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Abstract

Spinal cord injury (SCI) is considered an incurable condition, having a heterogenous recovery and uncertain prognosis.
Therefore, a reliable prediction of the improvement in the acute phase could benefit patients. Physicians are unanimous in
insisting that at the initial damage of the spinal cord (SC), the patient should be carefully evaluated in order to help selecting
an appropriate neuroprotective treatment. However, currently, neurologic impairment after SCI is measured and classified by
functional examination. The identification of prognostic biomarkers of SCI would help to designate SC injured patients and
correlate to diagnosis and correct treatment. Some proteins have already been identified as good potential biomarkers of central
nervous system injury, both in cerebrospinal fluid (CSF) and blood serum. However, the problem for using them as biomarkers is
the way they should be collected, as acquiring CSF through a lumbar puncture is significantly invasive. Remarkably, microRNAs
(miRNAs) have emerged as interesting biomarker candidates because of their stability in biological fluids and their tissue
specificity. Several miRNAs have been identified to have their expressions altered in SCI in many animal models, making them
promising candidates as biomarkers after SCI. Moreover, there are yet no effective therapies for SCI. It is already known that
altered lysophospholipids (LPs) signaling are involved in the biology of disorders, such as inflammation. Reports have demon-
strated that LPs when locally distributed can regulate SCI repair and key secondary injury processes such as apoptosis and
inflammation, and so could become in the future new therapeutic approaches for treating SCI.
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Introduction

Spinal cord injury (SCI) is considered a cureless condition de-
spite enormous advances in medical and surgical treatments,
having devastating physical, psychosocial, and vocational im-
plications for patients and caregivers. Some reports have dem-
onstrated that the incidence of SCI in most countries ranges
from 30 to 70 new cases per one million inhabitants per year
[1]. Portugal reported an annual incidence rate of 57.8 new
cases per million inhabitants between 1989 and 1992, including
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the pre-hospital phase [2]. In contrast with Portugal and most
other countries, Brazil reported 942 new cases/month, meaning
71 new cases per million inhabitants/year [1].

SCI is characterized by a distinct pathophysiological reac-
tion that can be divided into two mechanisms and three
phases. It is particularly devastating because of the restricted
capacity of the central nervous system (CNS) to fix itself and
restore lost cells and fiber tract after injury [3, 4]. The two
mechanisms involved after acute SCI are already well charac-
terized and are known as primary mechanical injury and sec-
ondary injury. These injuries were induced by several biolog-
ical processes and include extensive temporal changes in gene
expression [3, 5]. According to the patho-mechanism and the
postinjury time, the secondary injury process can be split into
three characterized phases: acute, subacute (or intermediate),
and chronic phase [3, 4, 6].

At the starting moment of the injury, the acute phase is
considered to last until the first 48 h after the initial physical
insult, which is when numerous pathophysiological processes
begin [3], and inflammatory response to injury start. In the
acute phase, the major events are caused by ischemia, vascular
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disruption, and hemorrhage, which may be the consequence of
the acting inflammatory growth factors. The spinal shock state is
induced by the neural tissue that is affected by the inflammatory
process [4]. Due to the microcirculation disruption, neurons and
glial cells are affected, which induces pathologic changes such as
an inflammatory response, ionic deregulation, excessive produc-
tion of free radicals, and excitotoxicity [7, 8]. The damage to
neurons, glial cells, and oligodendrocytes is caused by a unique
pathological process that occurs in the CNS and is due the pres-
ence of high amounts excitatory neurotransmitters (glutamate,
aspartate) [9]. Besides that, another mechanism occurs, which
that results in functional neuronal loss or the active and/or passive
neurons and glial cell death. At all stages of injury, neurons die
due to necrosis; however, apoptotic mechanisms are also related
to oligodendrocytes, astrocytes, and neurons’ cellular death [10].
When oligodendrocytes are lost, the result is axonal demyelin-
ation, which is important for pathological changes associated
with clinical impairments [11].

