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Abstract
Parkinson’s disease (PD) is a progressive neurological disease characterized by a selective loss of nigrostriatal dopaminergic
neurons. The exact cause of the neuronal loss remains unclear. Here, we report a unique mechanism of nigrostriatal dopaminergic
neurodegeneration, in which extracellular Zn2+ influx plays a key role for PD pathogenesis induced with 6-hydroxydopamine (6-
OHDA) in rats. 6-OHDA rapidly increased intracellular Zn2+ only in the substantia nigra pars compacta (SNpc) of brain slices
and this increase was blocked in the presence of CaEDTA, an extracellular Zn2+ chelator, and 6-cyano-7-nitroquinoxaline-2,3-
dione (CNQX), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist, indicating that 6-OHDA
rapidly increases extracellular Zn2+ influx via AMPA receptor activation in the SNpc. Extracellular Zn2+ concentration was
decreased under in vivo SNpc perfusion with 6-OHDA and this decrease was blocked by co-perfusionwith CNQX, supporting 6-
OHDA-induced Zn2+ influx via AMPA receptor activation in the SNpc. Interestingly, both 6-OHDA-induced loss of nigrostriatal
dopaminergic neurons and turning behavior to apomorphine were ameliorated by co-injection of intracellular Zn2+ chelators, i.e.,
ZnAF-2DA and N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). Co-injection of TPEN into the SNpc blocked 6-
OHDA-induced increase in intracellular Zn2+ but not in intracellular Ca2+. These results suggest that the rapid influx of extra-
cellular Zn2+ into dopaminergic neurons via AMPA receptor activation in the SNpc induces nigrostriatal dopaminergic neuro-
degeneration, resulting in 6-OHDA-induced PD in rats.
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Introduction

Parkinson’s disease (PD) is a very common age-related dis-
ease affecting more than 1% of the population over 60 years of
age. The majority (~ 90%) of PD is sporadic and aging is the
major risk factor [1]. PD is one of the most common neuro-
degenerative diseases and characterized by a selective loss of
dopaminergic neurons in the substantia nigra pars compacta
(SNpc), a mesencephalic nucleus included in the basal ganglia
circuitry, which is responsive for the regulation of voluntary
movement. However, the exact cause of the neuronal loss
remains unclear [2].

Glutamate excitotoxicity is the pathological process
through which neurons are damaged and killed after excess
activation of glutamate receptors. Glutamate excitotoxicity is
due to intracellular processes such as Ca2+ overload and bio-
energetic changes, which induce oxidative stress and apopto-
sis. This excitotoxicity is known as a final common pathway
for neuronal death and is observed in many neurological dis-
eases including PD [3–6].

In the basal ganglia, the projection from the subthalamic
nucleus (STN) to the SNpc is glutamatergic and the SNpc is
also innervated from the amygdala via glutamatergic neuro-
transmitter system [7, 8]. Dopaminergic neurons express glu-
tamate receptors in the SNpc [9]. It has been postulated that
excess activation of glutamate receptors on dopaminergic neu-
rons in the SNpc may be involved in pathophysiology of PD
[10–14].

The influx of extracellular Ca2+ through N-methyl-D-as-
partate (NMDA) receptors plays a crucial role in glutamate
excitotoxicity in cortical and hippocampal neurons [15, 16].
Even in dopaminergic neurons where the mechanism of
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glutamate excitotoxicity is poorly understood, Ca2+ influx
through NMDA receptors has been believed to be a trigger
for neuronal death [8, 17]. In contrast, it is recognizing that
most of the death signaling associated with neurological con-
ditions is mediated by not only Ca2+ but also Zn2+ [18–20].
Extracellular Zn2+ influx, which is dynamically linked with
Zn2+ release from zincergic neuron, a subclass of glutamater-
gic neurons, is particularly important in causing the selective
and delayed degeneration of hippocampal CA1 pyramidal
neurons in transient global ischemia [21]. However, gluta-
matergic neurons are non-zincergic in the SNpc and do not
contain zinc in the presynaptic vesicles [22]. Thus, it is esti-
mated that extracellular Zn2+ concentration is not dynamically
increased by glutamatergic synapse excitation in the SNpc
unlike the hippocampus.

