattered in vlAPG,
close to the dorsal raphe nuclei. This actually makes these
few cell populations suspicious to be extra-raphe serotoniner-
gic cells, not being part of the main PAG columns. There is not
much known about the micturition-related pathways within
the PAG, involving serotonin for neurotransmission. The
vlPAG serotoninergic cells inhibit the ejaculation in rats and
may contribute to SSRI (selective serotonin reuptake inhibi-
tor)-induced inhibition of ejaculation [83]. Yet, regulation of
the autonomic function of the genital organs is different from
that of the bladder. Since glutamate modulates 5-HT release in
the PAG [84], and serotoninergic cells of the PAG also have
projections toward other brainstem regions [85], there may be
an indirect relation between the bladder stimulation and the
serotonin system.

Inhibitory Signaling

Inhibitory signaling from PAG arises from GABAergic cells,
or neurons expressing nNOS.

GABAergic transmission has an indirect role over vlPAG,
by internal connections via the dorsolateral column of the
PAG [11]. GABAergic cells of dlPAG project to vlPAG to
suppress the micturition reflex [49]. PMC has reciprocal con-
nections with the vlPAG [23, 24] and receives inhibitory
GABAergic input from dlPAG [49] (Fig. 2). The existence
of reciprocal connections between various columns of the
PAG [11] emphasizes the existence of a micturition-
suppressing region in dlPAG.

The bladder’s intramural ganglia, dorsal root ganglia, and
spinal cord contain nitric oxide (NO), the expression of which
shows plasticity, following pathological lesions, such as pel-
vic nerve injury, chronic bladder irritation, and urethral ob-
struction [86]. The rate of NO production in brain is dependent
on dynamic regulation of its synthetic enzyme, nNOS [87].
There has been no report about the role of nNOS in the brain,
related to the physiology of micturition. Most functions me-
diated by nNOS, including modulation of the cardiovascular,
behavioral, or nociceptive functions, have been found to be
mainly active at dorsal PAG [88–90]. The existence of any
possible role over the micturition pathways in the PAG by NO
would probably be mediated by its interactions with GABA
[91]. Its inhibitory neuronal activity within the PAG [92] may
also be explained accordingly, since GABA is an inhibitory
neurotransmitter.

An overall comparison of various cell groups in a standard-
ized setup shows that in contrast to serotonergic, dopaminer-
gic, GABAergic, and nNOS-synthesizing cells, only vlPAG
glutamatergic neurons are activated upon receiving afferent
bladder sensory signals [65].

Table 1 summarizes some key cell types in the PAG, bear-
ing particular neurotransmitters, and their corresponding re-
ceptors, and describes their functions in micturition.

Other Important Chemical Mediators of PAG Function

Since the PAG is also a center for pain control, endogenous
opioids have significant presence in this region. Their poten-
tial engagement in the control of voiding has been investigated
in various ways. Among the different types of opioid receptors
and PAG columns, it is only μ (mu) receptors which have an
inhibitory effect on the vlPAG, by abolishing volume-evoked
micturition [73]. Intracerebroventricular injection of morphine
or the μ agonist morphiceptin confirms the aforementioned
findings, showing consistent inhibition of spontaneous uri-
nary bladder contractions [74]. The rapid onset of action and
its limited distribution, shown by the intraventricular dye in-
jection studies, indicates that its actions are confined predom-
inantly to the periventricular and periaqueductal or associated
areas, and not to the spinal cord [74].

The α1-adrenergic receptor antagonist tamsulosin, and the
PDE-5 inhibitor sildenafil, significantly suppressed the in-
crease in neuronal activities measured by the expression of
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c-Fos and NGF, in the vlPAG, in an overactive bladder rat
model [93]. Further evidence for the role of phosphodiesterase
system comes from studies using caffeine. Caffeine is a meth-
ylxanthine alkaloid chemically related to the adenine and gua-
nine bases of DNA. Its mechanism of action is by phosphodi-
esterase inhibition and adenosine antagonism. Caffeine ad-
ministration to rats for 14 days increased bladder smooth mus-
cle contraction pressure and time, determined by cystometry
[94]. Expression levels of c-Fos and NGF in the vlPAG were
also significantly increased following the administration of
caffeine [94]. Hence, the phosphodiesterase system has possi-
ble regulatory role over the PAG and can influence the
micturition.