Interestingly, several reports have described that at the end of
first 48 h, growth associated molecules start to be delivered, such
as extracellular matrix elements, and growth factors, showing an
effort of the injured spinal cord to reestablish the neural connec-
tions. This has already been described in upregulation of growth
factors, such as platelet-derive growth factor (PDGF), inducible
nerve growth factor (VGF), brain-derived neurotrophic factor
(BDNF), fibroblast-growth-factor (FGF) receptor 1, bone-
morphogenetic proteins (BMPs), insulin-like growth factor-1
and II (IGF-I and IGF-II), and the neurotrophin NT-3 [12, 13].
Some proteins possibly involved in neuritogenesis were also
upregulated, such as dynamin, attractin, and the adhesion mol-
ecules (F3 and vascular cell adhesion molecule (VCAM)) [14].
Besides that, nestin and vimentin are also upregulated, probably
reflecting the proliferation of neural precursor cells and devel-
oping astrocytes, respectively [15], and signaling that regenera-
tion could be on course.

Additionally, during the acute phase, the disturbance of the
endothelial cells and the astrocytes become reactive causing
the loss of their function due to various inflammatory cyto-
kines, such as tumor necrosis factor (TNF)-« and interleukins
(IL-1«, IL-6, and IL-1[3), promoting alterations in the blood-
spinal cord barrier (BSCB) permeability [16]. Studies in rats
have demonstrated that tissue levels of these cytokines peak at
6 to 12 h after injury and remain increased up to 4 days after
damage [17]. The major occurring inflammatory reaction are
caused by the intrinsic microglia, T cells, astrocytes, macro-
phages, and neutrophils that infiltrate the injury site as a result
of disruption of the BSCB [18]. The disruption of the BSCB
causes loss of microenvironment homeostasis and results in
intracellular hypercalcemia, which activates calcium-
dependent proteases and causes mitochondrial dysfunction
that induces mainly oligodendrocyte apoptotic cell death [19].

It is already well established that during all phases of the
SCI, some proteins are upregulated and others downregulated

at the lesion, making them virtually a possible biomarker of a
specific phase. In the first 4 h after the injury, it was observed a
high upregulation of genes related to cell death and inflamma-
tion that was accompanied with a downregulation of genes
that are implicated in neurotransmission and cell excitability
[3]. The upregulation of these genes induces the expression of
cyclooxygenase 2 (COX2) and from the pro-inflammatory
cytokines IL-1$3 and IL-6 and interleukin receptors (IL-2Rox
and IL-4R) [14, 20] that start the inflammatory response at the
injury. It was also observed that there was upregulation of
some transcription factors such as c-jun, nuclear factor kappa
B (NF-kB), and suppressor of cytokine signaling 3 (SOCS-3)
that are involved in cell death and damage [20, 21], and from
Janus-activated kinase (JAK), and activation and signal trans-
ducer of transcription (STAT) family (STAT3 and JAK1), usu-
ally involved in repair and regeneration [22, 23]. Studies have
demonstrated that in early phases, there is a downregulation of
transporters and ion channels involved in cell excitability,
such as various ion channels (e.g., K*, Ca**, and Na* chan-
nels), receptors and transporters (e.g., GABA and glutamate
transporters) [14, 20] that impair the synaptic transmission.

Several reports have demonstrated that the upregulation
and downregulation of some proteins of the acute phase goes
on. Those proteins are more enhanced in the following days
(72 h), such as IL-13 and COX2 that continue to be upregu-
lated, while the ion channels and neurotransmitter receptors
are down-regulated [3]. After the first 12 h of the SCI, the loss
of some cytoskeletal proteins such as tau, neurofilament light
chain protein (NFL) and heavy neurofilaments (NFH), and
microtubule-associated protein 2 (MAP-2) is observed.
Furthermore, it is also observed that the expression of
myelin-oligodendrocyte glycoprotein (MOG), Nogo-A, and
chondroitin sulfate proteoglycans are decreased, indicating
impairment of myelin synthesis and probably demyelination,
limiting the regenerative attempts [12, 20, 24].