In human neuroblastoma SH-SY5Y cells, a dopaminergic
neuronal cell line, Zn2+-induced neurotoxicity occurs via Zn2+

-permeable transient receptor potential melastatin 7 (TRPM7)
channel at the micromolar range of extracellular Zn2+ concen-
tration [23]. Yang et al. report that cell death caused by the
synergistic effects of micromolar Zn2+ and dopamine is ob-
served in PC12 via a stress sensor gene Gadd45b. They sug-
gest that Zn2+ and dopamine are implicated in the degenera-
tion of dopaminergic neurons [24]. However, the micromolar
range of extracellular Zn2+ is improbable in the SNpc in vivo,
judging from the estimated basal concentration (~ 10 nM) of
extracellular Zn2+ in the hippocampus [25]. On the other hand,
Lee et al. report that cytosolic Zn2+ accumulation is observed
in degenerating dopaminergic neurons after treatment with 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). They
suppose that cytosolic Zn2+ accumulation is an indicator of
degenerating dopaminergic neurons in animal models of PD
[26]. Therefore, it is important to clarify the significance of
cytosolic Zn2+ toxicity and its origin in nigrostriatal dopami-
nergic neurodegeneration.

Here, we report a unique mechanism of nigrostriatal dopa-
minergic neurodegeneration, in which extracellular Zn2+ in-
flux plays a key role for PD pathogenesis induced with 6-
hydroxydopamine (6-OHDA) in rats.

Materials and Methods

Animals and Chemicals

Male Wistar rats (6–12 weeks of age) were purchased from
Japan SLC (Hamamatsu, Japan). Rats were housed under the
standard laboratory conditions (23 ± 1 °C, 55 ± 5% humidity)
and had access to tap water and food ad libitum. All the exper-
iments were performed in accordance with the Guidelines for
the Care and Use of Laboratory Animals of the University of
Shizuoka that refers to the American Association for
Laboratory Animals Science and the guidelines laid down by

the NIH (NIH Guide for the Care and Use of Laboratory
Animals) in the USA. The Ethics Committee for
Experimental Animals in the University of Shizuoka has ap-
proved this work.

ZnAF-2 and ZnAF-2DA, membrane-impermeable and
membrane-permeable Zn2+ fluorescence probes, were kindly
supplied from Sekisui Medical Co., LTD (Hachimantai,
Japan). ZnAF-2DA is taken up into the cells through the cell
membrane and is hydrolyzed by esterase in the cytosol to yield
ZnAF-2, which cannot permeate the cell membrane [27, 28].
ZnAF-2 is selectively bound to Zn2+, but not bound to other
divalent cations such as Ca2+, Mg2+, and Cu2+ [24]. Calcium
orange acetoxymethyl ester (AM), a membrane-permeable
Ca2+ indicator, was purchased from Molecular Probes, Inc.
(Eugene, OR). These fluorescence indicators were dissolved
in dimethyl sulfoxide (DMSO) and then diluted to artificial
cerebrospinal fluid (ACSF) containing 119 mM NaCl,
2.5 mM KCl, 1.3 mM MgSO4, 1.0 mM NaH2PO4, 2.5 mM
CaCl2, 26.2 mM NaHCO3, and 11 mM D-glucose (pH 7.3).

