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Abstract
Hypothyroidism is a condition that becomes more prevalent with age. Patients with untreated hypothyroidism have consistently
reported symptoms of severe cognitive impairments. In patients suffering hypothyroidism, thyroid hormone supplementation
offers the prospect to alleviate the cognitive consequences of hypothyroidism; however, the therapeutic value of TH supplemen-
tation remains at present uncertain and the link between cellular modifications associated with hypothyroidism and neurodegen-
eration remains to be elucidated. In the present study, we therefore evaluated the molecular and behavioral consequences of T3
hormone replacement in an animal model of hypothyroidism. We have previously reported that the antithyroid molecule
propylthiouracil (PTU) given in the drinking water favors cerebral atrophy, brain neuroinflammation, Aβ production, Tau
hyperphosphorylation, and altered plasticity-related cell-signaling pathways in the hippocampus in association with
hippocampal-dependent spatial memory deficits. In the present study, our aim was to explore, in this model, the effect of
hippocampal T3 signaling normalization on various molecular mechanisms involved in learning and memory that goes awry
under conditions of hypothyroidism and to evaluate its potential for recovery of hippocampal-dependent memory deficits. We
report that T3 supplementation can alleviate hippocampal-dependent memory impairments displayed by hypothyroid rats and
normalize key markers of thyroid status in the hippocampus, of neuroinflammation, Aβ production, and of cell-signaling
pathways known to be involved in synaptic plasticity and memory function. Together, these findings suggest that normalization
of hippocampal T3 signaling is sufficient to reverse molecular and cognitive dysfunctions associated with hypothyroidism.
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Introduction

Thyroid hormones (THs), particularly the main cellular active
forms, triiodothyronine (T3) and thyroxin (T4), are powerful
neuromodulators of brain functions throughout life. In the
brain T3, the main transcriptionally active form, has a double
origin: a fraction is available directly from the circulation
(mainly produced from T4 by a type-1 iodothyronine
deiodinases D1), and another is produced locally from T4 in
astrocytes by a type-2 iodothyronine deiodinasesD2. The fetal
brain depends almost entirely on T3 generated locally. The
contribution of systemic T3 increases subsequently during
development to account for approximately 50% of total brain
T3 in the late postnatal and adult stages [1]. Rapid non-
genomic TH actions have been described; however, TH ef-
fects are predominantly mediated by their binding to nuclear
thyroid hormone receptors (TRs), which act as transcriptional
factors regulating the expression of specific thyroid hormone-
responsive genes [2, 3]. Thus, slight variations from the
normal/homeostatic range of TH may have wide-ranging
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effects on multiple organ systems, including the central ner-
vous system. It has been shown that adult-onset
dysthyroidism, which become more prevalent with age, is
closely related to neuropsychiatric and cognitive disorders
[4]. Epidemiological studies have in particular suggested a
compelling relationship between both hypo- and hyperthy-
roidism and the risk for Alzheimer’s disease (AD), the most
common cause of dementia in the elderly [5–8].

Hypothyroidism is a condition that becomes more preva-
lent with age and patients with untreated hypothyroidism have
consistently reported symptoms of severe cognitive impair-
ment including learning and memory impairments [9].
Clinical reports show variable results as to whether TH re-
placement therapy can fully restore hypothyroidism-induced
impairments in learning and memory in the adult. It has been
reported that 15% of L-T4-treated hypothyroid patients com-
plain of psychological symptoms and/or cognitive dysfunc-
tion despite normal blood TSH level [10]. Accumulating ev-
idence suggest that there is tissue-specific regulation of TH
contents in target tissues via differential expression of thyroid
hormone transporters and iodothyronine deiodinases [11].
Serum thyroid hormones may thus not always accurately re-
flect the hormonal status of target tissues. This has brought
into question the ability of L-T4 monotherapy in hypothyroid
patients with persistent complaints, to fully restore T3 content
in target tissues, especially in the brain. So far, the link be-
tween cellular modifications associated with hypothyroidism
and neurodegeneration as well as the cell-signaling mecha-
nisms by which hormone replacement therapy can alleviate
certain cognitive deficits remain to be elucidated.

The hippocampus, a key structure for several forms of
learning and memory, is highly sensitive to the actions of
thyroid hormones due to a high expression of thyroid hor-
mone receptor. A decrease in hippocampal volume in adult
patients with untreated overt hypothyroidism has been de-
scribed [12]. Moreover, recent studies in adult rats with hypo-
thyroidism have reported deficits in hippocampal-dependent
spatial learning and memory [13, 14] and, at the molecular
level, impairments of long-term potentiation (LTP) in area
CA1 of the hippocampus [15]. Several authors have shown
that spatial memory deficits and altered CA1 LTP in hypothy-
roid animals are associated with an alteration of neurogranin
(RC3) expression in neurons, a target gene of TH [16–19].
RC3 is involved in synaptic plasticity and memory via the
modulation of Ca2+/calmodulin-dependent signaling [20,
21]. This signaling pathway interacts with the MAPK/ERK-
CREB pathway, also involved in synaptic plasticity and hip-
pocampal functions [22–24]. Our recent studies showed that
5-week treatment with the anti thyroid molecule,
propylthiouracyl (PTU), induces hypothyroidism in adult rats.
This antithyroid molecule blocks the activity of thyroid per-
oxidases that are essential for thyroid hormone synthesis and
inhibits D1, which produces T3 by deiodination of T4 in

peripheral tissues such as blood [25, 26]. PTU treatment is
associated with a reduction of cerebral and hippocampal vol-
ume and an alteration in hippocampal expression of signaling
molecules important for synaptic plasticity and memory, in-
cluding RC3, CaM, CaMKII, CaMKIV, ERK, CREB, and
EGR1/ZIF268, associated with spatial memory deficits [27,
28]. PTU-treated rats also showed increased levels of Aβ
peptide production, abnormal Tau phosphorylation, and high
levels of several pro-inflammatory cytokines in the hippocam-
pus, biochemical changes generally associated with neurode-
generative pathology, in particular with AD. Altogether, the
above-mentioned data support the hypothesis that adult-onset
hypothyroidism is prone to produce a wide range of hippo-
campal molecular dysfunctions converging towards plasticity
and memory impairments, which ultimately may favor the
development of AD.

