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Abstract
The complex and interlinked cascade of events regulated by microRNAs (miRNAs), transcription factors (TF), and target genes
highlight the multifactorial nature of ischemic stroke pathology. The complexity of ischemic stroke requires a wider assessment
than the existing experimental research that deals with only a few regulatory components. Here, we assessed a massive set of
genes, miRNAs, and transcription factors to build a miRNA-gene-transcription factor regulatory network to elucidate the
underlying post-transcriptional mechanisms in ischemic stroke. Feed-forward loops (three-node, four-node, and novel five-node)
were converged to establish regulatory relationships between miRNAs, TFs, and genes. The synergistic function of miRNAs in
ischemic stroke was predicted and incorporated into a novel five-node feed-forward loop. Significant miRNA-TF pairs were
identified using cumulative hypergeometric distribution. Two subnetworks were derived from the extensive miRNA-TF regu-
latory network and analyzed to predict the molecular mechanism relating the regulatory components. NFKB and STAT were
identified to be the chief regulators of innate inflammatory and neuronal survival mechanisms, respectively. Exclusive novel
interactions between miR-9 and miR-124 with TLX, BCL2, and HDAC4 were identified to explain the post-stroke induced
neurogenesis mechanism. Therefore, this network-based approach to delineate miRNA, TF, and gene interactions might promote
the development of effective therapeutics against ischemic stroke.
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Introduction

microRNAs (miRNAs) are differentially expressed following
neuronal injury and critically regulate ischemic stroke patho-
physiological processes [1–3]. The introduction of miRNA
mimic or antagomir promotes neuroprotection depending on
the functional role of miRNAs in ischemia with specific target
genes and transcription factors [4]. With the increasing num-
ber of miRNAs and the associated regulatory components
being explored, it has become indispensable to uncover novel
strategies defining the underlyingmechanisms associatedwith
cerebral ischemia.

Systems biology provides a holistic platform to compre-
hend and envisage pathological processes [5, 6]. However,
the systems biology approach to decipher ischemic stroke reg-
ulatory components is still in its infancy. Biological networks
are formed from network motifs and demonstrated using feed-
forward loops (FFLs), the primary type being a three-node
FFL, comprising a miRNA, a TF, and a common gene target
[7, 8]. A three-node FFL could be extended to generate a four-
node FFL consisting of coexpressed genes as joint targets
between miRNA and TF [8].

This study brings together a massive set of ischemic stroke
genes, important miRNAs, and transcription factors to build a
novel five-node feed-forward loop by introducing an addition-
al miRNA-miRNA interaction to the existing four-node FFL.
The synergistic activity of miRNA is considered to be of ut-
most importance owing to the differential expression of mul-
tiple miRNAs in ischemic stroke [4]. The five-node FFL ren-
ders all possible regulatory relationships between miRNAs,
genes, and TFs and plays a promising role in elucidating the
complexity of any disease, particularly ischemic stroke.

All FFLs are classified into three main types, miRNA FFL,
TF FFL, and composite FFL, according to the regulatory
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module between miRNA and TF [8]. The FFLs are schemat-
ically illustrated in Fig. 1. In the present study, composite
FFLs were integrated together to form a major miRNA-TF
regulatory network for ischemic stroke. Two subnetworks
were generated and analyzed to determine the crucial
miRNAs, genes, and transcription factors in cerebral ische-
mia. Furthermore, the proposed five-node FFL was used to
determine coremiRNAs and interactions associated with post-
stroke induced neurogenesis (Fig. 2). There has been a limited
insight on ischemic stroke at the systems level, and hence, the
integration of disease regulatory components in a network
might help in delineating intricate molecular mechanisms
and developing therapeutic interventions against ischemic
stroke.

