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Abstract
The fragile X syndrome (FXS) arises from loss of expression or function of the FMR1 gene and is one of the most common
monogenic forms of intellectual disability and autism. During the past two decades of FXS research, the fragile X mental
retardation protein (FMRP) has been primarily characterized as a cytoplasmic RNA binding protein that facilitates transport of
select RNA substrates through neural projections and regulation of translation within synaptic compartments, with the protein
products of suchmRNAs thenmodulating cognitive functions. However, the presence of a small fraction of FMRP in the nucleus
has long been recognized. Accordingly, recent studies have uncovered several mechanisms or pathways by which FMRP
influences nuclear gene expression and genome function. Some of these pathways appear to be independent of the classical role
for FMRP as a regulator of translation and point to novel functions, including the possibility that FMRP directly participates in
the DNA damage response and in the maintenance of genome stability. In this review, we highlight these advances and discuss
how these new findings could contribute to our understanding of FMRP in brain development and function, the neural pathology
of fragile X syndrome, and perhaps impact of future therapeutic considerations.

Keywords Fragile Xmental retardation . FMRP . Genome stability . Chromatin . DNAdamage repair

Introduction

As a significant monogenic basis for intellectual disability,
studies of fragile X syndrome (FXS) and the FMR1 gene have
been in the vanguard of efforts to devise therapeutic ap-
proaches towards neurodevelopmental disorders [1, 2].
Notable advancements in our understanding of the molecular
basis for FXS pathology include the discovery of RNA-
binding capacity by fragile X mental retardation protein
(FMRP) and its association with ribosomes, identification of
prospective mRNA substrates, and the placement of FMRP
within a synaptic signaling pathway amenable to pharmaco-
logical manipulation [3–10]. Together, these findings have
served as the foundation for a well-validated model where
FMRP controls translation of select mRNAs in response to
signaling through metabotropic glutamate receptors
(mGluRs) and that loss of FMRP results in dysregulated

synaptic protein synthesis, leading to aberrant synaptic con-
nectivity that is manifested in the behavior phenotypes of FXS
[11, 12].

Animal models for FXS display behavior phenotypes con-
sistent with the above mechanisms for FMRP function at syn-
apses, and the findings that at least some of these behavior
phenotypes could be rescued by antagonists of mGluRs pro-
voked considerable interest and excitement among basic and
clinical scientists, as well as families affected by FXS [13, 14].
Unfortunately, a carefully controlled clinical trial of mGluR5
antagonists in FXS patients did not elicit the anticipated thera-
peutic benefits [15]. Several potential confounding factors that
could contribute to this outcome have been suggested and in-
clude the age of patients enrolled, the power of the placebo
effect, the effects of other medications, unknown differences
between animal models and humans in regard to pharmacody-
namics and pharmacokinetics of a drug, a relative lack of bio-
markers to monitor in patients, the challenge of extrapolating
animal behavior studies to those of humans, and perhaps a
limited understanding of how FMRP works in brain develop-
ment and in the circuits that control behaviors examined in the
patient cohort [2, 15, 16]. These possibilities have yet to be
clearly resolved. While other compounds that target synaptic
dysfunction associated with Fmr1mutation have shown prom-
ise in animal models for FXS (see [2] for a compilation), they
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await testing in FXS patients at the same level of experimental
power used for the trials with mGluR5 antagonists.

However, another plausible explanation for the unexpected
results from the mGluR5 clinical trials is that FMRP has other
critical functions in neural tissue that are not amenable to rescue
by targeting synaptic protein synthesis or other elements of
synaptic function. Although the bulk of FMRP resides in the
cytoplasm, early characterizations of FMRP revealed the pres-
ence of nuclear localization and nuclear export sequences, and
that the latter, when removed by alternative splicing or muta-
tion, led to the accumulation of FMRP in the nucleus [17–19].
Immunogold labeling of brain sections showed that FMRP is
endogenously present within the nucleoplasm of neurons [20]
and thus situated to exert regulatory effects throughout a cell.