In Vivo Microdialysis

The rats were anesthetized with chloral hydrate (400 mg/kg)
and individually placed in a stereotaxic apparatus. The skull
was exposed, a burr hole was drilled, and amicrodialysis probe
(1-mm membrane, Eicom, Kyoto) was inserted into the right
SNpc (5.3 mm posterior to the bregma, 2.0mm lateral, 7.8 mm
inferior to the dura). The SNpc was preperfused with artificial
cerebrospinal fluid (ACSF) (127 mM NaCl, 2.5 mM KCl,
1.3 mM CaCl2, 0.9 mM MgCl2, 1.2 mM Na2HPO4, 21 mM
NaHCO3, and 3.4 mM D-glucose, pH 7.3) containing 0.1%
ascorbic acid at 2.0 μl/min for 120 min to stabilize the region,
perfused with ACSF containing 0.1% ascorbic acid or ACSF
containing 0.1% ascorbic acid + 50 μM 6-cyano-7-
nitroquinoxaline-2,3-dione (CNQX), an α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist,
for 60 min in the same manner to determine the basal concen-
tration of extracellular Zn2+, and then perfused with 0.8 mM 6-
OHDA in ACSF containing 0.1% ascorbic acid or 0.8 mM 6-
OHDA + 50 μM CNQX in ACSF containing 0.1% ascorbic
acid, respectively, for 60 min. The perfusate was collected for
60 min and 1 μM ZnAF-2 (50 μl) was added to aliquot of the
perfusate (10 μl). The fluorescence of ZnAF-2 (excitation/
emission, 485/535 nm) was measured using a plate reader
ARVO sx (Perkin Elmer, USA).

In Vivo Dynamics of Intracellular Zn2+ and Ca2+

The rats were anesthetized with chloral hydrate (400 mg/kg)
and individually placed in a stereotaxic apparatus. The skull
was exposed, a burr hole was drilled, and injection cannulae
(internal diameter, 0.15 mm; outer diameter, 0.35 mm) were
carefully and slowly inserted into the right and left SNpc
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(5.3 mm posterior to the bregma, 2.0 mm lateral, 7.0 mm infe-
rior to the dura) to avoid cellular damages. Thirty minutes after
the surgical operation, 6-OHDA (8mM) or 6-OHDA (8mM) +
N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN)
(100 μM), a membrane-permeable Zn2+ chelator, in saline con-
taining 0.1% ascorbic acid + ZnAF-2DA (100 μM) or in saline
containing 0.1% ascorbic acid + calcium orange AM (50 μM)
were bilaterally injected into the SNpc via cannulae at the rate
of 0.5 μl/min for 8 min. Ten minutes after injection, the injec-
tion cannulas were slowly pulled out the brain in about 10 min
and the rats were decapitated. The brain was quickly removed
and immersed in ice-cold choline-ACSF containing 124 mM
choline chloride, 2.5mMKCl, 2.5mMMgCl2, 1.25mMNaH2

PO4, 0.5 mM CaCl2, 26 mM NaHCO3, and 10 mM glucose
(pH 7.3) to avoid neuronal excitation. Coronal brain slices
(400 μm) were prepared using a vibratome ZERO-1 (Dosaka,
Kyoto, Japan) in an ice-cold choline-ACSF and maintained in
an ice-cold choline-ACSF for 30 min. The brain slices were
immersed in ACSF for 15 min and transferred to a recording
chamber filled with ACSF. The fluorescence of ZnAF-2 (laser,
488.4 nm; emission, 500–550 nm) and calcium orange (laser,
561.4 nm; emission, 570–620 nm) was measured with a con-
focal laser scanning microscopic system (Nikon A1 confocal
microscopes, Nikon Corp.). Region of interest was set in the
SNpc.

In Vitro Dynamics of Extracellular Zn2+

The brain was quickly removed from rats under anesthesia
with chloral hydrate and immersed in ice-cold choline-
ACSF. Coronal brain slices (400 μm) were prepared and
maintained in ice-cold choline-ACSF for 15 min. To assess
intracellular levels of Zn2+, brain slices were placed for 30min
in 10 μM ZnAF-2DA in ACSF, rinsed in choline-ACSF for
20 min, placed in a chamber filled with 8 mM 6-OHDA,
8 mM 6-OHDA + 10 mM CaEDTA, a membrane-
impermeable Zn2+ chelator, or 8 mM 6-OHDA + 10 μM
CNQX in ACSF containing 10 nM ZnCl2 for 10 min, rinsed
in choline-ACSF for 15 min, and transferred to a recording
chamber filled with ACSF. The fluorescence of ZnAF-2 was
measured in the same manner.