Materials and Methods

Acquisition of Ischemic Stroke-Related Genes,
miRNAs, and TFs

Ischemic stroke-related genes were retrieved from GeneCards
[9], an integrated database that mines a broad range of gene-
related information. The keyword search of Bbrain ischemia^
or Bcerebral ischemia^ enlisted genes (n = 831) that were
sorted according to the gene description. The genes were sub-
jected to an enrichment analysis using Gene Ontology
Consortium [10, 11]. microRNAs involved in the ischemic
stroke were obtained through a comprehensive literature
search as well as through the databases such as miR2Disease
[12], PhenomiR [13], and Human microRNA Disease
Database (HMDD) [14]. The selected miRNAs were either
directly related to cerebral ischemia or involved in the ische-
mic stroke pathology through other etiological disorders. The
transcription factors (TF) were retrieved from the ChIPBase
[15] and transcriptional regulatory element database (TRED)
[16]. In addition, we also selected the transcription factors
present in the collected ischemic stroke gene list.

Generation of Regulatory Interaction Pairs
Between miRNAs, Genes, and TFs

miRNA-gene pairs were extracted from miRTarbase [17], a
database of experimentally validated miRNA-target interac-
tion. miRNA-gene pairs were filtered such that they showed
strong evidence of interaction in humans and were in compli-
ance with the ischemic stroke gene list. miRNA and transcrip-
tion factor (miRNA-TF) pairs were also obtained using
miRTarbase [17]. The regulatory relationship between TF
and miRNA was retrieved from chIPBase [15], an online re-
pository, to obtain information on the transcriptional regula-
tion of miRNAs. Furthermore, TF-gene pairs were acquired
from TRED [16]. The gene-gene coexpression data was

retrieved using a GeneMANIA [18] plugin for Cytoscape
v3.5.0. The ischemic stroke gene list was given as an input
for which a gene-gene coexpression network was obtained.
miRNA-miRNA interaction was established based on the
common gene targets between two miRNAs [19], and the
pairs were enriched using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) [20] database as well as literature
search.

Significant miRNA-TF Pairs in an Ischemic Stroke
Regulatory Network

The significant miRNA and TF pairs that coregulate the com-
mon target genes were identified by performing a cumulative
hypergeometric test [8]. miRNA-gene-TF units were pro-
duced by combining the miRNA-gene and TF-gene pairs.
Considering the common ischemic stroke-related genes be-
tween a pair of miRNA and TF, the p value was computed
using the following formula:

p ¼ ∑
min jN miRð Þj;jN tfð Þjð Þ
i¼jN miRð Þj∩jN tfð Þj

jN miRð Þj
i

� �
total−jN miRð Þj

jN tfð Þj−i
� �� �,

total
jN tfð Þj

� �

where N(miR) denotes the number of target genes for a given
ischemic stroke miRNA, N(tf) represents the number of ische-
mic stroke target genes for the corresponding TF, total is the
number of common genes between all the ischemic stroke-
related genes regulated by TFs and repressed by miRNAs,
and i denotes the number of common genes between a given
miRNA and a TF. Further, the false discovery rate (FDR) was
used to perform multiple test corrections and the TF-miRNA
pairs with the corrected p value < 0.05 were considered to be
significant.

Construction of Three-, Four-, and Five-Node FFLs

For a three-node FFL, the significant TF-miRNA pairs were
filtered by identifying the type of interaction between them
(miRNA-TF, TF-miRNA, or both) to construct miRNA, TF,
and composite FFLs, respectively. Similarly, in a four-node
FFL, significant TF and miRNA pairs formed miRNA, TF,
and composite FFLs. The gene-gene coexpression data re-
trieved from GeneMANIA was incorporated to complete the
four-node FFL interaction.