To address this question, in the present study, we aim at
exploring to which extent reinstating T3 signaling in the hip-
pocampus impacts on various molecular mechanisms in-
volved in learning and memory that goes awry under condi-
tions of hypothyroidism and leads to a subsequent recovery of
hippocampal-dependent memory deficits. For this purpose,
we evaluated the hippocampal molecular consequences of
T3 replacement therapy in our model of PTU-induced spatial
memory deficits with a special focus on Aβ42 generation,
neuroinflammation occurrence, and synaptic plasticity
markers.

Material and Methods

Animals and Treatment

The experiments were performed with 8-week-old male
Wistar rats (Janvier, Le Genest Saint Isle, France). Animals
were housed two per cage in a colony room with a constant
airflow system, controlled temperature (21–23 °C), and light
(12:12 h light/dark cycle) with food and water ad libitum. The
experimental design is summarized in Fig. 1. Rats were ran-
domly assigned to one of two groups: the control group (N =
18) or the hypothyroid group (N = 30). Hypothyroidism was
induced by adding 0.05% propylthiouracyl (6-n-propyl-2-
thiouracyl, PTU; Sigma Chemicals, St Louis, MO, USA) to
their drinking water for 7 weeks as described byGhenimi et al.
(2010) [27]. Knowing that in the adult, the contribution of
systemic T3 accounts for approximately 50% of total brain
T3, we used T3 supplementation in a group of PTU-treated
rats to better control the thyroid hormone replacement in hy-
pothyroid animals and to bypass the necessary conversion of
T4 to T3 by D1. Thus, after 5 weeks, a group of PTU-treated
rats (N = 12) were injected daily (i.p.) with 150 μg/kg/day
T3 (Sigma) until the end of behavioral testing. A similar T3
replacement has been used in several studies in hypothyroid
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models induced by PTU treatment [29–31]. T3 was dis-
solved in a vehicle mixture containing NaOH 0.1 N/NaCl
0.9% (1 V/4 V). Control and PTU-untreated rats were given
similar vehicle injections. In our laboratory, we have shown
in various experimental models of brain T3 hyposignalling
that 4 days of this treatment can normalize mRNA levels of
T3 target genes [17, 32, 33]. Thus, rats were administrated
with T3 for 4 days before the start of the behavioral tasks.
The half-life of T3 does not exceed 24 h [34]; therefore, rats
were injected daily, 12 h before starting behavioral testing,
during 2 weeks.

Two cohorts of rats were used. The first cohort was used for
behavioral testing in the radial-arm water maze (RAWM) task
(controls: N = 12, PTU: N = 12 and PTU + T3: N = 6). The
second cohort (N = 6 per group) was tested in the elevated
Plus-Maze task. After completion of the behavioral tasks, rats
were sacrificed and their hippocampi were collected: 6 per
group were used for western blotting, 6 for qRT-PCR, and
11 per group for Aβ42-ELISA.

All efforts were made to minimize the number of animals
and their suffering throughout the experiments. Experiments
were performed in accordance with the European
Communities Council Directive of 24 November 1986 (86/
609/EEC), EUDirective 2010/63/EU and the French National
Committee (87/848).

Behavioral Tasks

Behavioral testing was undertaken between 8 a.m. and 7 p.m.
after daily handling for 1 week. A video camera was mounted
on the ceiling above each testing apparatus and rats’ behavior
was monitored and analyzed using the ANY-maze™ video-
tracking system and software (version 4.5, Stoelting Co.,
USA).

Elevated Plus-Maze

To assess anxiety, rats (N = 6 per group) were tested in an
elevated plus-maze (black opaque Plexiglas, 50 cm above
the floor) that consisted of four arms (50 cm × 10 cm) con-
nected by a common 10 cm × 10 cm center area. Two opposite
facing arms were open, while the other two facing arms were

enclosed by high walls (40 cm in height). Each rat was placed
onto the central area facing an open arm and observed for
10 min. The maze was cleaned with 100% ethanol between
each animal. Total number of entries and time spent in open
and enclosed arms were recorded to evaluate anxiety-like
behavior.

Radial Arm Water Maze

Spatial learning and memory performance was tested in a
radial-arm water maze (RAWM) as described by Diamond
et al. (1999) and Chaalal et al. (2014) [28, 35]. The RAWM
is a navigational paradigm in which rats learn to find a sub-
merged platform to escape from swimming. Several large
extra-maze visual cues were placed on the walls of the room.
The apparatus consisted of a white circular tank (150 cm in
diameter, 40 cm height) filled with water (22 °C) made opaque
by adding a white, nontoxic opacifier (Acusol OP301
Opacifier, Rohm and Haas). Six V-shaped Plexiglass inserts
(39 cm height, 50 cm length) placed into the tank produced six
swim arms that radiated from an open central area. A hidden
platform (11 cm in diameter) was located 2 cm below the
water surface at the far end of one arm (designated as the Bgoal
arm^). For each rat, the platform remained in the same arm
during all learning and memory trials of a given day but was
moved to a new arm each day. Each day, rats were given four
consecutive learning trials (max 60 s). For each learning trial,
the rat was placed into one arm (designated as the Bstart arm^)
facing the wall of the water tank, with start locations varying
pseudo-randomly. After reaching the platform, rats were
allowed to remain on it for 30 s. If a rat did not locate the
hidden platform within 1 min, it was gently guided to the
platform. Each day, after the fourth learning trial, two probe
tests (memory trials) were performed, respectively, 15 min
and 5 h later. A third probe test was performed the following
day (24 h after each learning day). These probe tests consisted
of a single 60-s trial. Total duration of the task was 11 days.
Using the video tracking system, we registered arm entry er-
rors, described as every time a rat entered an arm other than
the goal arm or entered the goal arm without reaching the
platform.

Fig. 1 Time line of the experimental design
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T3 Enzyme-Linked Immunosorbent Assay

Blood was collected during sacrifice, about 12 h after the last
T3 or vehicle injection. Serum was immediately separated by
centrifugation and stored at − 20 °C until analysis. Serum total
T3 wasmeasured (N = 6 per group) using an ELISA Complete
Kit (NovaTec Immundiagnostica, Germany) according to the
manufacturer’s instruction sheet.