The regulatory potential of FMRP is revealed upon exami-
nation of its highly modular architecture (Fig. 1), which in-
cludes three K homology (KH) domains and one glycine-
arginine (RGG) box that have demonstrated RNA and/or pro-
tein binding capacity. FMRP can self-interact via two distinct
regions, most often as a dimer, and this ability increases its
valency within a protein complex [21, 22]. The significance
of having two dimerization regions is unknown, but it may
confer distinct regulatory functions [22]. In addition to binding
RNA, many interactions of FMRP with other proteins have
been reported. A sizeable fraction of the known FMRP-
interacting proteins function in some context of cytoplasmic
mRNA transport or regulation of mRNA stability and/or trans-
lation [23], but others that include the nuclear proteins ADAR,
RBP14, and NUFIP [24–28], and the potassium channels Slack
and BK [29, 30], suggest novel FMRP functions. Of particular
interest is a pair of Agenet domains comprising the first ~ 110
amino acids of FMRP (Fig. 1). Agenet domains are related to
Tudor domains and mediate interactions with methylated lysine
and arginine residues of proteins, which for FMRP include
methylated histone H3 [31] and possibly methylated arginine
residues of the FUS RGG region, as a Y96L mutation in the
methyl binding pocket of the second FMRP Agenet domain
disrupts interaction with FUS [32, 33]. FMRP thus has unusual
capacity for pleiotropic function in neurons through its ability to
serve as a scaffold with the potential to connect combinations of
protein, RNA, and chromatin. As will be illustrated in the fol-
lowing paragraphs, such pleiotropy provides a basis for FMRP
not only to modulate neuronal responses and outputs at synap-
ses, the cell body, and within the nucleoplasm, but also to par-
ticipate in cellular housekeeping functions that are essential for
neural development and function.

FMRP Modulates RNA Function as a Nuclear
Protein

Processing within the nucleus (capping, splicing, 3′ end for-
mation) and nucleocytoplasmic export are essential

steps to the function of many RNA species. More recently,
there has been a growing appreciation for the roles of nuclear
RNA in mediating elements of chromatin function, including
gene activation, silencing, and DNA repair. While a connec-
tion between the RNA binding capacity of FMRP and regu-
lation of chromatin function has yet to be established, multiple
studies have uncovered roles for FMRP in processing and
editing of pre-mRNA molecules (Fig. 2).

Alternative Splicing About 95% of multi-exon transcripts
from humans show evidence for alternative splicing, and the
frequency of this transcriptome and proteome-expanding
event is elevated in neural tissue, where it contributes to all
elements of neural function from development to synaptic
plasticity [34]. As an RNA binding protein, alternative splic-
ing of select pre-mRNA is a potential function for nuclear
FMRP (Fig. 2), and an initial insight into this possibility came
with the observation that FMRP autoregulates alternative
splicing of Fmr1 pre-mRNA [35]. Recent developments in
RNA sequencing, which allow for direct detection of rare
alternative splicing events, and a screen using cultured cells
and RNAi knockdown suggest that Drosophila FMRP may
impact alternative splicing of select pre-mRNA substrates [36,
37]. Recently, mouse FMRP was found to co-precipitate in an
RNA-dependent manner with RNA-binding protein 14
(RBM14), a known factor in alternative splicing [27].
Subsequent analyses showed that the skipping/inclusion ratio
of select exons from Protrudin and Tau transcripts was altered
in both Fmr1 KO hippocampal tissue and in cultured cells
where Fmr1 was knocked down. Alternative splicing events
are often regulated in response to physiological and develop-
mental signals [34, 38] and thus different populations of cells
from neuronal tissues may have distinct profiles of alternative-
ly spliced transcript variants. Detailed RNA sequencing stud-
ies with a variety of differentiated neuronal tissues or even
single cells [39] will be required to more completely assess
the impact of Fmr1 mutation on patterns of alternative
splicing.