The acute phase is followed by a subacute phase, which is
considered to last until 2 weeks following damage and inten-
sify the injury caused by the primary shock. This phase has
two main characteristics: the phagocytic response and reactive
proliferation of the astrocytes that form the astrocytic glial
scar. The phagocytic inflammatory cells usually release reac-
tive oxygen species, which causes DNA oxidative damage,
protein oxidation, and lipid peroxidation, which further in-
duces necrosis and apoptosis [25]. The astrocytic glial scar is
formed by reactive astrocytes that are proliferating and have
processes that are firmly fused, making an inhibitory mesh-
like cluster that has an important role acting as a barrier for
axonal regeneration, and therefore being considered the major
source for the restricted regeneration after a CNS damage [25,
26]. So, the primary self-defense mechanism after SCI is the
reactive astrogliosis, when neighboring astrocytes to the inju-
ry site suffer morphological hypertrophy, proliferate, and up-
regulate the expression of glial fibrillary acidic protein
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(GFAP), nestin, and vimentin [27-29]. On the other hand, this
uncontrolled proliferation of the reactive astrocytes can also
have a beneficial role, as it suppresses the formation of aber-
rant synapses at the injured site and contributes to the rebuild-
ing of the microenvironment homeostasis and re-
establishment of the integrity of the BSCB [6, 26]. This pro-
cess is important for elimination of edema, and it restricts the
infiltration of immune cells, helping to diminish the spread of
injury [30-32]. Interestingly, it has also been described that
astrocytes are additionally responsible for the secretion of a
range of cytokines and growth factors such as fibroblast
growth factor (FGF)-f3, transforming growth factor
(TGF)-f3, vascular endothelial growth factor (VEGF), and gli-
al cell-derived neurotrophic factor (GDNF), that can, at later
stages, promotes oligodendrocyte precursor cell migration,
proliferation, and differentiation [6].

There are still some controversies about the characteriza-
tion of the chronic phase. However, it is commonly accepted
that this phase extends from days to years after the shock. At
this phase, the cell continues to die from apoptosis, receptor
functions, and channel are compromised, and demyelination
and scarring accompanies Wallerian degeneration. So, these
processes helps to instruct the deficits [33] and are indicators
that the lesion has matured. Some studies are focusing on
improving regeneration of the injured axons and
remyelination employing diverse pharmacological therapies,
like methylprednisolone or cell transplantation at this chronic
stage, however, none with success [6].

Remarkably, patients with SCI appear to recover different-
ly after an injury, even when they develop similar lesions. As
the result of this life-changing condition, recovery occurs with
extensive heterogeneity [34, 35]. Actually, the ongoing clini-
cal measures to evaluate patients with acute SCI consist of
International Standards for Neurological Classification of
Spinal Cord Injury (ISNCSCI) scoring system, the American
Spinal Injuries Association (ASIA), and magnetic resonance
imaging (MRI) [36]. Conventional MRI is presently the best
imaging approach for evaluating SCI during the acute phase
[37]. It was already demonstrated that early MRI is important
for the evaluation of the patient with SCI without computed
tomography evidence of trauma, being a powerful predictor of
the lesion length which is important to evaluate the patient
prognostic score [38].

On the other hand, conventional MRI could not address
satisfactorily the axonal changes that occur in the white mat-
ter, being restricted to evaluating macroscopic changes. These
changes, such as hemorrhage in the parenchyma, transection,
and extended lesion length, could be correlated with poor
prognosis, being the findings on clinical neurological exami-
nation of the most predictive of outcomes [39]. Therefore,
MRI has a restricted success as a prognostic tool, as it is not
accurate to evaluate the where the injury is, the degree, and
how much white matter is save [39].
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Nowadays, the gold standard for the evaluation of a patient
in the first 72 h postinjury is combining results of MRI and
ASIA examinations which could give better prognosis of re-
covery of motor scores. However, the initial ISNCSCI evalu-
ation (within 72 h post trauma) can be delayed, due to prob-
lems associated with the initial trauma, such as shock, other
attendant injuries, drugs, and lack of SCI expertise at the
treating hospital [36, 37, 40]. So, sometimes even this evalu-
ation could be unreliable and challenging.

Although all the surgical, medical, and rehabilitative care
enhancement have increased the quality of life and extended
the lifetime of patients with acute and chronic SCI, much
remains to be done to improve the restorative function for
individuals with SCI [40]. It is important to note that this
improvement of lifespan is crucial for both patients and phy-
sicians, to know whether the patient with acute SCI will regain
the ability to walk, regardless of neurological conditions, and
expect bladder or bowel function improvement. However, it
still remains a key concern, since there is still no precise way
to predict the outcome [36].