A novel five-node FFL was introduced in this study, an
extension to the four-node FFL. The existing miRNA in a
four-node FFL was extended to pair with another miRNA
such that it satisfied the miRNA-miRNA interaction pair. It
was ensured if the included miRNA forms a significant pair
with TF.
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Development of miRNA-Gene-TF Regulatory Network
and Generation of Subnetworks

The composite FFLs (three-, four-, and five-node) were
converged together to form a miRNA-gene-TF regulatory
network using Cytoscape v3.5.0. The resultant regulatory
network was analyzed using the network analyzer tool of
Cytoscape v3.5.0. The network was treated as undirected,
and important parameters such as average short path
length, average clustering coefficient, betweenness cen-
trality, closeness centrality, average neighborhood

connectivity, degree distribution of nodes, the frequency
of number of shared neighbors, topological coefficients,
and edge betweenness were calculated. Subnetworks were
generated based on the distribution of nodes and links to
reduce the complexity of the network by identifying net-
work hubs. The target genes in the identified subnetworks
were subjected to an enrichment analysis using Enrichr
[21] to establish the integrity of the subnetwork. It was
then closely analyzed to study and predict the ischemic
stroke processes associated with the specific transcription
factor, connected gene targets, and miRNAs.

Fig. 1 Schematic representation of the feed-forward loops. a Three-node
TF FFL (TF-miRNA, TF-gene, miRNA-gene), three-node miRNA FFL
(miRNA-TF, miRNA-gene, and TF-gene), and three-node composite
FFL (miRNA-TF, miRNA-gene, TF-miRNA, and TF-gene). b Four-
node TF FFL (TF-miRNA, TF-gene, miRNA-gene, and gene-gene),
four-node miRNA FFL (miRNA-TF, miRNA-gene, TF-gene, and gene-

gene), and four-node composite FFL (miRNA-TF, miRNA-gene, TF-
miRNA, TF-gene, and gene-gene). c Five-node TF FFL (TF-miRNA,
TF-gene, miRNA-gene, gene-gene, and miRNA-miRNA), five-node
miRNA FFL (miRNA-TF, miRNA-gene and TF-gene, gene-gene, and
miRNA-miRNA), and five-node composite FFL (miRNA-TF, miRNA-
gene, TF-miRNA, TF-gene, gene-gene, and miRNA-miRNA)
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Core miRNAs and Regulatory Components
in Post-Stroke Induced Neurogenesis Using
a Five-Node FFL

To learn the process-specific applicability of our five-node
FFL and to predict the core regulatory components functional
in post-stroke induced neurogenesis, we selected 14
neurogenesis-related miRNAs from the compiled set of 31
ischemic stroke miRNAs. A composite five-node FFL was
formed according to the procedure described above, and a
subnetwork was extracted by identifying the network hubs
that formed a five-node FFL. Edge betweenness was evaluat-
ed and analyzed to determine the significant miRNA-miRNA
interactions.

Results

The development of a comprehensive regulatory network for
ischemic stroke required the formation of feed-forward loops
(FFLs) with the following components: ischemic stroke-
related genes, miRNAs, and TFs. A comprehensive literature
survey and GeneCards database [9] provided a list of unique
828 ischemic stroke genes that was subjected to an enrichment
analysis using Gene Ontology Consortium [10, 11]. The bio-
logical processes in the enrichment result were found to be
closely associated with the ischemic stroke pathology. Thirty-

one functionally significant miRNAs that were up-/downreg-
ulated following ischemic stroke were compiled for the study
with the help of an extensive literature search and miRNA-
disease databases [12–14].

Six regulatory relationships (miRNA-gene, miRNA-TF,
TF-miRNA, TF-gene, gene-gene, and miRNA-miRNA) were
formed to generate three-, four-, and five-node FFLs. The
five-node feed-forward loop with miRNA-miRNA interaction
is a novel regulatory interaction loop introduced in this study.

Interaction Pairs Between Ischemic Stroke miRNA,
Genes, and TF

We retrieved 422 miRNA-gene pairs using miRTarBase, and
out of 828 ischemic stroke genes, 232 were found to be vali-
dated targets for 31 miRNAs. BCL2, VEGFA, and IGF1R
were the top targeted genes. Among 31 miRNAs, miR-21
and miR-17-5p target the highest number of genes. We also
obtained 69 relevant miRNA-TF pairs using miRTarBase.
miR-21 and miR-34a were found to target the greatest number
of TFs, and E2F1 was targeted by the largest number of
miRNAs.

