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Abstract
Amyotrophic lateral sclerosis (ALS) is a disease caused by the degeneration of motor neurons (MNs) leading to progressive muscle
weakness and atrophy. Several molecular pathways have been implicated, such as glutamate-mediated excitotoxicity, defects in
cytoskeletal dynamics and axonal transport, disruption of RNA metabolism, and impairments in proteostasis. ALS is associated
with protein accumulation in the cytoplasm of cells undergoing neurodegeneration, which is a hallmark of the disease. In this
review, we focus onmechanisms of proteostasis, particularly protein degradation, and discuss how they are related to the genetics of
ALS. Indeed, the genetic bases of the disease with the implication of more than 30 genes associated with familial ALS to date,
together with the important increase in understanding of endoplasmic reticulum (ER) stress, proteasomal degradation, and autoph-
agy, allow researchers to better understand the mechanisms underlying the selective death of motor neurons in ALS. It is clear that
defects in proteostasis are involved in this type of cellular degeneration, but whether or not these mechanisms are primary causes or
merely consequential remains to be clearly demonstrated. Novel cellular and animal models allowing chronic expression of mutant
proteins, for example, are required. Further studies linking genetic discoveries in ALS to mechanisms of protein clearance will
certainly be crucial in order to accelerate translational and clinical research towards new therapeutic targets and strategies.
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Abbreviations
MN Motor neuron
ALS Amyotrophic lateral sclerosis
UPS Ubiquitin proteasome system
ERAD Endoplasmic reticulum-associated protein

degradation
CAP Chaperone-assisted proteasomal degradation
CMA Chaperone-mediated autophagy
CASA Chaperone-assisted selective autophagy
Ub Ubiquitin
SUMO Small ubiquitin-like modifier
SG Stress granules

C9ORF72 Chromosome 9 open reading frame 72
SOD1 Superoxide dismutase 1
TARDBP TAR DNA-binding protein
FUS Fused in sarcoma
OPTN Optineurin
SQSTM1 p62/sequestosome1
VCP Valosin-containing protein
UBQNL2 Ubiquilin 2
VAPB Vesicle-associated membrane protein-

associated protein B/C
TBK1 TANK-binding kinase 1
FIG4 FIG4 phosphoinositide 5-phosphatase
SIGMAR1 Sigma non-opioid intracellular receptor 1
CCNF Cyclin F
PDIA Protein disulfide isomerase family A member

Introduction

Amyotrophic lateral sclerosis (ALS) is the most frequent mo-
tor neuron disease with an incidence of 2 per 100,000 persons
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per year and a prevalence of 5 per 100,000 people [1]. The
mean age for ALS diagnosis is 64 years old. Signs of spastic-
ity, resistance to movement, and brisk reflexes occur with
upper motor neuron degeneration, while lower motor neurons
damage include muscular weakness, muscular atrophy along
with fasciculations. The consequences are progressive paral-
ysis and difficulties in swallowing and respiration, leading to
death in patients three to 5 years after the diagnosis. Ninety
percent of cases are sporadic (SALS), while the other 10%
comprise familial amyotrophic lateral sclerosis (FALS). ALS
remains incurable, but genetic mutations implicated in the
disease point out several impaired cellular and molecular
mechanisms and, thus, provide clues for potential therapeutic
strategies. These mechanisms include the abnormal response
to oxidative stress, glutamate-mediated excitotoxicity, defects
in cytoskeletal dynamics and axonal transport, and impaired
protein homeostasis [2, 3].

Most neurodegenerative diseases are characterized by an ac-
cumulation of misfolded proteins and by the presence of protein
aggregates in cells [4]. This is largely due to malfunctions in
proteostasis. The term proteostasis refers to the biological path-
ways involved in the biogenesis of proteins including ribosomal
translation, folding and trafficking, and protein degradation in
cells. In ALS, the dysfunction of these mechanisms has been
suspected for many years. In effect, post-mortem studies of ALS
patients have shown protein aggregates in upper and lower mo-
tor neurons [5]. Many of these aggregates have been ubiquitin-
positive, linking these histological observations to a mechanism
of protein degradation, the ubiquitin proteasome system (UPS)
[6, 7]. These aggregates have become a cornerstone of the dis-
ease. Different types of aggregates have been observed.
Ubiquitinated aggregates are classified as either Lewy body-
like hyaline inclusions or skein-like inclusions. These last inclu-
sions appear as randomly oriented filaments covered by fine
granules. In some other cases, ubiquitination is not present.
These aggregates are called Bunina bodies, which are small,
eosinophilic, and round hyaline inclusions [8]. In ALS, protein
inclusions are mainly ubiquitinated and co-localized with the
TDP-43 protein, as initially described in 2006 [9]. These cyto-
plasmic inclusions are present not only in motor neurons but
also in astrocytes in ALS [10, 11]. Subsequently, mutations in
the TARDBP gene encoding TDP-43 were described in FALS
and SALS patients [12, 13]. The aggregation of several proteins
in ALS has also been proposed to proceed via the formation of
SGs. SGs are part of ribonucleoprotein (RNP) granules, which
are cellular sites dedicated to RNA processing [14]. These struc-
tures, whose formation is favored by various types of stress,
have no membrane and are visible under the light microscope.
They contain several species and, in particular, RNA and
ribonucleoproteins.