Aβ42 Enzyme-Linked Immunosorbent Assay

Hippocampal tissue samples (N = 11 per group) were homog-
enized with 400 μl of extraction buffer containing a protease
inhibitor cocktail (T-PER, Pierce). Homogenates were centri-
fuged at 15,000 rpm for 5 min. The resultant supernatant was
collected. Endogenous rat hippocampus Aβ42 was quantified
with the Wako ELISA system as described in the manufac-
turer’s instruction sheet.

Real-Time Quantitative PCR

RNA extraction from hippocampal tissue samples (N = 6 per
group) was conducted using an extraction kit (Trizol reagent,
Invitrogen, France) according to the manufacturer’s instruc-
tions. The quality and the concentration of RNA were deter-
mined by spectrophotometry. Using OligodT and random
primers (Promega, France), cDNA were synthetized with
SuperScript II reverse transcriptase (Invitrogen, France). The
real-time polymerase chain reaction (PCR) was performed in a
LightCycler system (CFX96 TouchTM, Bio-Rad, France)
using a qPCR SsoAdvancedTM SYBR® Green Supermix
(Bio-Rad, France). Forward and reverse primer sequences
were designed in accordance with published sequences avail-
able in Lin et al. (2009) for TNFα, CRP, IL-1β, IL-6 and in
Ghenimi et al. (2010) for cyclophilin B (PPIB, the housekeep-
ing gene), TR isoforms (TRα and TRβ), RC3, APP695, and
APP770–751 [27, 36]. Quantification was monitored by mea-
suring the increase in fluorescent signal from the samples due
to SYBR® Green dye binding to double-stranded DNA at the
end of elongation step. The threshold cycle (Ct), defined as the
cycle at which an increase in fluorescence above a defined
baseline is first detected, was determined for each sample.
The results were expressed as the ratio of the concentration
of the target to that of PPIB within the same sample. We have
verified that the expression level of PPIB was unaffected by
the treatments and thus could be used to normalize data from
target mRNA expression: standard curves (a plot of the cross-
ing point (Cp) versus the amount of the initial cDNA used for
amplification) of PPIB were comparable under all different
experimental conditions (controls, PTU, and PTU+ T3) indi-
cating that the Cp was always the same for a given dilution of
cyclophilin cDNA.

Western Blotting

Hippocampal tissue samples (N = 6 per group) were prepared
for western blotting as described previously [37]. Each sample
was loaded onto SDS-acrylamide gels (9–12%) and trans-
ferred onto a nitrocellulose membrane (0.2 μm for CaM,
CaMKII, CaMKIV, CaN, RC3, IL1β proteins and 0.45 μm
for CREB, EGR1, ERK, P38-MAPK, CRP proteins) by
electro-blotting. Membranes were pre-blocked with TBST-
milk (5%) and incubated overnight at 4 °C with primary anti-
body. The next-daymembranes were washed and incubated in
a horseradish peroxidase-conjugated anti-rabbit IgG
(Amersham, GE Healthcare, France) or anti-mouse IgG
(Amersham, GE Healthcare, France) or anti-goat IgG (Santa
Cruz Biotechnology, France) for 1 h at room temperature.
Membranes were washed with TBST buffer and proteins were
visualized using the enhanced chemiluminescence (ECL) so-
lution (Amersham, GE Healthcare, France). After develop-
ment and fixation, the films were scanned. Staining intensity
of the protein bands was determined using Totallab software
(Nonlinear dynamics, UK). Membranes were then subse-
quently stripped of antibodies and re-probed with other anti-
bodies using the same procedure. Antibodies used are against
β-actin (Sigma-Aldrich, 1:10000), Calmodulin (Millipore,
1:5000), CaMKII (Santa Cruz Biotechnology, 1:750),
phospho-CaMKIIα (Santa Cruz Biotechnology, 1:1000),
CaMKIV (Millipore, 1:2000), CREB (Cell signaling
Technology, 1:1000), phospho-CREB (Cell signaling
Technology, 1:1000), CRP (R&D Systems, 1:1000), EGR1
(Cell signaling Technology, 1:500), ERK (Cell signaling
Technology, 1:4000), phospho-ERK (Cell signaling
Technology, 1:2000), IL-1β (R&D Systems, 1:1000), P38-
MAPK (Cell signaling Technology, 1:1000), phospho-P38-
MAPK (Cell signaling Technology, 1:1000), CaN
(Millipore, 1:1000), RC3 (Chemicon, 1:3000), phospho-
RC3 (Merck Millipore, 1:3000). For each protein studied,
the experimental conditions for western blot analysis were
first setup as follows, to avoid saturation of the signal,
allowing reliable quantification. A standard curve was plotted
between the intensity of the signal against the amount of sam-
ple loaded. To ensure reliable quantification, for a given anti-
body dilutions, ECL incubation/revelation time, a linear rela-
tion is needed between the signal (which corresponds to the
quantity of proteins) and the quantity of total proteins loaded.
In the subsequent experiments, for each individual protein
studies, we then loaded a quantity of protein (10 μg to
20 μg) leading to an intensity of the signal localized in the
middle of the linear plot. In addition, we verified that β-actin
remained constant regardless of experimental conditions to
ensure that this constituted a correct control for all the proteins
of interest studied. The relative levels in proteins in hypothy-
roid and hypothyroid + T3-treated rats were expressed as a
percentage of the same proteins in control rats. For pERK,
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pP38-MAPK, pCREB, pRC3, pCaMKII, data are presented
as the ratio of phospho-proteins to total proteins, after being
normalized to β-actin.

Statistical Analyses

Values are given as mean ± S.E.M. Statistical analyses were
performed with Statview 5.0 software. Data were analyzed by
a one-way ANOVA or repeated-measures ANOVA followed
by Scheffe or Tukey’s post hoc test respectively for behavioral
and biochemical data. For analysis of performance in the
RAWM task, we used repeated-measures ANOVA comparing
errors on successive trials across the three groups for the learn-
ing phase and successive probe tests. Days 1–3, 4–6, 7–9, and
10–11 were averaged for simplification and clarity of figures.
For the Plus-Maze task and all biochemical assays, data were
analyzed by one-way ANOVA. P values of less than 0.05
were considered statistically significant.