TF-miRNA pairs were acquired from chIPBase and 132
pairs of TF-miRNA were listed. The transcription factor
NFKB was found to regulate the highest number of
miRNAs. miR-15a-5p and miR-21 were the top regulated
miRNAs in the list. Four hundred two TF-gene pairs were
retrieved using TRED, where the transcription factors NFKB
and SP1 were identified to target the highest number of ische-
mic stroke genes and BCL2 was the most targeted gene.

Gene-gene coexpression data were acquired from
GeneMANIA plugin for Cytoscape v3.5.0. The coexpressed
genes were arranged based on the score of relevance, and we
obtained gene-gene pairs for ischemic stroke. The miRNA-
miRNA pair was selected such that there were, at least, two
common target genes between the two miRNAs. A thorough
literature search was carried out to identify the ischemic
stroke-related pathways and processes between the common
genes. Further, we used KEGG database to confirm the rela-
tionship between the common genes and finally acquired 117
significant miRNA-miRNA pairs.

Generation of Three-, Four-, and Five-Node FFLs

A three-node FFL consists of miRNA-TF, TF-miRNA, TF-
gene, and miRNA-gene interaction pairs. We obtained 80
unique three-node FFLs with 17 miRNA FFLs, 73 TF FFLs,
and 10 composite FFLs. The three-node miRNA and TF FFL
is shown in the Supplemental Figs. 1 and 2. The composite
three-node FFL comprised miR-15a-5p, miR-146a, miR-17-
5p, miR-21, and miR-320a as the principal miRNAs with two
transcription factors, NFKB and STAT (Fig. 3a). CCND1,

Fig. 2 Workflow diagram. Thirty-one functional miRNAs, 831 gene
targets, and 69 transcription factors were retrieved to form six
regulatory interaction pairs. miRNA-gene (M-G) and miRNA-TF (M-T)
pairs were acquired from the miRTarBase, TF-miRNA (T-M) from the
chIPBase, TF-gene (T-G) from TRED, and gene-gene (G-G) from
GeneMANIA plugin for Cytoscape v3.5.0. miRNA-miRNA (M-M) pairs
were formed based on the common gene targets between the two
miRNAs and their function in ischemic stroke processes. Depending on
the regulatory module, the pairs were grouped to form the miRNA, TF,
and composite feed-forward loops (FFLs). The composite FFLs were
converged to form the major ischemic stroke regulatory network from
which subnetworks were extracted depending on the distribution of nodes
and links. The subnetworks were analyzed with the interconnections
between miRNA, TFs, and gene targets
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TP53, BCL2, SELE, and IL8 were identified to be the target
genes in a three-node composite FFL.

Four-node FFL includes five interaction pairs with an
additional gene-gene coexpression as compared to three-
node FFLs. A total of 2871 four-node FFLs were iden-
tified, out of which there were 614 miRNA FFLs, 2551
TF FFLs, and 294 composite FFLs. Supplemental
Figs. 3 and 4 represent four-node miRNA and TF
FFLs, respectively. It was noted that the composite
FFL consisted of only three miRNAs (miR-146, miR-
15a-5p, and miR-21) and two transcription factors,
NFKB and STAT (Fig. 3b).

A novel five-node FFL was generated by incorporating
additional miRNA-miRNA interaction pair into a four-node
FFL. We identified 1347 five-node FFLs, with 372 miRNA
FFLs, 1159 TF FFLs, and 184 composite FFLs. A five-node
miRNA and TF FFL is demonstrated in Supplemental Figs. 5
and 6. The composite FFL enlisted 14 significant miRNA-
miRNA pairs with miR-146a, miR-15a-5p, and miR-21 with
the transcription factors NFKB and STAT (Fig. 3c). All the

composite FFLs had NFKB and STATas the key transcription
factors.