Behavioral Studies

As described in the section of BIn vivo dynamics of intracel-
lular Zn2+ and Ca2+^, an injection cannula was inserted into
the right SNpc and 6-OHDA (8 mM), 6-OHDA (8 mM) +
ZnAF-2DA (200 μM), or 6-OHDA (8 mM) + TREN
(100 μM) in saline containing 0.1% ascorbic acid was unilat-
erally injected into the SNpc via the cannula at the rate of
0.5 μl/min for 8 min. Ten minutes after injection, the injection
cannula was slowly pulled out the brain in about 10 min. One
and 2 weeks later, the rats were subcutaneously injected with

apomorphine (0.5 mg/kg) and turning behavior in response to
apomorphine was measured for 30 min after the start of the
turning behavior.

Tyrosine Hydroxylase Immunostaining

The rats were anesthetized and perfused with ice-cold 4%
paraformaldehyde in PBS after the behavioral studies were
finished, followed by removal of the brain and overnight fix-
ation in 4% paraformaldehyde in PBS at 4 °C. Fixed brains
were cryopreserved in 30% sucrose in PBS for 2 days and
frozen in Tissue-Tek optimal cutting temperature embedding
medium. Coronal brain slices (30 μm) were prepared at −
20 °C in a cryostat, picked up on slides, and adhered at room
temperature for 30 min. For immunostaining, slides were in-
cubated in blocking solution (3% BSA, 0.1% Triton X-100 in
PBS) for 1 h and rinsed with PBS for 5 min followed by
overnight incubation with anti-tyrosine hydroxylase antibody
(Abcam) at 4 °C. Slides were rinsed with PBS for 5 min and
incubated in blocking buffer containing Alexa Fluor 633 goat
anti-rabbit secondary antibody (ThermoFisher) for 3 h at room
temperature. Following six rinses in PBS for 5 min, slides
were mounted with Prolong Gold antifade reagent and placed
for 24 h at 4 °C. Alexa Fluor 633 fluorescence was measured
in the SNpc and the striatum using a confocal laser scanning
microscopic system.

Data Analysis

For statistical analysis, Student’s t test was used for compari-
son of the means of paired or unpaired data. For multiple
comparisons, differences between treatments were assessed
by one-way ANOVA followed by post hoc testing using the
Tukey test (the statistical software, GraphPad Prism 5). A
value of p < 0.05 was considered significant. Data were
expressed as means ± standard error. The results of statistical
analysis are described in each figure legend.

Results

6-OHDA Increases Extracellular Zn2+ Influx in the SNpc

6-OHDA is a classic animal model of PD [29]. Reactive ox-
ygen species (ROS) derived from 6-OHDA uptake and
intraneuronal autooxidation, extracellular 6-OHDA autoxida-
tion, and microglial activation may be involved in the mech-
anisms responsible for 6-OHDA-induced dopaminergic de-
generation [30]. We examined the idea that 6-OHDA-
mediated ROS production modifies intracellular Zn2+ dynam-
ics in nigral dopaminergic neurons. 6-OHDA rapidly in-
creased intracellular Zn2+ in the SNpc of brain slices after
10-min incubation with 6-OHDA in ACSF containing 10 nM
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Zn2+, an estimated basal concentration of extracellular Zn2+

[25], but not in the substantia nigra pars reticulata (SNpr) and
other midbrain area (deep mesencephalic nuclei and/or
parabrachial pigmented nuclei) (Fig. 1a, b) and this increase
was blocked in the presence of CaEDTA, an extracellular Zn2+

chelator and CNQX, an AMPA receptor antagonist (Fig. 1a,
c).

An in vivomicrodialysis experiment indicated extracellular
Zn2+ concentration in the perfusate, which was determined
with ZnAF-2, was decreased under SNpc perfusion with 6-
OHDA, while this decrease was blocked by co-perfusion with
CNQX (Fig. 2). Unfortunately, extracellular glutamate con-
centration was disturbed by the presence of 6-OHDA in the
perfusate (data not shown).

Intracellular Zn2+ Chelators Ameliorate
6-OHDA-Induced Neurodegeneration

Turning behavior in response to apomorphine, an index of
behavioral abnormality of 6-OHDA-induced PD in rats was
ameliorated by co-injection of membrane-permeable Zn2+

chelators, i.e., ZnAF-2DA and TPEN 1 and 2 weeks after 6-
OHDA injection (Fig. 3).