Results

Behavioral Consequences of T3 Supplementation

Anxiety-Like Behavior

The influence of T3 status on anxiety-like behavior was eval-
uated in the elevated plus-maze. No significant difference was
observed between controls, PTU-treated, and PTU + T3-treat-
ed rats in the percentage of time spent in open arms (F (2,
15) = 0.71, NS) or in the number of entries into open arms
(F (2, 15) = 1.19, NS), indicating no effect of thyroid status
on anxiety-related responses (Fig. 2).

Radial-Arm Water Maze

Using the radial-arm water maze task (RAWM) with the es-
cape platform placed in a different arm on each training day,
we have previously shown that PTU treatment impairs spatial
learning and memory [28]. In this study, we tested the effect of
T3 replacement on the memory deficits induced by PTU hy-
pothyroidism. During the first 3 days of the behavioral task,
for all groups, the mean number of errors between trial 1 and
trial 4 of the acquisition phase decreased, revealing a modest
but significant improvement of performance (Fig. 3a, trial
effect: F(3, 81) = 17.192; p < 0.0001; group effect: F(2,
27) = 0.549; NS; trial × group interaction: F(6, 81) = 1.23;
NS). Analyses of the three probe tests following the first 3 days
of training indicate that all groups still showed relatively poor
performance with an average of between 2.4 and 4.2 errors
and no significant difference between the three groups (group
effect: F(2, 27) = 2.29; NS; time effect: F(2, 54) = 0.36; NS;
group × time interaction: F(4, 54) = 0.58; NS). Over the

following training days, as the position of platform was
changed each day, the mean number of errors on trial 1 was
always important but, from trial 2, the number of errors de-
creased rapidly. However, on days 4–6 and days 7–9, PTU
treatment alone resulted in a significant delay in learning (Fig.
3b, c; repeated-measures ANOVA; days 4–6: trial effect: F (3,
81) = 51.845; p < 0.0001; group effect: F(2, 27) = 1.184; NS;
group × trial interaction: F(6, 81) = 2.99; p = 0.01; days 7–9:
trial effect: F(3, 81) = 39.258; p < 0.0001; group effect: F(2,
27) = 1.369; NS; group × trial interaction: F(6, 81) = 3.311;
p < 0.01). We notably observed that, on the second trial of
the learning phase, at both days 4–6 and 7–9, hypothyroid rats
made more errors than controls (factorial ANOVA, trial 2,
days 4–6: group effect: F(2, 27) = 3.495, p < 0.05, post hoc
PTU vs controls: p < 0.05; days 7–9: F(2, 27) = 5.661, p <
0.001; post hoc PTU vs controls p < 0.01). T3 administration
in PTU-treated rats completely reversed this delay in learning
and our analyses showed no significant difference between
controls and PTU+ T3 groups, the two learning curves being
closely superposed (Fig. 3b, c; days 4–6: trial effect: F(3,
48) = 44.277; p < 0.0001; group effect: F(1, 16) = 2.008; NS;
group × trial interaction: F(3, 48) = 1.83; NS; days 7–9: trial
effect: F(3, 48) = 44.406; p < 0.0001; group effect: F(1, 16) =
0.088; NS; group × trial interaction: F(3, 48) = 0.212; NS). For
the three probe tests following training days 4–6 and 7–9,
animals from the PTU group made significantly more spatial
memory errors than those from other groups (days 4–6:
Fig. 3b, group effect: F(2, 27) = 8.707; p < 0.005; time effect:
F(2, 54) = 0.992; NS; group × time interaction: F(4, 54) =
0.552; NS); days 7–9: Fig. 3c, group effect: F(2, 27) =
6.996; p < 0.005; time effect: F(2, 54) = 0.642; NS; group ×

Fig. 2 Thyroid status and anxiety-like behavior. Effect of PTU treatment
and T3 supplementation on the time spent in open arms and the number of
entries in open arms in the elevated plus-maze. No difference was
observed between controls, PTU, and PTU + T3-treated rats in the
percent time spent in open arms or the number of entries into open arms,
indicating no effect of thyroid status on anxiety-related responses.
Values are mean ± SEM (N = 6 per group)
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time interaction: F(4, 54) = 0.601; NS). Thus, PTU-treated rats
displayed significant short- and long-term memory impair-
ments compared to controls (post hoc PTU vs controls: days
4–6, p < 0.001; days 7–9, p < 0.05) and these deficits were
also reversed by T3 treatment (post hoc PTU + T3 vs PTU:
days 4–6 and days 7–9, p < 0.05; post hoc control vs PTU +
T3: days 4–6 and days 7–9, NS). Finally, at days 10–11, even
if rats of all groups now showed a similar learning rate (trial
effect: F(3, 81) = 65.482; p < 0.0001; group effect: F(2, 27) =
1.334; NS; group × trial interaction: F(6, 81) = 1.672; NS),
short-term and long-term retention performance remained sig-
nificantly affected in PTU-treated rats (Fig. 3d, group effect:

F(2, 27) = 5.738; p < 0.01; time effect: F(2, 54) = 1.413; NS;
group × time interaction: F(4, 54) = 0.575; NS). These mem-
ory deficits were again reversed by T3 administration (post
hoc PTU vs controls: p < 0.05; PTU + T3 vs PTU: p < 0.05;
control vs PTU + T3: NS).