miRNA-Gene-TF Regulatory Network
and Subnetworks

AmiRNA-gene-TF regulatory network was built by converg-
ing three-, four-, and five-node composite FFLs (Fig. 4), and
we obtained subnetworks based on the distribution of nodes
and links (Fig. 5a–h). The first subnetwork (Supplemental
Fig. 7) consisted of NFKB transcription factor linked to
miR-146a and miR-15a-5p with a subset of 28 ischemic
stroke-related target genes. We confirmed the relevance of
these genes in ischemic stroke by gene enrichment analysis
using Enrichr21 and obtained gene ontology information that
stated the biological function of these target genes in processes
closely related to ischemic stroke, such as response to oxygen
levels and response to hypoxia. NFKB exhibited the highest
score in the data retrieved from TRANSFAC by Enrichr, and
this confirmed the interaction between the genes and NFKB in

Fig. 3 Composite FFLs derived for ischemic stroke. Squares represent transcription factors, diamonds represent miRNAs, and circles represent common
target genes. a Three-node composite FFL. b Four-node composite FFL. c Five-node composite FFL
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the generated subnetwork. This subnetwork was further sim-
plified to obtain the major interconnections with NFKB, miR-
146a, miR-15a-5p, and four target genes (TP53, CCND1, IL8,
and BCL2). BCL2 was found to be paired with NFKB, miR-
146a, and miR-15a-5p (Fig. 6a). Similarly, we generated a
simplified subnetwork with STAT as the transcription factor
(Fig. 6b). This subnetwork comprised three miRNAs (miR-
21, miR-320a, and miR-17-5p) and three target genes (BCL2,
SELE, and CCND1). miR-21 acted as the central miRNA
interacting with miR-320a as well as miR-17-5p. As in the
previous subnetwork, BCL2 was targeted by all the major
components (miRNAs and TF).

miR-9 and miR-124 Formed the Core miRNAs
Regulating Post-Stroke Neurogenesis

To evaluate the process-specific efficiency of a five-
node FFL, we predicted network interactions that could
be functional in post-stroke neurogenesis. Out of 31
miRNAs compiled for the study, 14 miRNAs were iden-
tified to be associated with neurogenesis. A composite
five-node FFL was generated resulting in 915 nodes
with interactions already described. Network hubs were
extracted, and miR-9-5p, miR-124, and miR-17-5p
emerged as the principal miRNAs interacting with the
maximum number of genes and TFs (Fig. 7a). Edge

betweenness parameter was used to identify the most
significant miRNA-miRNA interaction since edges/links
have greater relevance than the nodes in process-specific
network inference (Table 1). It is considered that the
higher the edge betweenness the higher the relevance
of the interaction. miR-9 and miR-124 exhibited the
highest edge betweenness and were considered to be
the central miRNAs regulating post-stroke neurogenesis.
The nodes and edges connected with miR-9 and miR-
124 were extracted, and we inferred a subnetwork that
satisfied the interactions proposed in the composite five-
node FFL (Fig. 7b). The inferred network comprised
TLX (transcription factor), HDAC4, and BCL2 genes.

Discussion

In the present study, we identified the miRNA-gene-TF regu-
latory relationship to obtain a profound insight into the

Fig. 4 miRNA-gene-TF regulatory network. The three-, four-, and five-node composite FFLs were converged together to form an extensive ischemic
stroke miRNA-TF regulatory network. The entire network is regulated by two chief transcription factors NFKB and STAT

�Fig. 5 Graphical representation of network parameters. Themerged FFLs
were analyzed, and network parameters were evaluated based on the
distribution of their nodes and links. a Average short path length, b
average clustering coefficient, c betweenness centrality, d closeness
centrality, e average neighborhood connectivity, f degree distribution of
nodes, g frequency of number of shared neighbors, h topological
coefficients
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molecular mechanism of ischemic stroke. Six regulatory in-
teractions were employed in this study (miRNA-gene,
miRNA-TF, TF-miRNA, TF-gene, gene-gene, and miRNA-
miRNA) to build three-, four-, and a novel five-node feed-
forward loop. Each interaction pair was studied extensively
to collect the principal miRNAs, TFs, and target genes asso-
ciated with ischemic stroke. BCL2, VEGFA, and IGF1R were
the most targeted genes in miRNA-gene pairs. BCL2 was
targeted by 28 miRNAs in this study and ample reports state
the impact of BCL2 in ischemic stroke [22–25]. BCL2 is anti-
apoptotic and exhibits differential expression following ische-
mia [22, 24]. For instance, the post-ischemic overexpression
of miR-497 downregulated BCL2 and resulted in an increased
lesion volume [26]. The overexpression of miR-21, miR-210,
miR-124, and miR-181a confer neuroprotection through an
increased BCL2 expression [27–30]. VEGF generates endog-
enous brain responses following ischemia such as neuronal
survival and neurogenesis resulting in the neurovascular re-
modeling [31]. IGF1R is another important gene target that
supersedes the neurotoxic effect of estrogen treatment post-
ischemia in middle-aged female rats [32].