6-OHDA-induced loss of nigrostriatal dopaminergic neu-
rons was determined by tyrosine hydroxylase immunostaining
after the behavioral test was finished. Staining intensity was
drastically reduced in the ipsilateral SNpc (Fig. 4a, c) and the
striatum (Fig. 4b, d). However, the reductions were also ame-
liorated by co-injection of ZnAF-2DA and TPEN.

TPEN Blocks 6-OHDA-Induced Increase in Intracellular
Zn2+, but not in Intracellular Ca2+

To assess the involvement of the influx of Zn2+ and Ca2+ in
behavioral abnormality via 6-OHDA-induced nigrostriatal do-
paminergic neurodegeneration, in vivo dynamics of intracel-
lular Zn2+ and Ca2+ was captured 30 min after the start of 6-
OHDA injection into the SNpc (Fig. 5a). Both intracellular
Zn2+ and Ca2+ were increased in the SNpc, while TPEN
blocked the increase in intracellular Zn2+ (Fig. 5b), but not
in intracellular Ca2+ (Fig. 5c).

Discussion

Evidence has pinpointed Ca2+ as the major determinant of
ischemic neuronal death, based on Ca2+ imaging experiments
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represents the ratio of ZnAF-2 fluorescence intensity to the control ZnAF-
2 fluorescence intensity, which was expressed as 100%. ***p < 0.001 vs.
control, ###p < 0.001 vs. 6-OHDA group (Tukey’s test)
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that use Ca2+ fluorescence probes or the neuroprotection of-
fered by Ca2+ chelators. However, all of Ca2+ fluorescence
probes and Ca2+ chelators are not Ca2+ selective, and they
indeed show a higher affinity for Zn2+ [19, 31]. On the other
hand, extracellular Zn2+ permeates NMDA receptors and
voltage-dependent Ca2+ Channels, while it preferentially
passes through Ca2+- and Zn2+-permeable GluR2-lacking
AMPA receptors [18, 32]. Ca2+- and Zn2+-permeable
GluR2-lacking AMPA receptors are involved in synaptically
released Zn2+-mediated neurodegeneration in the hippocam-
pal CA1 and CA3 [33–35]. Nigral dopaminergic neurons are
not innervated by zincergic neurons unlike hippocampal py-
ramidal neurons [22]. Thus, extracellular Zn2+ concentration
is not significantly increased by glutamatergic neuron excita-
tion in the SNpc. On the other hand, 6-OHDA has been shown
to produce endogenously in patients suffering from PD [36,
37] and to increase intracellular Zn2+ release and accumula-
tion via ROS production [38, 39]. Intracellular (cytosolic)
Zn2+ concentration is estimated to be considerably less than
1 nM in nigral dopaminergic neurons [40, 41]. We postulated
that nigral dopaminergic neurons are sensitive to intracellular
Zn2+ dysregulation and tested a unique mechanism of
nigrostriatal dopaminergic neurodegeneration, in which extra-
cellular Zn2+ dynamics plays a key role for PD pathogenesis
induced with 6-OHDA in rats.

6-OHDA rapidly increased intracellular Zn2+ only in the
SNpc of brain slices after 10-min incubation with 6-OHDA in

ACSF containing 10 nMZn2+ while this increase was blocked
in the presence of CaEDTA and CNQX, indicating that 6-
OHDA rapidly increases extracellular Zn2+ influx via
AMPA receptor activation in the SNpc. Extracellular Zn2+

concentration was decreased under in vivo SNpc perfusion
with 6-OHDA and this decrease was blocked by co-
perfusion with CNQX, supporting 6-OHDA-induced Zn2+ in-
flux via AMPA receptor activation in the SNpc. These results
suggest that 6-OHDA-mediated ROS production increases
extracellular Zn2+ influx into dopaminergic neurons via
AMPA receptor activation in the SNpc. It is likely that 6-
OHDA-mediated ROS production increases glutamate release
from neuron terminals in the SNpc. 6-OHDA is taken up into
dopaminergic neurons through dopamine transporters and
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rapidly produces ROS in the intracellular compartment, in
addition to ROS production by autoxidation in the extracellu-
lar compartment [42]. It is possible that both extracellular
ROS and ROS in dopaminergic neurons, which is retrogradely
transported, are taken up into glutamatergic neuron terminals
and induce glutamate release. The data that 6-OHDA-induced
increase in Zn2+ influx was selectively observed in the SNpc
of brain slices suggest that the rapid Zn2+ influx into dopami-
nergic neurons is due to ROS produced in dopaminergic neu-
rons rather than extracellular ROS.