Thyroid Status

Body weight was used as a general indicator of the efficiency
of PTU treatment, known to arrest growth in young adult rats
[29]. Body weights were not significantly different at the be-
ginning of the experiment (288.89 ± 1.78 and 293.00 ± 2.47 g

Fig. 3 Learning andmemory deficits in PTU-treated rats in the radial-arm
water maze task and recovery after T3 supplementation. Each panel rep-
resents the mean number of errors made during the learning phases (with
a change in goal arm every day, left panels) and the short- (15 min) and
long-term (5 h, 24 h) memory retention tests (right panels) for days 1 to 3
(a), 4 to 6 (b), 7 to 9 (c), and 10 to 11(d). PTU rats showed a transient
delay in learning and both short- and long-term spatial memory deficits.
T3 rescued learning andmemory performance in PTU-treated rats. Values

are mean ± SEM (controls: N = 12 rats, PTU: N = 12 rats, PTU + T3: N =
6 rats). Main statistical results from repeated-measures ANOVA for learn-
ing and probe tests are indicated in boxes above the curves. Asterisks and
number signs indicate post hoc statistical analyses. *p < 0.05; **p <
0.005; ***p < 0.01; ****p < 0.001 mean values significantly different
between PTU-treated and control rats on learning trial 2 and probe tests.
#p < 0.05, mean values significantly different between PTU + T3 and
PTU-treated rats on probe tests
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respectively for controls (N = 18) and hypothyroid rats (N =
30)). As described in our previous work, body weight gain of
PTU-treated rats slowed down significantly after 2 weeks of
PTU treatment (337.17 ± 1.30 and 305.10 ± 4.68 g, respec-
tively for controls (N = 18) and hypothyroid rats (N = 18); p
< 0.001) and reached a plateau until the end of the experiment
[27, 28]. T3 administration to PTU-treated rats had no effect
on body weight.

Peripheral thyroid status was evaluated by measuring T3
serum levels after completion of the behavioral tasks.
Hypothyroidism was confirmed by the significant 42% reduc-
tion in serum T3 levels after 7 weeks of PTU treatment, com-
pared to controls rats (controls 0.68 ± 0.04 ng/ml; PTU 0.39 ±
0.06 ng/ml; p < 0.01). T3 serum level was largely increased in
PTU-treated rats that received T3 administration (PTU + T3
2.85 ± 0.28 ng/ml, p < 0.0001 compared to PTU alone).

Hippocampal thyroid-dependent signaling was evaluated
by quantification of the thyroid hormone receptor (TR) iso-
forms (TRα and TRβ) and RC3 mRNA levels, T3 target
genes usually used as biomarkers of TH tissue status
[16–19, 38]. One-way ANOVA analyses comparing the three
groups revealed a significant effect of T3 status on TRα (F(2,
15) = 6.35, p < 0.05), TRβ (F(2, 15) = 3.69, p < 0.05), and
RC3 (F 2, 15) = 6.33, p < 0.05) mRNA levels. PTU treatment
induced a significant decrease in TRα, TRβ, and RC3 hippo-
campal mRNA expression by 32% (post hoc PTU vs controls:
p < 0.05), 25% (post hoc PTU vs controls: p < 0.05), and 18%
(post hoc PTU vs controls: p < 0.01), respectively (Table 1).
These reduced mRNA contents observed after 7 weeks of
PTU treatment were also strongly suggestive of a reduction
of T3 hippocampal tissue content. T3 administration normal-
ized hippocampal TRα (post hoc PTU + T3 vs PTU: p <
0.001; PTU + T3 vs controls: NS) and RC3mRNA expression
(post hoc PTU + T3 vs PTU: p < 0.001; PTU + T3 vs controls:
NS) and, to a lesser extent TRβ mRNA level, although not
significantly (+ 18.3%, post hoc PTU + T3 vs PTU: NS)
(Table 1). Together, these data indicate hypothyroidism-
related decreases in T3 cellular actions in the hippocampus
were substantially reversed by T3 treatment.

Cell-Signaling Pathways

Hippocampal levels of several proteins involved in calcium
signaling pathways were analyzed, targeting total and phos-
phorylated RC3 proteins, CaM, two Ca2+-dependent kinases
(CaMKII and CaMKIV) and the Ca2+-dependent phosphatase
CaN. Our results (Fig. 4) revealed a significant effect of thy-
roid status on hippocampal expression of several proteins,
with significant changes in expression of RC3 (F(2, 15) =
25.15; p < 0.0001), pRC3 (F(2, 15) = 116.25; p < 0.0001),
CaM (F(2, 15) = 7.26; p < 0.01), pCaMKII (F(2, 15) = 5.77;
p < 0.05), CaMKIV (F(2, 15) = 4.93; p < 0.05), and CaN (F(2,
15) = 2.21; p < 0.01) (for each protein, post hoc PTU vs

controls: p < 0.05). A small, but non-significant decrease in
total CaMKII was also observed (F(2, 15) = 1.46; NS). Thus,
PTU treatment alone led to the same alteration of Ca2+

signaling-related molecules than that observed previously
[28]. Interestingly, T3 administration normalized the expres-
sion levels of most of these proteins. Significant increases in
protein levels compared to PTU treatment alone were ob-
served for RC3 (post hoc PTU + T3 vs PTU: p < 0.001; con-
trols vs PTU + T3: NS), pRC3 (post hoc PTU + T3 vs PTU: p
< 0.01; controls vs PTU + T3: p < 0.01), CaM (post hoc
PTU + T3 vs PTU: p < 0.05; controls vs PTU + T3: NS),
pCaMKII (post hoc PTU + T3 vs PTU: p < 0.05; PTU + T3
vs controls: NS), and CaN (post hoc PTU + T3 vs PTU: p <
0.01; controls vs PTU + T3: NS) (Fig. 4). Only for CaMKIV,
the increase in protein level compared to PTU alone (by about
25%) did not reach statistical significance (post hoc PTU + T3
vs PTU: NS; PTU + T3 vs controls: NS). However, for all
proteins examined except pRC3, which was increased above
that of the controls, expression levels after T3 supplementa-
tion in PTU-treated rats were not significantly different from
their levels in control rats.

We then examined expression of several components of the
MAPK/ERK pathway, including total and phosphorylated
ERK42, ERK44, and P38-MAPK protein kinases, total and
phosphorylated CREB and EGR1/ZIF268, proteins known to
play a key role in synaptic plasticity and learning and memory.
Our results show no significant difference in the expression of
total ERK42, ERK44, P38-MAPK, or CREB after PTU treat-
ment compared to controls (F(2, 15) = 4.59, p < 0.05; post hoc
PTU vs controls: NS; F(2, 15) = 6.24, p < 0.05; post hoc PTU
vs controls: NS; F(2, 15) = 1.51, NS; F(2, 15) = 0.63, NS re-
spectively). In contrast, several changes were induced by PTU
treatment in the phosphorylated forms of these proteins, in-
cluding a decrease in pERK42 (F(2, 15) = 14.84; p < 0.001;
post hoc PTU vs controls: p < 0.005) and pCREB (F(2, 15) =
10.42; p < 0.01; post hoc PTU vs controls: p < 0.001) and an
increase in pP38-MAPK (F(2, 15) = 7.54; p < 0.05; post hoc
PTU vs controls: p < 0.005) (Fig. 5). EGR1 expression was