miR-21, miR-17-5p, miR-34a, and miR-15a-5p were some
of the principal miRNAs identified from the miRNA-gene,
miRNA-TF, and TF-miRNA pairs. miR-21 was detected to
be the most occurring miRNA in all the interaction pairs.
The overexpression of miR-21 reduced the ischemic stroke
lesion size in vivo [33]. In addition, the miR-21 expression
is associated with the etiology of ischemic stroke through
proliferative vascular diseases and is abundantly expressed
in the atherosclerotic arteries [27, 34]. Similarly, the overex-
pression of miR-17-92 cluster promotes neural progenitor cell
proliferation and neuronal regeneration following ischemia
[35]. On the other hand, miR-15a-5p must be downregulated
to render neuroprotection through the activation of peroxi-
some proliferator-activated receptor (PPAR) and subsequent
BCL2 overexpression [36]. From TF-miRNA and TF-gene
data, our study primarily identified NFKB as one of the

important transcription factors regulating the maximum num-
ber of miRNAs and genes in ischemic stroke. Increasing evi-
dence suggests that NFKB induces proinflammatory factors
(cytokines and chemokines), producing an innate inflamma-
tion and regulated apoptosis through BCL2 expression [37].
Hence, miR-21, BCL2, and NFKB were inferred to be the
chief components of the four interaction pairs (miRNA-gene,
TF-gene, miRNA-TF, and TF-miRNA).

The next phase of this study involved the generation of
three-, four- and novel five-node FFLs with miRNA, tran-
scription factor, and target genes as the major components
(Fig. 3). Each FFL was divided into miRNA FFL, TF FFL,
and composite FFL. The composite FFLs were considered for
the analysis as this provides complete information on three-,
four-, and five-node FFLs. The three-node composite FFL
consisted of miR-21, miR-15a-5p, miR-17-5p, miR-146a,
and miR-320a (Fig. 3a), whereas the number of principal
miRNAs in the four-node composite FFL was reduced to
miR-21, miR-15a-5p, and miR-146a (Fig. 3b). However, the
total number of interactions in the four-node FFL was greater
due to a large gene-gene coexpression data for each pair of
miRNA-TF.

It is particularly important to consider miRNA-miRNA in-
teraction in ischemic stroke because a number of miRNAs are
differentially expressed following ischemia and some of these
miRNAs function together [2, 3]. There has been limited ev-
idence of synergistic activity of miRNAs in ischemic stroke,
and hence, prediction of miRNA-miRNA interaction might
open novel prospects to understand the ischemic stroke path-
ological and neuroprotection processes. miRNA-miRNA
pairs were incorporated to generate five-node FFLs forming
a complete regulatory network to comprehend molecular pro-
cesses associated with ischemic stroke. miRNA-miRNA pairs
were established based on the common target genes between
two miRNAs. For instance, the miRNA-miRNA interaction
between miR-15a-5p and miR-146a was predicted through
common target genes, BCL2, and NFKB1. KEGG pathway
analysis showed that BCL2 and NFKB1 were involved in
ischemic stroke-related pathways such as hypoxia inducible
factor-1 (HIF-1) and phosphatidylinositol-3-kinase (PI3-
AKT) signaling pathway. HIF-1 signaling elicits neuronal pro-
tection by delaying the neuronal death following an ischemic
stroke in vitro as well as in vivo [38]. The PI3-AKT signaling
pathway is well known to regulate the neuronal cell fate and
function in neuroprotection through ischemic post-
conditioning [39]. For instance, the synergism between miR-
21 and miR-17-5p was predicted based on seven common
target genes (BCL2, E2F1, ICAM1, MYC, MMP2, PTEN,
VEGFA). Enrichr analysis of these genes shows that they
are significantly expressed in response to low oxygen levels
and are crucial in cerebral ischemia. The significant miRNA-
miRNA pairs were then linked to genes and TF to form a five-
node FFL. The five-node feed-forward loop with miRNA-