Nucleocytoplasmic Transport Another candidate function for
nuclear FMRP is nucleocytoplasmic transport of RNA (Fig.
2). A connection between FMRP and nucleocytoplasmic
transport has been explored with the finding that FMRP inter-
acts with NXF2, an mRNA nuclear export factor [40]. Further
studies by the same research group then showed that the
FMRP/NXF2 interaction destabilized the mRNA of NXF1,
an essential ubiquitously expressed mRNA export factor
[41]. Silencing RNAs targeted to NXF1 enhanced the nuclear
accumulation of modified FMRP that had its endogenous nu-
clear export sequence removed, suggesting that FMRP can
also exit the nucleus as part of an NXF1 mRNA export com-
plex [42]. This same study also showed FMRP association
with nascent transcripts emanating from lampbrush
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chromosomes of Xenopus oocytes, in addition to a prominent
FMRP staining of the chromosome axis. Whether this associ-
ation of FMRPwith nuclear transcripts is limited to a subset of
RNA substrates has yet to be resolved, but the observations
from these papers suggest that loss of FMRP could alter the
nuclear export of at least some mRNA substrates, as well as
the overall dynamics of nucleocytoplasmic RNA trafficking.

RNA Editing Post-transcriptional editing of mRNAs via
Adenosine Deaminase Acting on RNA (ADAR) is critical
for neural function. ADAR proteins have been shown to act
on mRNAs coding for neurotransmitter receptor and channel
subunits, along with other proteins having synaptic function

[43], and thus mutations in ADAR proteins lead to neurolog-
ical defects or lethality. Studies with Drosophila [24],
zebrafish [25], and most recently with mice [26] show that
loss of FMRP results in aberrant editing of at least some
mRNA transcripts coding for synaptic receptor subunits, ion
channels, and other signaling proteins that directly participate
in synaptic function. Moreover, some of the altered pattern of
edits in neural tissue mutant for Fmr1 elicits the synthesis of
protein isoforms with previously characterized alterations in
their activities, with the resulting outputs being consistent with
synaptic phenotypes associated with FXS [26]. Both enhance-
ment and inhibition of editing are observed in the Drosophila
Fmr1 mutant, in what seems to be a transcript/site-specific

AG1 AG2 KH0 CKH1 KH2 RGGNES
49 63 11
3

12
6

20
2

21
6

28
0

40
4

52
7

55
2

63
23

Flexible loop

NES Nuclear export sequency

RGG RGG/RG box

C C-terminal domain

Unstructured domains

AG Agenet domain

KH KH domain

a

b c d
Nuclear 

localization 
domain Dimerization 

domain 1Dimerization 
domain 2

e

RNA and Protein 
binbing domains

RNA and Protein 
binbing domain

Methyl 
Lysine-Arginine 
binbing domains

Fig. 1 Multi-domain structure of the FMR protein. a Linear organization
of FMRP shows Agenet (AG1 and AG2) and KH (KH0, KH1, and KH2)
domains, as well as an unstructured region that contains a nuclear export
sequence (NES), a RGG box and the C terminal domain. FMRP can exist
as a monomer (b) and as two alternative dimerization forms (c,d). e As a

highly modular protein, FMRP encompasses different RNA and protein
interaction sites, mediating the participation of FMRP in multiple
unrelated pathways. Domains are not drawn to scale. Numbers in a
represent amino acids

Mol Neurobiol (2019) 56:711–721 713



manner [24], but only enhancement of editing is seen in the
mRNAs tested from zebrafish and mouse Fmr1 mutant tis-
sues. While certain isoforms of ADAR proteins from verte-
brates are cytoplasmic, the Drosophila ADAR is nuclear, and
mouse FMRP co-localizes with ADAR2 in the nucleus, where
it is reported to inhibit ADAR2 activity [26]. Similar to the
situation with alternative splicing, a thorough account of the
impact of Fmr1 mutation on RNA editing in neurons has yet
to be undertaken. Although a contribution to FXS phenotypes
by alterations in alternative splicing, nucleocytoplasmic traf-
ficking, or editing of FMRP-associated RNAs has not yet
been directly demonstrated, the known contributions of some
of the proteins encoded by these RNAs to synaptic plasticity
makes such a possibility seem quite plausible (Fig. 2).