Prevention is the only measure we can take to prevent the
primary mechanical damage to the spinal cord [41]. As most
of the SCIs are anatomically incomplete, it is known that
secondary parenchymal injury helps significantly to the final
degree of neural damage, and in this way the extent of the
long-term impairment [9]. Remarkably, to attenuate or halt
this secondary damage, some neuroprotective intervention
candidates have been developed [42]. The quicker and more
accurate the diagnoses of the patients, the better the outcome,
as patients could be more efficiently recruited to the appropri-
ated clinical trial powered to assess efficacy. Presently, the
only way to assess the neurological condition of individuals
is by ISNCSCI grading and imaging modalities, for both rou-
tine clinical care and clinical trials [36].

Discussion
Proteins: the First Biomarkers Discovered

Although many studies are being conducted on SCI, mainly in
rat models, it has not been established yet a corrective ap-
proach to a possible clinical application for SCI. SCI is still
a severe clinical problem, as standard treatments are presently
restricted. However, researches and physicians unanimous
agree that the sooner the patients are treated and the extent
of the lesion is defined, the better it is. There are already
several recent basic research studies and ongoing clinical trials
regarding novel therapies for SCI and some studies using cell
implantations and various growth factors as treatment
[43—45], but none with success.

Nowadays, it is still very difficult to assess damage severity,
prognosis, and therapeutic outcomes, as typical neurological
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exams are used during evaluation. The variable secondary
injury-related symptoms and the recovery variability usually
make it difficult to define the severity of SCI based only on
the neurological exams [46]. At this moment, unfortunately no
laboratory test specific for the diagnosis of SCI is available or
drugs for the treatment. In order to make it possible to define the
extent of the SCI as soon as possible, it becomes more and more
urgent to discover and use biomarkers specific for SCI. This
could guide the researchers and physicians to the discovery of
new target interventions that can be used to prevent or reduce
inability as a result of a SCI.

As defined by Laterza and coworkers in 2009, “An ideal
biomarker of tissue injury should be abundant, be preferen-
tially (or exclusively) produced in the tissue of interest, and be
typically present at low concentrations in the blood and other
body fluids. Upon tissue injury, such biomarkers should be
released into the systemic circulation or other body fluids,
where they can be detected in a blood-based assay or assay
of another accessible body fluid” [47]. Some proteins have
already been identified as good potential biomarkers of CNS
injury both serum and cerebrospinal fluid (CSF) and in human
and animal SCI studies (see Table 1) [46]. These proteins are
from astrocytes, neurons, or microglial cells from the injured
tissue. Potential protein biomarkers that come from astrocytes
are GFAP and calcium-binding protein S100-beta (S10083),
both have their levels significantly higher in serum and CSF
in SCI patients [48, 59]. When the neuronal damage occurs, it
can be detected by modifications of «lII-spectrin breakdown
products (SBDPs), neurofilament proteins, SBDP150 and
UCH-L1, neurofilament light chain (NF-L), phosphorylated
form of neurofilament heavy chain (pNF-H), and tau in
biofluids (CSF and serum) [49, 50, 60]. The levels of some
cytokines are increased in the blood that are related to neuro-
inflammation, such as IL-6, IL1f3, IL12, interferon gamma
(IFNvy), and TNF«x [61]. However, the problem with using
proteins as biomarkers for SCI is that sometimes they should
be collected from the CSF in order to define the severity of the
injury, and acquiring CSF through a lumbar puncture is sig-
nificantly invasive [51]. So, the need to define a biomarker
that could be detected in the blood or another accessible body
fluid would be desirable.

MicroRNA as Biomarkers: the Future?

Emerging studies are pointing at microRNA as a very good
candidate to be this biomarker in the blood because they are
very stable in fluids, are tissue specific, and have phylogenetic
relationship [47]. MiRNAs are endogenously derived, short
(usually 18-22 nucleotides in length) that regulate negatively
the RNA expression of protein translation by binding the 3'-
UTR of their target mRNAs, inducing the mRNA degradation
or its translational repression [62]. MiRNAs are present in all
systems including the CNS and have tissue-specific or

developmental stage-specific expression patterns [63, 64].
There are already some reports using miRNA as biomarkers
in some pathologies, such as Alzheimer, ectopic pregnancy,
low-grade gliomas, pancreatic adenocarcinomas, ovarian can-
cer, breast cancers, and many others [65—69]. Therefore, they
have attracted huge attention because of their pivotal role in
human disease, and have been suggested as promising new
therapeutic targets.