Fig. 6 NFKB and STAT subnetwork. a Simplified NFKB subnetwork
with the principal miRNAs and target genes in the innate inflammatory
response. b STAT subnetwork with principal miRNAs and target genes
involved in neuronal survival and regeneration
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miRNA interaction ensures an effective means to depict a
complete regulatory network (Fig. 3c).

The composite FFLs (three-, four-, and five-node) were
converged to obtain a regulatory network for ischemic stroke,
one of the major outputs of the current study (Fig. 4). For the
analysis of the complex regulatory network, we extracted two
main subnetworks with NFKB and STAT as the chief regula-
tory transcription factors (Fig. 6a, b). The NFKB subnetwork

comprised two miRNAs (miR-146a and miR-15a-5p) and
four target genes (BCL2, CCND1, IL8, and TP53) (Fig. 6a).
miR-146a is NFKB dependent and instigates innate immune
responses [40], but its direct relevance in ischemic stroke has
not been studied yet. miR-15a-5p is known to induce apopto-
sis and plays an important role in the NFKB non-canonical
pathway during macrophage differentiation. The decrease in
miR-15a-5p reduces the macrophage hyperactivity and
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Fig. 7 miRNA regulatory
network specific for post-stroke
induced neurogenesis. a Network
hubs with miR-9-5p, miR-124,
and miR-17-5p as the principal
miRNAs interacting with the
maximum number of genes and
TFs involved in post-stroke
neurogenesis. b The nodes and
edges connected with miR-9 and
miR-124 were extracted to infer a
subnetwork that satisfied the
interactions proposed in the
composite five-node FFL
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promotes the proinflammatory stimuli through NFKB target
genes [41]. These studies suggest that miR-146a and miR-
15a-5p are closely associated with NFKB to generate inflam-
matory responses. Ischemic brain injury is often accompanied
by acute or chronic inflammatory processes and subsequent
recruitment of inflammatory cells in the brain [42]. Therefore,
the NFKB subnetwork focuses on the inflammatory and in-
nate immune response following ischemic stroke.

Three miRNAs (miR-320a, miR-17-5p, and miR-21) and
three target genes (BCL2, CCND1, and SELE) formed the
STAT subnetwork (Fig. 6b). Numerous reports suggest the
role of STAT in neuronal survival and regeneration [43, 44].
Neuronal injury activates STAT and renders neuroprotection
through the JAK-STAT signaling pathway, which in turn, ac-
tivates the transcription of pri-miR-21 in spinal cord injury
[45]. STAT also promotes the expression of the miR-17-92
cluster that induces neural progenitor proliferation post-
stroke [35, 46]. One of the studies demonstrated the action
of anti-miR-320a in reducing the ischemic lesion size with
the increase in the expression of the gene JAK [47]. JAK
functions in combination with STAT [45], and our subnetwork
predicts the relationship between miR-320a and STAT. Thus,
the STAT subnetwork highlights the neuronal repair and re-
generation with its corresponding gene targets and miRNAs.