Next, we examined whether nigrostriatal dopaminergic
neurodegeneration induced with 6-OHDA could be due to
the rapid increase in intracellular Zn2+. Interestingly, both 6-
OHDA-induced loss of nigrostriatal dopaminergic neurons
and turning behavior to apomorphine were ameliorated by
co-injection of intracellular Zn2+ chelators, i.e., ZnAF-2DA
and TPEN. Extracellular Zn2+ concentration, which is estimat-
ed to be approximately 10 nM in the hippocampus [25], was
decreased in the SNpc by the rapid Zn2+ influx via 6-OHDA-
mediatedAMPA receptor activation. The finding suggests that

intracellular Zn2+ concentration rapidly reaches ~ 10 nM,
resulting in neuronal death. The lethal concentration of intra-
cellular Ca2+ is micromolar (10–20 μM) [43], while the pres-
ent data indicate that the lethal concentration of intracellular
Zn2+ is much low in the SNpc and that nigral dopaminergic
neurons are much vulnerable to intracellular Zn2+

dysregulation.
In ischemic neuronal death, acidosis reduces Zn2+ bind-

ing to metallothioneins, followed by the increase in intra-
cellular Zn2+ [44]. Furthermore, mitochondrial dysfunction
including ROS generation promotes intracellular Zn2+ mo-
bilization, which originates in the mitochondria and
metallothioneins [38, 45]. Among metallothionein iso-
forms, metallothionein III preferentially releases Zn2+ un-
der oxidative condition [46]. ROS-mediated TRPM7 (tran-
sient receptor potential cation channel subfamily M mem-
ber 7) activation releases Zn2+ from intracellular vesicles
after Zn2+ overload [47]. In the present study, rapid in-
crease in intracellular Zn2+ induced with 6-OHDA was al-
most completely blocked in the presence of CaEDTA and
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CNQX, suggesting that the rapid increase is due to extra-
ce l lu la r Zn2+ inf lux but not Zn2+ re lease f rom
metallothioneins and/or internal stores. Although it is pos-
sible that Zn2+ release from metallothioneins and/or inter-
nal stores occurs in the late stage of neurodegeneration, the
block of the rapid Zn2+ influx via 6-OHDA-mediated ROS
production may be an effective strategy for reducing
nigrostriatal dopaminergic neurodegeneration in the SNpc.

Co-injection of TPEN into the SNpc blocked 6-OHDA-
induced increase in intracellular Zn2+ but not in intracellular
Ca2+. The present study indicates that 6-OHDA-induced rapid
increase in extracellular Zn2+ influx into dopaminergic neu-
rons via AMPA receptor activation in the SNpc induces PD
via nigrostriatal dopaminergic neurodegeneration. Dopamine
is rapidly taken up into dopaminergic neurons via dopamine
transporters in the SNpc [48], produces intracellular ROS, and
might be metabolized to 6-OHDA [42]. Therefore, 6-OHDA-
and dopamine-induced Zn2+ influx may be a trigger for dopa-
minergic neurodegeneration in the SNpc. Characteristics
(easiness) of extracellular Zn2+ influx may be linked with
weakened intracellular Zn2+-buffering in the aged dentate gy-
rus [49, 50], indicating that vulnerability to intracellular Zn2+

dysregulation is promoted in the brain along with aging.
Metabolic disorder of synaptic dopamine might induce intra-
cellular Zn2+ dysregulation via ROS production, perhaps
followed by pathogenesis of dopaminergic neurodegeneration
in the SNpc.
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