Functional Imaging of the PAG

Functional imaging is a non-invasive tool for visualizing the
activation of specific brain regions in response to various stim-
uli, respecting sensory afferent andmotor efferent functioning.
However, state-of-the-art functional imaging techniques
usually lack adequate spatial resolution to make reliable
statements about the function of a specific column of
the PAG (Fig. 3a, b). Nevertheless, functional imaging studies
have shed light on different connections of the PAG
(Figs. 2 and 3b). They can also detect defects in some struc-
tural or functional pathologies involving the PAG. Functional
MRI (fMRI), as the most common type of functional imaging,
is the imagingmodality widely used to determine the activated
brain regions in different phases of micturition.

Since PAG is also a center for handling nociceptive signals,
it would be interesting to differentiate pain from other afferent
sensory information processing. Both distention of the bladder
and painful stimuli may activate the PAG, with different pat-
terns. The vlPAG, among other regions, was activated in

human PET scans after bladder distension, but not with
intravesical ice bladder instillation, revealing different path-
ways in bladder distension and pain [98]. fMRI on healthy
females shows that cold (pain) sensation is processed differ-
ently from bladder distension at the supraspinal level [99].
Parallel in vivo studies in mice revealed that selective
optogenetic activation of bladder sensory fibers can differen-
tially modulate nociceptive information and autonomic re-
flexes [100]. These findings show that bladder nociceptive
and mechanosensory signals have separate pathways, both in
the periphery and in the brain.

PAG is also activated in some similarly related physiolog-
ical processes, like pelvic muscle contraction or rectal disten-
tion. In a non-voiding model of voluntary micturition control,
ventral pons and the PAG showed more enhanced activation
patterns by fMRI, in voluntary contraction than in the relaxa-
tion of the pelvic floor muscles [101]. Rectal distention in
humans led to PAG activation detected by PET that was also
associated with increased heart rate and with increased plasma
adrenaline [102].

The PAG is active in both storage and voiding phases of the
micturition cycle, but the extent of its activity differs between
these two phases. During the storage phase, the PAG is acti-
vated, but the PMC is inactive, and during the voiding, the
PMC maintains activation, and the activation of the PAG en-
hances [103].

Hereby, more evidence is provided supporting the activity
of the PAG in storage and voiding phases of micturition.

The PAG Activation During the Storage Phase:

These experiments are usually designed in such a way that the
brain would be scanned, while the bladder is being passively
filled by intravesical infusion of saline. This way,
mechanosensory signals arising from an expanding bladder

1

2

3

A B

Fig. 3 a A transverse section
through the human midbrain in a
normal subject, showing the
cerebral peduncles (1), the PAG
(2), and the aqueduct (3) (7 Tesla
MRI) [95, 96]. b An fMRI show-
ing the activated regions in a
transverse section of the human
brain. The PAG (arrow) along
with the right insula shows more
activity in a full bladder rather
than in an empty bladder, during
attempted micturition (1.5 Tesla
fMRI) (reprinted with permission
from Elsevier) [97]
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would reach central micturition control centers. The activity in
the right anterior insula and the PAG in human was enhanced
at higher bladder volumes, in a non-voiding bladder, detected
by fMRI [97] (Fig. 3b) and PET [104]. PAG activation after
bladder filling is accompanied by the activation of the inferior
parietal lobule, as well as the right insula and the dorsal ante-
rior cingulate cortex (ACC) [105]. Passive filling and empty-
ing of the bladder induce PAG activation as well [17, 106,
107]. Studies on Parkinson’s disease (PD) patients show that
the activity of the PAG is enhanced in a full bladder, compared
to an empty bladder [108]. Furthermore, DBS of subthalamic
nucleus increases the PAG activity in PD patients [108]. This
would indirectly influence the activity of other cortical regions
related to micturition and ultimately restore afferent bladder
information processing [108]. These findings point to the fact
that the PAG processes the sensory signals derived from a
filling bladder. These signals may then flow to specific cortical
regions and reach the awareness.