BCL2 and CCND1 were the common target genes that
occurred in both the subnetworks (Fig. 6a, b). CCND1 is an
important regulator of cell cycle and promotes cell prolifera-
tion [48]. The cell cycle machinery has an indispensable role
in the ischemic stroke [48], but there have been contradictory
studies with CCND1 as the target gene. CCND1 is related to
the excitotoxic neuronal death and is upregulated during neu-
ronal apoptosis [48, 49]. CCND1 is shown to be
overexpressed following ischemia/reperfusion while certain
studies have shown the implications of CCND1 in neuronal
survival [49]. In the first subnetwork, CCND1 is connected to

miR-15a-5p and NFKB (Fig. 6a) whereas in the second sub-
network CCND1 is found to be interacting with miR-17-5p
and STAT (Fig. 6b). Interestingly, downregulation of miR-
15a-5p promotes neuroprotection whereas miR-17-5p is up-
regulated to promote neural progenitor cell proliferation lead-
ing to neuronal regeneration post-ischemia [35, 36]. Our study
predicts that CCND1 might prove to be a beneficial target for
miR-15a-5p and miR-17-5p that could either promote neuro-
nal survival or induce neuronal regeneration post-ischemia.
BCytochrome c release from mitochondria^, Bresponse to
ischemia^ and Bglucose starvation^ were identified to be the
biological processes associated with both the subnetworks
(Fig. 6a, b), and these processes are in congruence with the
ischemic stroke pathology.

Further in this study, miR-9 and miR-124 were identified to
be the core regulators of post-stroke induced neurogenesis.
Previous reports state that miR-124a downregulation follow-
ing cerebral ischemia could increase neural progenitor cell
proliferation while the introduction of miR-124a mitigates
proliferation and enhances neuronal differentiation [50].
Hence, miR-124a is known to induce post-stroke
neurogenesis by balancing the neuronal proliferation and dif-
ferentiation. Nonetheless, the role of miR-9 in post-ischemic
neurogenesis is unknown. miR-9 is reported to be downregu-
lated in an in vivo ischemic stroke model where the introduc-
tion of miR-9 agomir provides neuroprotection post-ischemia
by targeting BCL2L11 [51]. Our model established a link
between miR-9 and miR-124, which could possibly mean that
miR-9 could also stimulate post-stroke neurogenesis in con-
junction with the TLX activity. TLX forms a feedback regu-
latory loop with miR-9 to maintain a balance between neural
stem cell proliferation and differentiation [52]. Therefore, it is
predicted that TLX regulates the expression of miR-124 and
miR-9-5p to induce neurogenesis post-ischemia in an adult
brain. In addition, the inferred model suggested that miR-9-
5p, miR-124, and TLX regulate the expression of their target
genes, BCL2 and HDAC4.

In conclusion, the present study introduced a novel
five-node FFL to comprehend the regulatory relationships
between miRNAs, TFs, and their gene targets. The key
regulatory components identified in the form of subnet-
works comprised miRNAs, TFs, and genes associated with
innate inflammatory response and neuronal survival mech-
anism following ischemic stroke. In addition, the five-node
network model identified miR-9 and miR-124 as the core
regulatory miRNAs in post-stroke neurogenesis. Further
studies are underway to experimentally validate the de-
duced interactions in the network model. This network
model could be extended to elucidate the regulatory com-
ponents involved in the pathophysiology of other diseases.
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Table 1 Edge betweenness for miRNA-miRNA interactions

miRNA-miRNA interaction Edge betweenness

miR-124 (interacts with) miR-9-5p 647.0953678

miR-9-5p (interacts with) miR-34a 214.3711996

miR-17-5p (interacts with) miR-9-5p 179.7108985

miR-133a (interacts with) miR-9-5p 151.1780092

miR-125a-5p (interacts with) miR-9-5p 136.8090763

miR-9-5p (interacts with) miR-210-3p 129.4670129

miR-181a (interacts with) miR-9-5p 123.7451442

miR-145 (interacts with) miR-9-5p 118.1002844

miR-15a-5p (interacts with) miR-9-5p 111.6258679

miR-126 (interacts with) miR-9-5p 109.3953838

miR-9-5p (interacts with) miR-29b 108.5471709

miR-9-5p (interacts with) miR-146a 98.79707219
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