FMRP Regulates mRNAs That Code
for Epigenetic Factors

Chromatin Structure and Gene Transcription Are Affected by
Fmr1 Mutation Several biochemical screens for RNA sub-
strates of FMRP have been conducted [7, 8, 44, 45].
Although initial interest in candidate substrates focused on
mRNAs that code for synaptic proteins, about 13% of
FMRP-associated transcripts code for transcription factors or
proteins that modulate properties of chromatin [44, 46].
Significantly, many of these nuclear factors have been

connected with abnormalities in development of the nervous
system and in autism spectrum disorder (ASD). As FMRP is
associated with translation regulation, an imbalance in the
expression of factors that globally alter transcriptional gene
expression could present an entirely new class of cellular dys-
function that contributes to the pathology of FXS. Korb et al.
[46] began their study with an examination of protein levels of
several chromatin modification and transcription factors and
found an increase of these proteins in cultured neurons from
FMRP KO mice. Histone modifications associated with open
chromatin and transcription were notably upregulated in both
cultured KO neurons and cerebellar neurons from Fmr1 KO
mice as judged by ChIP sequencing, and a subsequent RNA-
seq analysis of ~ 16,750 genes from WT and FMRP KO neu-
rons showed that over 1500 were upregulated, with many
being connected to neural function and autism spectrum dis-
order. Despite FMRP KO neurons displaying a lack of change
in repressive chromatin marks, nearly 1300 genes were down-
regulated in the FMRP KO neurons. Transcription factors are
present in this group of downregulated genes, and the decrease
in their transcription is proposed to result from downstream
responses to global changes in chromatin. The scope of this
gene misregulation in response to loss of FMRP has signifi-
cant implications for understanding the cellular pathology of
FXS and, as observed by Korb et al., reveals an unexpected
synergy between transcriptional and translational regulation
that is modulated by FMRP [46]. Moreover, it points to
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Fig. 2 FMRP interacts with
nuclear elements involved in
mRNA maturation and export
pathways. a FMRP interaction
with RBM14 supports growing
evidence suggesting that FMRP
contributes to the regulation of
alternative splicing on select
mRNAs. b The involvement of
FMRP in RNA editing pathways
has been well established and is
supported by the finding that
FMRP interacts with ADAR, a
central RNA editing component.
c Among other evidence,
interactions between FMRP and
the nucleocytoplasmic export
factor NXF2 suggest that FMRP
may be required for
nucleocytoplasmic transport of
specific RNAs

714 Mol Neurobiol (2019) 56:711–721



transcription factors and chromatin regulators as possible tar-
gets for FXS therapy.

Epigenetic Control of FXS Phenotypes By analyzing previous-
ly reported expression profiles of genes regulated by the tran-
scription and chromatin regulatory factors that were identified
in the FMRP RNA substrate screen [44], and comparing them
to the genes misregulated in the FMRP KO background, Korb
et al. were able to compile numbers, percentage, and signifi-
cance of overlapping gene groups [46]. The most significant
overlap came from comparison of the gene expression profile
of cells exposed to the BET (Bromo and Extra-Terminal do-
main) protein inhibitor JQ1 versus that of FMRP KO neurons.
The BET protein family includes Brd4, which binds acetylat-
ed histones to promote transcription, including genes whose
protein products function at synapses. Interestingly, the tran-
script for Brd4 was identified as a FMRP substrate in the
Darnell et al. screen [44].