The PAG Activation During the Voiding Phase:

Initiation of Voiding

There is a special role for the PAG in the initial moments of the
bladder emptying. The PAG is consistently active during
Battempted micturition^ [97] (Fig. 3b). During this maneuver,
the individuals direct their attention to the sensations arising
from the bladder and urethra and increase the desire to void as
if initiating to allow the urine to pass [97]. Initiation of voiding
induced significant activity in cortical regions, in addition to
the PAG, as shown by fMRI, whereas actual micturition was
associated with significantly less such activity [97].
Unsuccessful attempts at micturition result from inefficient
activation of the PAG and PMC during the initiation phase,
which itself may be secondary to inadequate antecedent acti-
vation of frontoparietal and cingulate cortices, involved in
decision-making for the micturition behavior [109]. The same
results can be found by PET scans [110]. fMRI studies found
out that imitation or interruption of voiding by relaxation or
contraction of the pelvic floor muscles in healthy women
could induce activation patterns in the PAG, cortical regions,
and some other micturition control centers [111]. The above
findings emphasize the role of the PAG in the integration and
relay of information coming from different areas (such as the
spinal cord and the cortico-limbic system), which are essential
in micturition physiology. This signifies the role of the PAG to
be the trigger for implementing the decision for voiding.

Analysis of reflexive micturition in healthy rats by animal
fMRI showed the activation of the PAG [112]. High-
resolution animal fMRI in rabbit could specifically identify
the vlPAG for having an important role in bladder dysfunction
biofeedback [113]. This is confirmed by a PET study in
humans also showing the vlPAG to be activated after

distention of the bladder [98]. Columnar differentiation in hu-
man PAG could also be done by a PET scan, which identified
the activation of the tegmental part of the PAG, denoting either
ventrolateral or lateral columns, during micturition [114].
Nonspecific involvement of the PAG was mentioned in some
other human PET scans [18, 115]. These discoveries are cor-
roborated by a single-photon emission computed tomography
(SPECT) in human, showing increased PAG activation during
voiding [116].

With upcoming research by modern 7 Tesla and 9 Tesla
MRI machines, we shall gain more precise information re-
garding the connections of individual PAG columns with
specific parts of the brain.

Connectivity Analysis

It is often helpful to investigate the connections between one
particular structure and other brain regions, and their temporal
pattern of activation. The PAG has been found to be function-
ally connected with some other brain regions during voiding
(Fig. 2). The physiophysiological interaction (PPI) is a sophis-
ticated tool used to elucidate the effective connectivity be-
tween different brain regions and a particular task, i.e., the
micturition. It is generally based on observing alterations in
the slope of the regression line of two different brain regions,
with respect to another region, or a particular task [117]. This
method aids in revealing the cortical pathways, together with
their associated functions (Fig. 2).

fMRI signals of the right insula/operculum change in par-
allel with PAG activity (indicating connectivity), when the
subject perceives an enhanced urge to void during Battempted
micturition^ [97]. Indeed, positive functional connectivity ex-
ists between the vlPAG and brain centers involved in mictu-
rition, such as the ACC or insula, shown by resting-state fMRI
(rsfMRI) [118]. The PAG clearly shows some laterality in its
effective connectivity, which is to right insula during the fill-
ing of the bladder [119, 120].

White matter hyperintensities (WMH) are common in the
older population and have been linked to demyelination,
spongiosis, and glial proliferation, presumably after lacunar
ischemic infarcts. Global WMH has been linked to impair-
ments of mobility, cognition, affect, and continence [121].
These hyperintensities could be located in any of the central
micturition control centers and are particularly related to the
severity of the incontinence [122]. The PAG is one of the
regions, of which activity shows positive correlation with
the global WMH [123]. Hence PAG may be secondarily af-
fected by WMH, contributing to the micturition symptoms.

The imaging modalities explained above may be used for
experimental or diagnostic purposes. Putting various cortical
connections of the PAG together, we find a circuit of continuous
monitoring of the level of the bladder fullness, vigilance of the
environmental circumstances, and deciding to void at the right
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moment. This comprises a cortical feedback loop, completed by
incorporating the ventrolateral and dorsolateral PAG columns,
for thinking and implementation of the decisions (Fig. 2).