One of the first reports concerning the study and identifi-
cation of miRNAs in SCI was published by Nakanishi and
coworkers, in 2010. The study showed for the first time, using
the methodology of a miRNA-based array screening from the
injured tissue, that the expressions of miR-223 were increased
at 12 h and 3 days after SCI, while miR-124a expression was
considerably downregulated at 1 through 7 days after SCI
[70]. Besides that, they also demonstrated that there was an
increase in miR-1, miR-133a, miR-133b, and miR-451 ex-
pressions and a decrease in miR-129-3p, miR-342, miR-495,
and miR-541 expressions [70]. This work demonstrated for
the first time that there is in a mouse model of SCI a time-
dependent expression pattern of miR-223 and miR-124a,
which may be related to inflammatory responses and cell
death, respectively [70].

After this pioneer work, a lot of other works emerged
concerning the expression of the miRNAs during the first
days after the SCI. The first works were conducted in mouse
and rat models and analyzed the expression of miRNAs at
the injured tissue. Also, in 2010, Liu and coworkers dem-
onstrated that miR Let-7a, miR-21, miR-15b, and miR-16
are modulated and these changes were correlated with var-
iations in expression of their proapoptotic and antiapoptotic
target genes [71]. Two years later, in 2012, the same group
demonstrated that variations in miR-21 and miR-199-3p
expression are correlated with decreased levels of phospha-
tase and tensin homolog (PTEN) mRNA and increased
levels of mechanistic target of rapamycin (mTOR) mRNA.
These two proteins are thought-out to play a crucial role in
the regeneration and plasticity and of injured spinal cord
[72]. Also in 2012, Yunta and coworkers described the ef-
fects of moderate SCI the expression of microRNA 1, 3, and
7 days after the injury at the place of the insult. Interestingly,
this pattern changes consists of few microRNAs being up-
regulated and most being downregulated [4]. In the animals
that where operated, the miR-223, miR-21, miR-219-5p,
and miR-146a were the ones that were overexpressed, while
miR-107 and miR-29¢ were significantly repressed at 3 days
postoperation [4]. What they observed was that there were
variations in approximately 20 microRNA expression at 3
and 7 days after SCI. These changes, which are modulating
cell death through different pathways, may be stimulated by
the apoptosis due to the upregulation of the proapoptotic
miR-15b microRNA as well as the downregulation of up
to seven protective microRNAs at 3 days after the insult [4].
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Table 1 Some protein

biomarkers used in traumatic Biomarker Sample Time of sampling (postinjury) Regulation Reference
human SCI [48-58]
GFAP Serum/CSF 1-21 days [1] [48, 50-54]
pNF-H Serum/CSF 48 h [1] [53, 55]
NF-L Serun/CSF 1-21 days 1] [49, 52, 54]
NSE Serum 72h 11 [53, 54, 56]
IL1-B Serum 2 and 12 weeks postinjury [1] [57]
TNF-o Serum 22 (2-52 weeks postinjury) [1] [57, 58]
IL-6 Serum/CSF 22 (2-52 weeks postinjury) 1] [51, 58]
1L-8 CSF 3—4 days postinjury 1] [51]
IL 1-RA Serum 22 (2-52 weeks postinjury) 1] [58]
Anti-GM; ganglioside Serum 22 (2-52 weeks postinjury) 1] [58]
IgG (G and M)
Tau Serum/CSF =72h 11 [48, 51, 54]
S100-B Serum/CSF 45h (1] [54]

One of the first studies that identified the miR-9* (“*”
tells us that it is found in the cell at lower concentration),
miR-84-5p and miR-219, as auspicious biomarkers for
judging the severity of SCI in the acute phase was done
by Hachisuka and co-workers in 2014. In this work, it
was demonstrated that the levels of all three miRNA
levels are upregulated relatively to the severity of SCI in
the serum of mice within 12 h after injury, suggesting that
these miRNAs might be potential biomarkers for antici-
pating the severity of SCI [73].

Since the first research, concerning miRNA and SCI were
published and to this date, more than 400 miRNAs have been
identified. It was already demonstrated that nearly 300 kinds
of miRNAs had its expression changed in the spinal cord of an
adult rat after a SCIL. This analysis was done by microarray
where a significant variation was noted in 97 miRNAs, of
which 60 were hyperexpressed and the remaining 37 had their
expressions diminished, making them a possible target for
therapy and/or for a biomarker [74, 75].

The major miRNAs described with altered expression in
SCI are described in Table 2.