In addition to having an inhibitor of Brd4 in hand, Korb et
al. note several other reasons why Brd4 is a compelling target
for FXS therapy [46], perhaps themost significant being that it
interacts with other chromatin regulators found to be
misregulated as a result of FMRP mutation and may then
serve as a hub that connects multiple FMRP targets.
Moreover, in the light of multiple classes of histone modifica-
tions being misregulated, inhibition of a factor that generally
functions downstream of histone modifications might give the
best chance for effective modulation of the gene expression
defects associated with FMRP mutation. With these consider-
ations, Korb et al. then moved to test JQ1 in FMRP KO cul-
tured neurons and Fmr1KOmice [46]. Assays that monitored
expression levels of chromatin regulators, global transcription
regulation, and neural anatomy in regard to dendritic spine
density all showed significant restoration of FMRP KO-
associated anomalies towards the wild type. That the cumula-
tive effect of this epigenetic and transcriptional misregulation
associated with Fmr1 mutation contributes to the phenotypes
of FXS is best evidenced by the rescue of mouse Fmr1 KO
behavior deficits by JQ1.

FMRP Contributes to Genome Stability

Maintenance of genome stability through accurate repair of
DNA damage from endogenous and exogenous sources, and
suppressing the movement of mobile genetic elements, is cru-
cial for cell function and viability. This is especially important
for the nervous system, as neurons are relatively long-lived
cells, and thus the accumulation of mutations could enhance
the possibility of future dysfunction not only just for individ-
ual neurons, but also for the circuits they are connected to.
Moreover, the need for neurogenesis arising from division of
neural stem cells and neural progenitor cells during

development, and perhaps adulthood, makes genome stability
a paramount concern for these cell types, as all subsequent
daughters will inherit the genome of the parental cell. The
importance of genome stability to neural function is illustrated
by disorders in the nervous system believed to arise from
somatic mosaicism in the brain [47]. It is thus intriguing that
several recent studies, highlighted below, indicate that FMRP
has a role in repressing expression of transposable elements
and that its nuclear localization is enhanced upon inducing
certain types of DNA damage [31, 48–51].

FMRP, the PIWI Pathway, and Regulation of Transposition
The Argonaute family of proteins binds small RNAs to regulate
gene expression at both transcriptional and post-transcriptional
levels [52]. FMRP has previously been associated with the
miRNA pathway, where it has interactions with Argonaute pro-
teins (AGO) and variousmiRNAs [53–55]. PIWI proteins receive
their name from the Drosophila gene P-element induced Wimpy
testis (PIWI) and represent a subclass of the Argonaute family of
proteins that mainly bind RNAs derived from transposable ele-
ments (TE) as a means of repressing their expression and thus
suppressing the potential for deleterious transposition events [56,
57]. Because of their role repressing transposition in the germline,
a phenotype common to mutations in genes of the PIWI pathway
is sterility, and certain alleles of the Drosophila fragile X gene
strongly impair fertility in both sexes as well. In addition to these
phenotypic similarities, several studies show that dFMRP inter-
acts in vivo and in vitro with the PIWI proteins Aubergine and
Piwi [48–50]. The N-terminal ~ 180 amino acids of dFMRP,
encompassing the Agenet domains, and much of KH0, is essen-
tial for the in vitro interaction with Piwi [50], and this is consistent
with prior findings that Agenet/Tudor domains in other proteins
mediate interactions with PIWI members [56]. Mutation of
dFmr1 reduces levels of several species of piRNAs and increases
transcripts from both germline and somatic transposons [49, 50].
In conjunction with the aforementioned interactions with AGO
proteins, a picture is emerging inwhich dFMRPplays amyriad of
roles within the small RNA pathways. Depending upon its sub-
cellular localization, dFMRP can interact with Aub in the cyto-
plasm, where it may facilitate piRNA processing and degradation
of TE RNA, and mediate TE transcriptional silencing in the nu-
cleus, through interactions with Piwi (Fig. 3).