Table 1 Effect of thyroid status on RC3 and TR isoforms mRNA level

TRα TRβ RC3

Controls 100.00 ± 11.03 100.00 ± 8.98 100.00 ± 4.51

PTU 67.32 ± 3.12* 74.59 ± 3.26* 81.62 ± 3.68**

PTU + T3 99.07 ± 5.55#### 88.22 ± 6.04 101.18 ± 4.86####

Seven weeks of PTU treatment generated a hypothyroid status in rats,
characterized by a decreased cellular action of T3 in the hippocampus. T3
treatment normalized the amount of T3 target genes in the hippocampus.
Data are expressed as mean ± SEM (% of control rats) (N = 6 per group).
*p < 0.05; **p < 0.01, mean values significantly different from control rats.
####p < 0.001 mean values significantly different from hypothyroid rats

*p < 0.05; **p < 0.01, mean values significantly different from control rats;
####p < 0.001 mean values significantly different from hypothyroid rats
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also significantly decreased after PTU treatment (F(2, 15) =
9.76; p < 0.01, post hoc PTU vs controls: p < 0.05). T3 treat-
ment restored normal hippocampal expression of all proteins
affected by PTU treatment, increasing expression levels of
pERK42 (post hoc PTU + T3 vs PTU: p < 0.001; controls vs
PTU + T3: NS), pCREB (post hoc PTU + T3 vs PTU: p <
0.05; PTU + T3 vs controls: NS), and of EGR1 (post hoc
PTU + T3 vs PTU: p < 0.05; PTU + T3 vs controls: NS), and
decreasing back to control levels that of pP38-MAPK (post
hoc PTU + T3 vs PTU: p < 0.01; PTU + T3 vs controls: NS)
(Fig. 5). Thus, the altered hippocampal expression of various
indicators of active MAPK signaling induced by PTU, up to
the expression of the transcription factor EGR1 as described in
our previous work [28], can be completely normalized by T3
supplementation.

Inflammatory Response

RT-qPCR and Western blot analyses revealed a relationship
between the amount of pro-inflammatory interleukins and thy-
roid status in the hippocampus. Our results showed that thy-
roid hormone status modulates the expression of IL1β (F(2,
15) = 6.41; p < 0.01), IL6 (F(2, 15) = 13.00; p < 0.001), and
TNFα (F(2, 15) = 7.42; p < 0.01) mRNA levels as well as

IL1β (F(2, 15) = 9.46; p < 0.01), and CRP (F(2, 15) = 23.04;
p < 0.0001) protein levels. PTU treatment for 7 weeks resulted
in significant increases in the expression of IL1β, IL6, and
TNFα mRNA levels as well as IL1β and CRP protein levels
(for each post hoc PTU vs control: p < 0.05) (Fig. 6). T3 ad-
ministration fully normalized IL6 (post hoc PTU + T3 vs
PTU: p < 0.01; controls vs PTU + T3: NS) and TNFα (post
hoc PTU + T3 vs PTU: p < 0.05; controls vs PTU + T3: NS)
mRNA changes, as well as the protein expression of IL1β
(post hoc PTU + T3 vs PTU: p < 0.01; controls vs PTU +
T3: NS) and CRP (post hoc PTU + T3 vs PTU: p < 0.001;
controls vs PTU + T3: NS) proteins (Fig. 6).

Amyloid Pathway

We previously showed that adult-onset hypothyroidism can
promote the amyloidogenic pathway of amyloid precursor
protein processing [27]. As expected, we found that PTU
treatment led to an increased expression of APP695 mRNA
(F(2, 15) = 6.22, p < 0.05, post hoc PTU vs controls: p < 0.05)
associated with an increased level of Aβ42 peptide (F(2,
30) = 29.97; p < 0.0001, post hoc PTU vs controls: p < 0.05)
in the hippocampus. T3 administration completely reversed
these effects, normalizing both the level of APP695 mRNA

Fig. 4 Effect of thyroid status on hippocampal protein levels for RC3, p-
RC3, CaM, CaMkII, pCaMkII, CaMkIV, and CaN. Values in PTU-
treated rats (white bars) and PTU-treated rats receiving T3
administration (gray bars) are mean ± SEM (N = 6 per group),
expressed as percent of controls (black bars). PTU rats show reduced

expression of molecules involved in calcium signaling in the
hippocampus. T3 administration restored normal levels of expression of
thesemolecules. *p < 0.05; **p < 0.01mean values significantly different
from control rats. #p < 0.05; ##p < 0.01; ####p < 0.001 mean values
significantly different from PTU-treated rats
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Fig. 5 Effect of thyroid status on hippocampal protein levels for ERK42,
pERK42, ERK44, pERK44, P38-MAPK, pP38-MAPK, CREB, pCREB,
and EGR1. Values in PTU-treated rats (white bars) and PTU-treated rats
receiving T3 administration (gray bars) are mean ± SEM (N = 6 per
group), expressed as percent of controls (black bars). Hypothyroid rats
show reduced expression of molecules of the MAPK pathway in the

hippocampus. T3 administration restored normal levels of expression of
these molecules. *p < 0.05; ** p < 0.01; *** p < 0.005; ****p < 0.001
mean values significantly different from control rats. #p < 0.05; ##p <
0.01; ####p < 0.001 mean values significantly different from PTU-
treated rats

Fig. 6 Effect of thyroid status on
mRNA (a) and protein (b) levels
of several inflammatory markers
in the hippocampus. Values in
PTU-treated rats (white bars) and
PTU-treated rats receiving T3
administration (gray bars) are
mean ± SEM (N = 6 per group),
expressed as percent of controls
(black bars). Hypothyroidism
increased the expression of IL1β,
IL6, TNFα, and CRP. T3
treatment restored mRNA and
protein levels of pro-
inflammatory cytokines and CRP.
*p < 0.05, mean values
significantly different from
control rats. #p < 0.05, ##p < 0.01,
####p < 0.001 mean values
significantly different from PTU-
treated rats
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(post hoc PTU + T3 vs PTU: p < 0.05; PTU + T3 vs controls:
NS) and that of Aβ42 (− 30% compared to PTU alone)
(PTU + T3 vs PTU: p < 0.001; PTU + T3 vs controls: NS)
(Table 2).