Recently, it was demonstrated that inhibition of miR 486
and miR20a subsequent SCI significantly reduces apoptosis
and decreases functional deficits, either by upregulating
NeuroD6 expression or by upregulating expression of the ma-
jor target gene, Ngn1, respectively [76, 82], suggesting for the
first time the use of miRNAs as novel drug targets for treating
SCI in humans [76]. Another miRNA that was tested as a
target after SCI was the miR-210. The miR-210 was injected
into spinal cords of mice with SCI, and it induced astrogliosis,
angiogenesis, maintenance of myelin and axons, enhanced
functional recovery, and impeded apoptosis [83].

Among them, some have developed special interest as pos-
sible biomarkers for different phases of the SCI. In a very
recent work, Tigchelaar and coworkers analyzed the expres-
sion of more than 300 miRNAs from a large animal model
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(porcine) of thoracic SCI. They provide a complete study of
variations that occurs across miRNAs during the early
postinjury phase of acute SCI [84]. Here, they describe an
amount of 58 significantly upregulated miRNAs in the severe
SCI group, 21 in the moderate SCI group, 9 in the mild SCI
group, and 7 miRNAs in the SHAM group. Interestingly, there
was a global increase in miRNAs in serum that was correlated
with injury severity that corresponded to a posttranscriptional
regulatory environment considerably modified. This recent
work indicates that the miRNAs in the serum could be hopeful
candidates as biomarkers in order to evaluate the severity of
the damage for SCI or other forms of neurologic injury, even
traumatic and/or acute [84].

Perspectives of Biomarkers in SCI

It should be noticed that although there are already some
miRNAs identified as biomarkers for some diseases such as
glioma, thyroid cancer, and pancreatic cancer in humans
[85-87], we did not find any research conceming the identi-
fication of miRNAs for SCI biomarkers in human patients.
However, we believe that the use of biomarker as a predictive
indicator to guide the prognosis, diagnosis, and treatment can
help patients with SCIL.

During all phases of SCI, there is a modulation of several
miRNA expressions, as can be observed in Fig. 2, which
could be targets for future therapies. It is not difficult to imag-
ine that with the exploration of miRNAs field and its critical
player as regulators in various pathologies, such as cancer and
SCI, it is really pertinent to explore and understand the chance
of using miRNA as therapeutic agents. There are already some
studies that demonstrated the promising use of some anti-
miRNA molecules targeting specific miRNAs in vivo and
in vitro [125, 126]. A great advantage of using anti-
miRNAs for therapeutic applications is that it is easy to ad-
minister through local or parenteral injection routes [127].
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Table2 Some miRNAs with altered expression in SCI [4, 5, 70, 76-81]

miRNA Regulation Action Reference

miR-124a ! Cell Deth [70]

miR-223 1 Inflammatory [70]
response

miR-107 1 Inflammatory [78]
response

miR-148 l [78]

miR-128 ! Cell death [79]

miR-219, miR-138, l Cell death [80, 81]

and miR-338
miR-15b 1 Proapoptotic [4]
miR-127, miR-181a, ! Proinflammatory ~ [4]

miR-411, miR-99a,
miR-34a, miR-30b,

and miR-30c

miR124, miR129 and l [77]
miR1

miR-384-5p miR-30b-5p, | Proinflammatory  [5, 76]
miR-486

miR-17 e miR-20 1 Proinflammatory  [4]

miR-146a, miR-223, 1 Anti-inflammatory [4, 5, 70,
miR-221, and miR-1 77]

However, the limitation for the use of this technology as a
therapeutic tool is the identification of a signature of
miRNAs during pathology, their mechanism of action, deliv-
ery of anti-miRNAs, and their active form in vivo. Once all
this information is available, miRNA could have a brilliant
future and has the potential to be a novel therapeutic tool.

Bioactive Lipids: Possible Therapy?

During the SCI, at the secondary injury, the inflammatory
process is already well described. There are some molecules
described, which are involved in the inflammatory process
during the secondary injury, including the lysophospholipids
(LPs). The inflammatory process is a two-way road, as it is a
major contributor to cell death and loss of neuronal function; it
is also responsible for the clearance of cytotoxic cell debris
[128, 129]. The biochemical changes involved in SCI are not
completely understood; however, recent reports suggest that
LPs may play an outstanding role [130, 131].