While many studies of the PIWI pathway focus on its role
during germline development, piRNAs also function in so-
matic tissues, including the nervous system, and have been
shown to modulate synaptic plasticity in Aplysia [58]. In
Drosophila, an allele of aub that results in ectopic somatic
expression during larval development is able to modify the
overgrowth of larval neuromuscular junction synapses that
are observed in a dFmr1 mutant background [49], indicating
the dFMRP/Aub interaction functions in neuronal cells as
well. Potentially relevant for understanding consequences of
FMR1 mutation is the observation that mutations of aub
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result in increased expression of several transposons in the
Drosophila brain [59]. A tentative possibility in light of these
findings is that mutations in FMR1 may lead to activation of
transposition in neurons, resulting in deleterious effects that
may contribute to phenotypes of Fragile X patients.

FMRP and the DNA Damage Response An initial observation
into a connection between FMRP and genotoxic stress was
first reported during efforts to explore a role for FMRP in cell
cycle regulation [60]. As part of these studies, Drosophila
Fmr1mutants were exposed to genotoxic agents that included
a chemical mutagen (methyl methanesulfonate), an inducer of
replication stress (hydroxyurea), and gamma-irradiation, with
dFmr1 mutants consistently being unable to recover from
these stresses with the same efficiency displayed by wild-
type controls. The authors propose that upregulation of
CyclinB in dFmr1 mutants caused cells to override the G2/
M checkpoint, triggering cells with DNA damage to proceed
to mitosis and contributing to a diminished ability to recover
from genotoxic stress. They then showed that heterozygosity
for cycB could partially rescue G2/M checkpoint defects and
the survival of dFmr1 mutants exposed to genotoxic agents.
The partial rescue by cycB heterozygosity hinted at the possi-
bility that FMRP had additional roles in mitigating the effects
of genotoxic stress.

A significant insight into such a role came with a report
from Alpatov et al. that strongly suggest that FMRP directly
interacts with chromatin to modulate the DNA damage re-
sponse (DDR) via its second Agenet domain [31]. While fur-
ther examining a role for FMRP with the DDR, these investi-
gators found that DNA damage induced by replication stress

significantly increased levels of the phosphorylated form of
the histone H2A variant H2A.X (γH2A.X) in an FMRP-
dependent manner and also enhanced the ability to detect nu-
clear FMRP by immunofluorescence microscopy. As
γH2A.X is widely recognized as a mark for double-strand
breaks in DNA, the reported co-localization of FMRP with
γH2A.X is significant, since it indicates that at least some of
the nuclear FMRP associates with sites of DNA damage. The
induction of γH2A.X during the DDR was found to be re-
duced in Fmr1KO cells. Addition of wild-type Fmr1 to Fmr1
KO cells could restore the deficiency in γH2A.X induction,
but Fmr1 constructs with Agenet domain mutations that im-
pair binding to methylated histones were less efficient, sug-
gesting that the interaction of FMRP with histones is critical
and that the presence of FMRP at chromatin modulates the
phosphorylation status of H2A.X.

Meiotic recombination during gamete development is an
example where double-strand break (DSB) formation and re-
pair is controlled by cellular endonucleases and components
of the repair machinery, and anti-FMRP antibodies were
found to decorate chromosome arms in meiotic spermato-
cytes. SPO11 is the conserved endonuclease that initiates
DSB formation during meiotic recombination, and compari-
son of wild-type and Fmr1 KO spermatocytes revealed no
difference in binding of anti-SPO11 antibodies to chromo-
some spreads, indicating that FMRP does not facilitate initia-
tion of the double-strand break. However, extended retention
of repair-associated proteins such as BRCA1 and ATR was
seen with Fmr1 KO spermatocytes, suggesting that FMRP
can be involved in the repair of physiologically programmed
DNA breakage. Perhaps most significantly, an R138Q