Discussion

In patients suffering hypothyroidism, TH supplementation of-
fers the prospect to alleviate the cognitive consequences of
hypothyroidism and reduce the risk of developing cognitive
alterations; however, regarding hypothyroidism-induced
memory deficits, the therapeutic value of TH supplementation
remains unclear and underlying molecular mechanisms re-
main to be elucidated. We have previously reported that the
antithyroid molecule propylthiouracil (PTU) given in the
drinking water favors cerebral atrophy, brain neuroinflamma-
tion, Aβ production, Tau hyperphosphorylation, and altered
plasticity-related cell-signaling pathways in the hippocampus
in association with hippocampal-dependent spatial memory
deficits [27, 28]. The pattern of changes uncovered likely un-
derlie, at least in part, hypothyroid-related memory impair-
ments largely documented in the literature [9, 13, 39, 40].
The present study clearly shows that hypothyroidism-
induced memory deficits are associated to these molecular
changes, with hippocampal normalization of T3 signaling,
plasticity markers, neuroinflammation, and Aβ production to-
gether with hippocampal-dependent memory improvement
displayed by PTU-treated rats supplemented with T3. Thus,
this study reports that normalization of T3 signaling is associ-
ated with improved memory in a model of hypothyroidism.

Hypothyroidism in PTU-treated animals for 7 weeks was
evidenced by a significant drop in serum T3 but also T3 hip-
pocampal signaling as compared to controls rats. As expected,
T3 administration led to an important increase in serum T3
levels since the analysis was done a relatively short time (12 h)
after injection [41]. However, interestingly, despite a relative
hyperthyroidism induced by T3 injection at the peripheral
level, hypothyroidism-related TR and RC3 mRNA levels in
the hippocampus were simply normalized, with no increase of
these markers above control levels, the same applying for all
plasticity and inflammatory markers and for Aβ production
studied. These results indicate, on the one hand, that the pe-
ripheral level of T3 does not necessarily reflect brain levels of
T3 [42, 43] and, on the other hand, that hippocampal T3 sig-
naling is tightly regulated [44].

In the present work, rats showed a similar behavioral pro-
file in the elevated plus-maze suggesting no specific anxiety-
like behavior associated with peripheral or brain levels of T3.
In the radial-arm water maze task, a hippocampal-dependent
spatial memory task [35, 45], hypothyroid rats showed a tran-
sient delay in the early phases of learning and mainly an im-
pairment in memory. In conditions of more extensive practice,

when the animals came to perform similarly to controls in the
learning phase, performance of hypothyroid rats at both short-
and long-term memory tests remained deficient. T3 replace-
ment alleviated both the delay in learning and the deficits in
short- and long-term memory observed in PTU-treated rats.
These results are comparable with those obtained in 2009 by
Alzoubi and collaborators in thyroidectomized rats adminis-
trated with thyroxin at a dose that normalized serum T4 and
TSH levels [46]. Our present findings thus consolidate the link
between T3 cerebral content and hippocampal-dependent spa-
tial memory performance and corroborate those showing a
specific defect in hippocampal memory in patients with hypo-
thyroidism. Thus, our rat model offers the possibility to inves-
tigate candidate molecular mechanisms underlying impaired
memory performance associated with the thyroid status and
test the potential preventive value of hormone supplementa-
tion approaches.

The MAPK/ERK-CREB and Ca2+/Calmodulin cascades
are two major cell-signaling pathways involved in hippocam-
pal synaptic plasticity and memory formation [47–50]. These
pathways control activity-dependent regulation of gene pro-
grams via the regulated expression of inducible transcriptions
factors such as EGR1/ZIF268, which is required for the ex-
pression of synaptic plasticity and hippocampal-dependent
memories [22, 51, 52]. Our results in memory-deficient
PTU-treated rats show a reduced expression of major compo-
nents of both MAPK/ERK-CREB (pERK42, pCREB) and
Ca2+/calmodulin (RC3, pRC3, CaM, pCaMKII, CaMKIV,
and CaN protein levels) signaling pathways, associated with
a decrease in EGR1/ZIF268 expression in the hippocampus.
Additionally, PTU treatment also led to activation of P38-
MAPK, a kinase implicated in synaptic long-term depression
[53]. Crucially, T3 administration in PTU-treated rats was able
to normalize the level of hippocampal expression of all these
proteins. These results showing reversal to basal expression
levels of proteins of these signaling pathways after hormone
supplementation in our model are coherent with the finding of
a restoration of normal levels of LTP-induced MAPK/ERK
signaling and CREB phosphorylation in thyroidectomized

Table 2 Effect of thyroid status on hippocampal amyloidogenic pathway

APP695 mRNA level Aβ42 protein level

Controls 99.99 ± 4.21 99.96 ± 2.81

PTU 120.39 ± 6.18* 123.11 ± 4.57*

PTU + T3 102.87 ± 3.54# 85.09 ± 2.90####

Hypothyroidism increased the amount of APP695 and of Aβ42 in the
hippocampus. T3 treatment significantly decreased APP695 and Aβ42
levels. Data are expressed as mean ± SEM (% of control rats) (N = 6 per
group)

*p < 0.05; **p < 0.01, mean values significantly different from control
rats; #p < 0.05; ####p < 0.001, mean values significantly different from
hypothyroid rats

Mol Neurobiol (2019) 56:722–735 731



rats supplemented with T4 [9, 46], and together suggest that
this molecular restoration is functional in an activity-
dependent context. The exact mechanisms and main target
proteins via which TH hormone can lead to reversal of spatial
memory deficits remain uncertain. As CREB activation acts as
one major hub in the control of the expression of transcrip-
tional regulators such as EGR1/ZIF268 that play an important
role in synaptic plasticity and memory, the normalization
MAPK/ERK44/42 and CaMKIV, which are reduced in hypo-
thyroidism, and of that of the phosphatase CaN, which is
elevated by hypothyroidism are likely to play an important
role. In addition, the abnormal increase in active, phosphory-
lated P38-MAPK as consistently observed in dysthyroidism
[28, 54] and, as reported here, the normalization of its expres-
sion after T3 supplementation, could also play an important
role in the adjustment of pCREB levels and function. It seems
at this point parsimonious to suggest that the concerted re-
equilibration of several signaling cascades by TH supplemen-
tation concur in restoring the capacity for plasticity and mem-
ory performance.