PAG in Neuropathological Conditions
and Their Effects on Micturition

The PAG may be affected in several pathological states, and
its role has been investigated in various disorders showing
lower urinary tract problems as part of their spectrum of symp-
toms. Here, we explain some structural and functional disor-
ders, affecting the PAG and compromising micturition.

Structural Pathologies

The so far reported structural pathologies include stroke, neo-
plastic lesions, hydrocephalus, and spinal cord injury. Spinal
cord injury would secondarily alter PAG activity states, as
discussed below.

Structural damage involving the PAG has been reported to
be a cause of voiding problems. Cerebral stroke, which is a
debilitating disorder in the elderly, may cause voiding dys-
function. Urinary retention was among the manifestations of
a patient suffering from acute ischemic stroke of the brainstem
[124]. Diffusion-weighted MRI showed hyperintensity over
the left paramedian segment of the lower midbrain, which
includes the PAG. The computed tomography also showed a
hemorrhagic transformation and intraventricular hemorrhage
in the fourth ventricle [124], which is directly beneath the
aqueduct. Either indirect ischemic damage of the PAG or
chemical irritation by a hemorrhagic cerebrospinal fluid
(CSF) inside the aqueduct could explain the micturition-
related symptomatology. In an intracerebral hemorrhage
(ICH)-induced rat model of neurogenic voiding dysfunction,
c-Fos and NGF expression levels in the neuronal voiding cen-
ters, including vlPAG, were significantly increased with in-
duced ICH, as compared to the control rats [125].

Various other structural defects may affect the PAG and
lead to micturition problems. We here mention two case re-
ports of subjects with neoplastic lesions or hydrocephalus,
which compromised normal micturition by affecting the
PAG. A lesion in the midbrain and upper pons was detected
byMRI scan of a 34-year-old man presenting with a history of
delayed ejaculation, voiding difficulties, and diplopia, which
was a developmental abnormality such as a dermoid or tera-
toma [126]. In evaluation of patients with possible idiopathic
normal-pressure hydrocephalus (iNPH) with typical imaging
features (ventricular enlargement) and normal CSF pressure, a
small bladder capacity and detrusor overactivity were seen in
95% of patients [127]. Since the PAG completely encircles the
aqueduct, there is a possibility that this structure would be
affected by minor dimensional changes in iNPH [127].

Sacral neuromodulation is commonly used in various neu-
rologically mediated continence problems. The bladder filling
and rest contrast, in eight spinal cord-injured (SCI) partici-
pants, elicited clear activation, measured by fMRI, in the
PAG and in a continuous area in the right midbrain [106].
Following 2 weeks of pudendal stimulation treatment, abnor-
mal PAG overactivity was decreased in all six participants, as
well as in the four clinically improved subjects. Thus, the PAG
may be overactive in the SCI group, following the sudden loss
of the spinal afferent inputs [106]. The vlPAG overactivity in
the SCI subjects was also demonstrated in a rat model, by
increased expression of c-Fos or NGF, relative to the sham-
operated group [128]. Abnormal PAG function would be re-
stored to normal by sacral neuromodulation, in individuals
with urinary retention [129].

Functional Pathologies

These disorders encompass demyelinating diseases, PD,
MSA, migraine, Wernicke’s encephalopathy, nocturnal enure-
sis, and urge incontinence, which will be elaborated below.

One of the most common demyelinating diseases is multi-
ple sclerosis (MS), a common debilitating disorder with white
matter plaques affecting any part of the brain. In 18.7% of MS
patients, lesions were located in the PAG [130]. Thirty-six
percent of these lesions were periventricular lesions of the
third ventricle, extending toward the aqueduct. Bowel and
bladder disability scores in MS patients are correlated with
the volume of lesions in the medial frontal lobes, cerebellum,
insula, dorsal midbrain including dorsal part of the PAG, and
pons, areas known to be involved in the control of micturition
[131]. As a clinical correlate, a 31-year-old man had suffered
from sudden voiding difficulty and retention. A filling
cystometrogram revealed an atonic bladder with diminished
bladder sensation. Hyperintensities were shown in the PAG in
T2W-MRI that were reduced after steroid therapy, with subse-
quent improvement of the voiding symptoms. He was
suspected to have a demyelinating disease such as MS [132].