Fig. 3 FMRP interacts with components of the PIWI-interacting RNA
pathway (piRNA). The PIWI clade of Argonaute proteins interacts with
piRNA to silence expression of transposable elements (TE) at the post-
transcriptional level. In Drosophila, interactions between FMRP, Piwi,
and Aubergine (see text for references) suggest a model that is consistent

with FMRP interactingwith Aubergine in the cytoplasm in a pathway that
leads to RNA degradation, whereas in the nucleus Piwi interacts with
FMRP to target sites of TE transcription to produce transcriptional
silencing by formation of repressive chromatin
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substitution in FMRP that was identified in an individual di-
agnosed with symptoms of FXS [61] also impairs binding of
FMRP to methyl histones and is unable to fully complement
FMRP KO mouse embryonic fibroblasts in assays that mon-
itored DDR and γH2A.X induction. However, this mutant
protein is able to rescue the excessive internalization of an
AMPA receptor subunit in FMRP KO neurons, a phenotype
that is associated with the exaggerated long-term depression
(LTD) phenotype of FMRP KO brain slices, implying that the
R138Q mutation does not impair the ability of FMRP to ade-
quately regulate protein synthesis needed for normal LTD
[31]. Although there may be pleiotropic effects associated
with the FMRP R138Q substitution, as this mutant protein
also fails to interact with the β4 regulatory subunits of BK
channels [62], there is also a very real possibility that disrup-
tion of the DDR, and perhaps other critical outputs from the
nucleus, contributes to the symptoms of FXS in the R138Q
individual.

The precise role FMRP plays in the DDR pathway remains
unknown. A possible model of FMRP action in the DDR that
is consistent with the results from Alpatov et al. [31] is repre-
sented in Fig. 4. FMRP may bind chromatin at the site of the
DNA break, facilitating recruitment of ATR and the subse-
quent phosphorylation of H2A.X by ATR. Interactions of
FMRP with chromatin are likely mediated by methylated
H3K79, a histone modification that is widespread through
the genome. DNA breaks would lead to the opening of chro-
matin, making methylated H3K79 accessible to FMRP, which
directly or indirectly, recruits ATR. A similar mechanism has
been proposed to explain accessibility of 53BP1 to DNA
breaks [63]. Whether the role of FMRP in DDR is RNA de-
pendent has yet to be determined.

Future Directions for Nuclear FMRP

FMRP is very well situated to modulate nuclear functions
through the presence of methyl histone binding Agenet do-
mains, a capacity to engage in protein-protein interactions,
and an array of RNA-binding domains that bind select RNA
substrates possibly destined for editing, alternative splicing,
and/or nucleocytoplasmic trafficking. Cataloguing defects in
splice and editing patterns and discerning the degree that loss
of FMRP has on facilitating production of a splice variant or
edit will be needed. To focus on identifying alterations in
splice patterns/edits that elicit experimentally verified modifi-
cations to the properties of ion channels and synaptic receptors
could uncover additional targets that might be amenable to
pharmacological modification. Information on how FMRP
exerts effects on splicing and editing during development
and in response to stimulation and the signaling pathways that
direct such events has yet to be elucidated.