Additionally, the present results provide in vivo evidence
of a pro-inflammatory reaction associated with hypothyroid-
ism in our rat model. We measured both pro-inflammatory
cytokines (i.e., IL1β, IL6, and TNFα) in the hippocampus
as markers of glial activation. PTU-treated rats displayed in-
creased expression of IL1β, IL6, and TNFα in the hippocam-
pus. T3 administration also normalized cytokines, therefore
strengthening the involvement of a pro-inflammatory re-
sponse in hypothyroidism. These findings are in line with a
few reports suggesting that T3 is an important signaling factor
that affects glial functions in the hippocampus [55–57]. Our
results support the idea that hypothyroidism leads to activation
of microglia and astrocytes in a manner sufficient to favor the
production of pro-inflammatory cytokines, known to control
neuronal function and in particular to impair neuronal plastic-
ity [58, 59]. Moreover, elevated brain pro-inflammatory cyto-
kines is associated with hippocampal-dependent memory def-
icits [60–62]. Thus, the reduction of hypothyroidism-induced
brain inflammation by T3 supplementation is likely to concur,
in synergy with the restoration of major plasticity-related sig-
naling mechanisms, to the recovery of memory performance
in our model. Finally, in rodents, expression of the β amyloid
precursor protein (APP) gene is increased in conditions of low
levels of TH, suggesting that TH may impact Aβ production
[63]. Consistent with this, here, we first show that hypothy-
roidism favors APP695 mRNA expression associated with an
increased level of Aβ42 peptide in the hippocampus, and
second, that both APP695 mRNA and Aβ42 peptide levels
are normalized by T3 treatment. Given that elevated Aβ42
peptide in the hippocampus can trigger some of the early-
onset morphological and functional synaptic plasticity deficits
that lead to memory dysfunction, as shown in mouse models
of Alzheimer’s disease [64, 65], and can also induce glial cell

activation and neuroinflammation, leading to the production
of reactive oxygen species, TNF and IL1β [66], the beneficial
effect of T3 supplementation on Aβ42 peptide level is also
likely to contribute to the recovery of memory function.

The main aim of the present work was to explore the effect
of brain T3 signaling replacement on various molecular mech-
anisms involved in learning and memory. We showed that T3
supplementation in PTU-treated rat model restores hippocam-
pal T3 signaling which associate with normalized hippocam-
pal levels of synaptic plasticity markers, inflammatory medi-
ators, and Aβ peptides. Our data thus supports the proof-of-
concept that normalizing T3 hippocampal signaling is suffi-
cient to improve molecular markers signing memory deficits
but also memory deficits themselves. The strategy clinically
used for the treatment of hypothyroidism generally aims at
normalizing the rate of thyroid-stimulating hormone (TSH)
production by administration of T4. However, in conditions
of overt hypothyroidism, characterized by elevated level of
TSH and low levels of serum T3 and T4, thyroid hormone
replacement is not always efficient at alleviating cognitive
impairments. For instance, Bjerke et al. (2001) found that
impaired mood and short-term memory in four cases of hypo-
thyroidism could be only partially improved by TH [67].
Further, Samuels et al. (2007) reported that a group of 34
T4-treated hypothyroid subjects still suffer from decrements
in psychological functions, working memory, and motor
learning compared to euthyroid subjects [68]. Finally,
Correia et al. (2009) reported that spatial memory and asso-
ciative memory deficits could persist in an overt hypothyroid
cohort after L-T4 replacement [69]. Interestingly, recent data
showed that combined L-T4 and L-T3 administration, by nor-
malizing all TH-dependent measures including tissue T3
levels, benefits to hypothyroid patients with psychological
symptoms, and/or cognitive dysfunction [10, 70, 71].
Further, previous data obtained by Escobar-Morreale and col-
laborators showed that elevated plasma T3 levels is required
for normal cerebral cortex T3 levels in thyroidectomized rats
[72]. These authors reported that only the combined treatment
with thyroxine and triiodothyronine ensures euthyroidism in
all tissues of thyroidectomized rats [73]. These findings
strengthen the hypothesis that normalization of TSH by T4
in patients with hypothyroidism that still suffer irreversible
cognitive impairments could be due to insufficient brain thy-
roid hormone replenishment and therefore insufficient molec-
ular compensation, calling attention to the importance of de-
veloping approaches to restore a full thyroid-signaling status
in the brain, especially in patients with TH metabolism alter-
ations. In turn, our present data are in line with the hypothesis
of an ineffectiveness of L-T4 monotherapy treatment in hypo-
thyroid patients with persistent complaints and suggest that
brain T3-related signaling is crucial with regard to cognitive
impairments, thus adding to the debate concerning the pros-
pect of a T4 + T3 combination therapy in some hypothyroid
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patients. Finally, our data, by emphasizing the importance of
hippocampal-dependent T3 signaling regarding memory def-
icits, also suggest that beyond TH replacement therapies, the
search of alternative molecules able to restore this pathway in
patients with hypothyroidism will be of great therapeutic in-
terest in the future.

In conclusion, in the present work, we show that T3 sup-
plementation in hypothyroid rats, which is associated with
indicators of normalization of T3 signaling in the hippocam-
pus, reversed the memory deficits and improved neurobiolog-
ical functions by normalizing both the altered plasticity-
related signaling pathways, Aβ42 peptide and pro-
inflammatory markers, supporting the importance of brain
TH signaling in cognitive abilities. Further, given hypothy-
roidism represents one important factor influencing the risk
for developing AD, that the occurrence of hypothyroidism is
recognized in several pathological conditions recognized as
risk factors for AD such as aging, obesity, or diabetes, [5–7,
74–77] and that T3 replacement improves pathways impaired
in AD, the characterization of the mechanism by which TH
level can improve neural functions and alleviate cognitive
impairments becomes also critical for the development of pre-
ventive approaches in Alzheimer’s disease.
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