Sphingosine-1 phosphate (S1P) and lysophosphatidic acid
(LPA) are simple LPs that also act as bioactive signaling mol-
ecules that play pivotal roles in various biological processes,
such as oncogenesis, CNS development, immune function,
and wound healing. They have been accepted for decades as
simple part in the biosynthesis of cell membranes [132]. LPs
were initially identified described as metabolites and precur-
sors in the de novo biosynthesis of phospholipids. However,
some 30 years ago, there was a paradigm shift, where it was
observed that the LPs have properties similar to signaling
molecules or extracellular growth factors. It should be noticed

that, for decades, the mechanisms of action for LPs after de-
scription of their bioactivities were unknown [132].

Nowadays, it is well established that LPA and S1P regulate
the organogenesis and function of several organic systems,
such as the reproductive systems, cardiovascular, immune,
and nervous. Altered LP signaling is involved in the biology
of disorders, such as obesity, inflammation, cancer, autoim-
mune diseases, atherosclerosis, and neuropathic pain [132].
LPs receptors are expressed by most neural cell types and
are involved in several developmental processes within the
nervous system including: normal brain development and
function, growth and folding of the cerebral cortex, growth
cone and process retraction, cell survival, cell migration, cell
adhesion, and proliferation [133—139].

So, the LP signaling occurs by binding to its cognate re-
ceptors, which coupled to G protein, activates the diverse in-
tracellular messenger systems producing a variety of biologi-
cal responses [135]. The cellular responses induced by the LPs
depend on the cell-surface G protein—coupled receptors
(GPCRs) activated to produce the varied downstream cellular
responses, developmental stage, on cell type and environment
[135] (see Fig. 1).

In 2007, Kimura and coworkers demonstrated that S1P
concentration in the spinal cord was considerably elevated
in the location of a contusion injury, and that such chang-
es stimulated S1P1-mediatedmigration of in vivo
transplanted neural stem/progenitor cells [140]. These
progenitor cells then differentiated into neurons and astro-
cytes, suggesting for the first time an important role for
S1P in SCI [140]. Then, some studies were published in
rodent models which demonstrated that the administration
of FTY720 promotes functional recovery after SCI [141,
142]. FTY720 derivate from the fungal metabolite
myriocin, is chemically made and, when phosphorylated,
acts as a sphingosine-1-phosphate (S1P) agonist and act
on the S1P receptor [143]. The first studies demonstrated
that FTY720 can protect neural cell from apoptosis and
preserve vascular integrity by acting on endothelial cells,
being therefore very effective during SCI [141, 144].
Besides that, FTY720 decreases the astrocyte accumula-
tion in the injured spinal cord reducing the glial scar. It
was also reported that the FTY720 can protect oligoden-
drocyte progenitors from death induced by growth factor
depletion and exposure to activated microglia, and it can
further enhance remyelination through S1P receptors
[144, 145].

The FTY720 was the first drug that modulated S1P recep-
tor approved to treat relapses of multiple sclerosis in 2010 by
Food and Drug Administration [146]. Then, the search for
more selective S1P receptor modulators with better pharma-
cokinetic profiles and fewer side effects started. Now, in ad-
dition to the FTY720, there are eight more drugs capable of
modulating S1P receptors. These drugs are being clinically
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LPs

A

T

Production of a variety of biological
responses
(cell survival, cell migration, cell
adhesion and proliferation)

l

Activation of intracellular
messenger systems
(PLC; MAPK; SRE; Rho; Akt)

Fig. 1 Scheme of LP receptor coupled to GPCRs. LPA or S1P coupled
with the cell-surface G protein—coupled receptors (GPCRs) activated to
produce the diverse downstream cellular responses (diagram by Spohr,
TCLS)

tested in the contexts of multiple sclerosis and other autoim-
mune and inflammatory disorders, such as psoriasis, Crohn’s
disease, ulcerative colitis, polymyositis, dermato myositis, liv-
er failure, renal failure, acute stroke, and transplant rejection
[147]. However, we have still not found any clinical trial
concerning the use of any of these drugs in spinal cord injury.
It is, however, believed that FTY720 could help in multiple
sclerosis reducing the lymphocyte egress and in this way con-
tribute to inhibit axon myelin sheath damage [148].