Patients with PD, which is an extrapyramidal disorder, may
have lower urinary tract symptoms. Elimination of dopami-
nergic neurons by 6-OHDA microinjection into the PAG in a
rat model of PD leads to altered micturition patterns [133].
Moreover, the reduction of the amplitude of the evoked po-
tentials measured in the PAG, elicited by means of electrical
stimulation of the pelvic nerve in the rat, is more pronounced
in PD animals compared to sham animals, after the intrave-
nous administration of an adenosine receptor antagonist [134].
Besides the direct effect dopaminergic lesions can have on the
PAG, there is some evidence showing that the micturition
problems in PD may be a consequence of a primary problem
residing in the substantia nigra (SN), secondarily affecting the
PAG by its projections toward the PAG. Increased c-Fos reac-
tivity was observed in the PAG and ACC, in a PD rat model
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induced by 6-hydroxydopamine injection into SN [135].
Moreover, a 6-OHDA lesion in the SN produces a transient
increase in voiding frequency within the first 2 weeks, with
recovery of urinary function by 4 weeks post-lesion [136]. In
PD patients, significant brain activation can be detected by
PET in the PAG, during detrusor overactivity (measured by
intravesical pressure monitoring) [137]. As another example
of extrapyramidal disease, MSA, which includes micturition
symptoms, shows neurochemical changes in the PAG (de-
tailed above) [78].

Furthermore, a possible role of the PAG has been suggested
in nocturnal enuresis. Single-unit activity in the lateral and
ventrolateral columns of the PAGwas linked to the occurrence
of voids induced by continuous infusion of saline into the
bladder of urethane-anesthetized rats, to mimic sleep-like
brain states [55]. Almost a quarter of the recorded neurons
were responsive during the micturition reflex. Their spontane-
ous firing rate in the absence of bladder stimuli decreased
during slow-wave EEG states [55]. This suggests that the mic-
turition reflex is reset centrally during the sleep. Failure of this
mechanism could contribute to the development of nocturnal
enuresis [138].

Various other functional disorders may have PAGmalfunc-
tion together with micturition symptoms. Vegetative symp-
toms including increased micturition may occur in migraine
[139]. More specifically, vlPAGwas found in a PETstudy as a
structure that may be implicated in migraine pathophysiology
[140]. PAG dysfunction also has been shown in Wernicke’s
encephalopathy [141]. A case report of Wernicke’s encepha-
lopathy in a pregnant woman described decreased bladder
volume and detrusor hyperreflexia in urodynamic studies.
Brain MRI revealed abnormal intensities in medial thalamic-
hypothalamic regions, and the PAG [141]. PAG [142] or mid-
brain [143] activation was shown by fMRI studies in urge
incontinent patients as well. rCBF analyzed by PET is de-
creased in the midbrain during sacral neuromodulation in
chronically implanted urge incontinent patients [144].

By its involvement in a multitude of disorders leading to
micturition problems, the PAG must be included in future
diagnostic or therapeutic algorithms concerning neurological
causes of the bladder dysfunction. Specifically, with the avail-
ability of future high-precision MRI machines, the PAG can
be more specifically evaluated, for diagnostic purposes.

Conclusion

The PAG plays the role of a switchboard located in the
brainstem, coordinating the evolutionary primitive and ad-
vanced brain centers. It has a broad spectrum of functions and
has a paramount role in the control of micturition. The PAG
functions as a sensory and motor relay station for the ascending
afferents from the lower urinary tract, and descending afferents

from the cortical areas. This is partly made possible by its spe-
cial position at the intersection of the forebrain and the hind-
brain. Two of the four columns of the PAG, namely the ventro-
lateral and dorsolateral columns, demonstrate more significant
involvement in this respect. The vlPAG is more connected to
the caudal structures, and the dlPAG is more connected to
the cranial structures of the CNS [16]. The intercolumnar con-
nections [11] traverse the information between vlPAG and
dlPAG and thus complete a full circuit. Pathological conditions
affecting the PAG may compromise the continence, and some
of them may be detected by modern imaging techniques. Thus,
the PAGwill be a potential diagnostic and therapeutic target for
specific incontinence problems and voiding dysfunctions. This
may be done pharmacologically, by for example targeting its
glutamatergic neurotransmission, or surgically, by DBS of par-
ticular PAG columns.
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