The findings from Alpatov et al. [31] raise a plethora of
questions that are potentially relevant to the pathology of
FXS. What is the connection between nuclear FMRP and
DNA damage? Could FMRP have a direct role in repair of
DNA damage, and if so, how? Recent studies have demon-
strated a role for various classes of non-coding RNAs and
RNA binding proteins in the DNA damage response
[64–68], and the capacity for FMRP to interact with histone
marks associated with DNA damage, in addition to RNA
binding, would make it rather well positioned to be part of
such a process. Is the association of FMRP with chromatin
limited to the presence of certain types of DNA damage?
Alpatov et al. report nuclear accumulation of FMRP upon
exposure to agents that induce replication stress [31], and
similar observations were made with a Drosophila fragile X
model [51]. Loss of FMRP impairs adult hippocampal
neurogenesis [69], and the possibility that this deficit could
render Fmr1mutant neural stem cells and/or neural progenitor
cells sensitive to replication stress is intriguing. Seemingly
unexplored at this time is whether FMRP is connected with
repair of other types of endogenous DNA damage not associ-
ated with dividing cells, most notably that induced by reactive
oxygen species (ROS) arising from oxidative stress. Mice
with a disruption of Fmr1 show an age-dependent increase
in certain markers for oxidative stress [70], and metabolic
imbalances that could induce oxidative stress have been ob-
served in both mouse and insect models for FXS [71, 72].
Animals that are mutant for Fmr1 may suffer a double jeop-
ardy of having enhanced levels of endogenous DNA damage
in all neural cell types and a deficit in repair capacity for at
least those that replicate DNA and divide. A deficiency in
repair of DNA damage, along with the potential for enhanced
mobilization of transposons, could render Fmr1 mutant ani-
mals and humans more susceptible to mosaicism. There is
considerable heterogeneity in the degree of intellectual dis-
ability among FXS patients [73], and perhaps the above events
could contribute to this phenomenon. The possibility that such
events could also impact the response of FXS individuals to
pharmacological treatments may warrant consideration.

Is FMRP binding to chromatin limited to the DDR and
specialized developmental processes such as meiosis, or is it
more prevalent throughout cellular physiology? Of potential
interest are the observations that DNA breaks can be
Bplanned^ as an integral component of forming chromatin
loops that facilitate enhancer-promoter communication re-
quired for transcription activation [74, 75]. It is then interest-
ing to note that double-strand breaks are induced by neural
activity [76] and are associated with transcription of neural
immediate early genes that contribute to synaptic plasticity
[77]. Whether FMRP contributes to the repair of physiologi-
cally programmed damage that arises from transcription acti-
vation pathways remains to be determined. Finally, the mod-
ifications to histones control essentially all events associated
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with chromatin (packaging/condensation, transcription regu-
lation, replication, recombination and repair, and
establishment/maintenance of genome architecture). There is
a growing appreciation for the roles of non-coding RNAs,
particularly long non-coding RNAs (lncRNA), in controlling
genome function [78, 79], and a common mechanism of their

function is to interact with a chromatin-bound protein and
serve as a docking site for binding of other regulatory proteins
(e.g., histone-modifying enzymes). The analyses of screens
for FMRP RNA ligands have focused on mRNA substrates
[7, 44, 45]. Mining of these data sets for potential lncRNAs
may prove insightful.
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Fig. 4 A model illustrating a
possible role of FMRP in the
DNA damage response. a, b A
DNA double-strand break results
in a more open chromatin
structure around the DNA break,
and preexisting methylated
H3K79 becomes more accessible.
c FMRP associates with the
chromatin neighboring the DNA
break through interactions
between H3K79me and the
Agenet domain 2. The specific
mechanism that helps targeting
FMRP to the break site is
unknown, but one possibility is
that recruiting is mediated by
RNA molecules with sequence
complementarity to the DNA in
the region. d Finally, FMRP
mediates the incorporation of
active ATR (or ATM), which
spreads phosphorylation of
H2AX through nucleosomes in
the region
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Summary

The potential for misregulated gene expression arising from
disruptions in RNA editing, alternative splicing, and
nucleocytoplasmic trafficking of select RNAs, coupled with
possible defects in maintaining genome stability, DNA repair,
and perhaps other elements of chromatin regulation, could
have additive effects that significantly contribute to the neural
pathology and phenotypes of fragile X syndrome. An expan-
sion of the model for FMRP function seems warranted
(Figs. 2, 3, and 4), and the sum of these models suggest that
a full accounting of FMRP functions will be needed to best
address therapeutic possibilities for FXS.
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