Up-regulated
miR-21

Down-regulated
miR-145

Spinal Cord

Up-regulated
miR-9 (7days), miR-20, miR-
21, miR-145 (3 days), miR-

146, miR146a, miR-155,
miR-220c, miR-218, miR-
223, miR-486

Conclusion

Contrary to the large number of reports applying miRNAs as
biomarkers using as animal models rat and mouse predomi-
nately, and more recently pig, citing as a model to understand
the phenomenon, we did not find any report investigating the
role of miRNAs as biomarkers in human spinal cord injury. A
small number of studies have already tested the role of some
proteins as biomarkers in patients with SCI. But those bio-
markers were identified in CSF without precise concentrations
[37, 52]. Moreover, none of these studies has correlated the
concentrations of the protein biomarkers with the neurological
outcome of the patients. So, here we suggest the use of
miRNAs as diagnostic tools for predicting outcome after
SCI (Fig. 2). Despite the fact that various studies have tried
to identify miRNA signature profiles for some pathologies,
such as cancers (GBM, breast, bladder) and SCI, unfortunate-
ly, a miRNA profile is still far from being well defined for SCI
[84, 149—-151]. Certainly, more research is mandated in
humans, as we believe that miRNAs may point to a future
era of customized medicine for individuals with SCIs. There
is no doubt that an extensive investigation with high-
throughput sequencing of miRNAs in a significantly large
group of SCI patients or the analysis of miRNA expression
in different phases of the SCI injury is mandatory to the dis-
covery of new therapeutic methods and possible correlations
with SCI progression. Nowadays, several methodologies,
such as molecular biology and gene expression studies (in-
cluding PCR arrays, next generation sequencing, in-situ

Up-regulated

miR-1, miR9*, miR-15b, miR-17, miR-17-5p,
miR-20a, miR-20, miR-20b-5p, miR-21 miR-
30a, miR-31, miR-92a, miR-92b, miR-93, miR-
98, miR-103, miR-106b, miR-107, miR124,
miR-137, miR-145, miR-146a, miR-146b, miR-
148, miR-152, miR-199a-3p, miR-203, miR-
206, miR-210, miR-214, miR-218, miR-221,
miR-223, miR-290, miR-333, miR-374, miR-
378, miR-394-5p, miR- 486, miR-672, miR-
674-5p, miR-872

Injury

down-regulated
miR9, miR-29b, miR-30b-5p, miR-30c, miR-
30d, miR-34a, miR-124, miR-125b-3p, miR-
126, miR-129, miR-137, miR-138, miR-146a,
miR-219-2-3p, miR-218-5p, miR-323, miR-
325-3p, miR-338, miR-379, miR-384-5p,
miR-495, miR-543, miR-708, miR-let-7b

Down-regulated
miR-9 (3 days), miR-21 {14 days),
miR-29b, miR-124, miR-126, miR-
145 (7days), miR-129-1, miR-129-2,

miR-129-3p, miR-220c,
miR-223, miR-342

miR-218,

Fig. 2 Schematic representation of the acute phase; subacute phase and chronic phase after a SCI and some miRNA that could be used as biomarkers

(diagram by Spohr, TCLS) [4, 5, 72, 75-77, 82, 83, 88—124]
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hybridization techniques and microarrays), have made it pos-
sible to profile miRNA expression patterns in some patholo-
gies, such as cancer [152], and in animal models, they are
already been used in order to identify new signature profiles
after SCI [84]. However, these new signatures profiles needs
to be screened and validated in human patients with a signif-
icant cohort. Recently, it was demonstrated that with a cohort
of 46 patients (27 with breast cancer and 19 healthy volun-
teers), it was possible to identify, using a microRNA array,
five miRNAs as novel biomarkers for the detection of breast
cancer [150]. So, we believe that a similar cohort may be
enough to identify a miRNA profile for SCI. Besides, we
believe that in addition to the fact that patients need to be
precisely diagnosed, there is not yet efficient treatment for
SCI, which must also be developed. Some reports have dem-
onstrated that the bioactive lipids, more specifically SIP could
be a promising drug to help SCI patients. Also, FTY720, a
modulator of S1P1 receptors that could reduce lymphocyte
infiltration into the spinal cord following SCI and enhance
the tissue preservation and functional recovery, and it could
be a promising drug [141]. We believe that a method for lo-
cally distribution of specific S1P1 agonists into injury spinal
cord may lead to new therapeutic approaches for treating SCL.
This could open a new avenue for the use of bioactive lipids in
SCI patients. However, this field still needs much more
research.
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