An increasing amount of misfolded or unfolded proteins is
toxic for cells, generating stress mechanisms, such as the re-
sponse to ER stress. These proteinsmust be efficiently removed

from cells by quality control mechanisms linked to protein
degradation pathways. This is particularly true for neurons that
are not able to dilute their cytoplasmic contents, including dam-
aged substrates, through cellular division. These mechanisms
and pathways also participate in a continuous turnover of pro-
teins and release of amino acids after protein degradation.
Certain steps of these degradation pathways are known to be
downregulated due to decreased expression levels and activity
with age, which pose concern for their implication in several
neurodegenerative diseases, such as ALS [15, 16]. Therefore, it
has been championed that the presence of protein aggregates in
motor neurons and glial cells in FALS and SALS reflects dys-
functions in these quality control protein degradation pathways.
The discoveries in ALS patients of mutations in several genes
encoding proteins directly linked to these pathways support this
hypothesis (Table 1).

In this review, we present defects in proteostasis with respect
to ALS, focusing on disturbances in quality control/degradation
of proteins as a central mechanism in ALS pathophysiology.
We first describe two of the main protein degradation pathways
in cells, the UPS and autophagy. Researchers have shown an
increased interest in proteostasis studies pertaining to ALS
since 1989, when the first article linking ubiquitin and ALS
was published (Fig. 1). More than 30 genes associated with
familial ALS have been described, 15 of which are directly
involved in UPS and/or autophagy mechanisms that will be
described further below. Other susceptible genes, which in-
crease the risk of ALS, also play roles in UPS and/or autophagy.

The Ubiquitin Proteasome System

The UPS was associated with protein degradation in the 1980s
[33]. Ubiquitination of proteins in cells occurs through the
coordinated activity of a unique ubiquitin activating enzyme
(E1), a conjugating enzyme (E2), and a ligase (E3) [34]. E1
activates ubiquitin by an ATP-dependent mechanism.
Ubiquitin (Ub) is then transferred to an E2 by a transthiolation
reaction.We have identified 38 genes encoding E2 enzymes in
the human genome [35]. E3 ligases determine the specificity
of the ubiquitination process by two main mechanisms: a E3
recognizes the E2-Ub complex and transfers Ub to the target
protein, or Ub is transferred from the E2-Ub complex to an E3,
and this E3 transfers Ub to the target protein. The human
genome encodes more than 500 E3 enzymes [36]. These E3
ligases are implicated in many cellular pathways by acting on
protein homeostasis. But they also directly regulate the func-
tion of many proteins involved in key mechanisms, such as
DNA repair for example [37].

The consequence of the binding of a lysine-48 linked poly-
ubiquitin chain to a target protein is its degradation by the 26S
proteasome, a multi-subunit complex containing one 20S do-
main and two 19S subunits (Fig. 2).
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UPS and ALS

Several studies illustrated or suggested deregulation of UPS in
ALS [38–41]. The presence of ubiquitin in intracellular inclu-
sions has been found in motor neurons of FALS and SALS
patients [42, 43]. This positive immune-reactivity for ubiqui-
tin has become a neuropathological feature of ALS. Inclusions
also contain components of the proteasome [44], and impaired
proteasomal function in motor neurons has been observed in
ALS [45]. The decrease in proteasome subunits was observed
during disease progression in the spinal cord of these trans-
genic mice, as well [46]. Another observation was the loco-
motive alteration accompanied by progressive motor neuron
loss detected in the conditional knockout of the murine

proteasome subunit Rpt3 in a motor neuron-specific manner
[29]. Proteasome inhibition, using lactacystin, induced selec-
tive motor neuron death in organo-typic slice cultures [47].
Importantly, genetic evidence has also revealed an implication
of defective UPS in ALS pathogenesis. For example ubiquilin
2, whose mutated form causes X-linked ALS/frontotemporal
dementia (FTD), physically associates with ubiquitin ligases
E3 and the proteasome to mediate protein degradation [48].
Furthermore, mutated valosin-containing protein (VCP) has
been discerned in ALS [49]. One of the suggested functions
of VCP is to maintain the solubility or to reverse the aggrega-
tion of insoluble, misfolded proteins prior to their proteasomal
degradation [50]. The best characterized function of VCP is to
participate in the endoplasmic reticulum-associated protein
degradation (ERAD), a system linked to UPS [51].

ERAD and ALS

Proteins of the secretory pathway represent one third of the
proteins synthesized in cells. These proteins enter the ER in
order to be properly folded. If proteins remain unfolded or are
misfolded in the ER lumen, they enter the endoplasmic
reticulum-associated protein degradation (ERAD) pathway.
ERAD consists of the translocation of these proteins from the
ER to the cytosol to be ubiquitinated and, in turn, degraded by
the proteasome machinery [52]. An accumulation of unfolded/
misfolded proteins in the ER results in a stress response, which
activates the unfolded protein response (UPR). The UPR stim-
ulates the production of chaperones and components of the
ERAD to handle this protein accumulation (Fig. 3). The

Table 1 ALS-associated genes
implication in protein degradation
pathways

Gene Year of discovery Pathway Aggregate

SOD1 1993 UPS/chaperone network with Hsp70 Yes [17–19]

VAPB 2004 Unfolded protein response Yes [20, 21]

TARDBP 2008 Autophagy Yes [8]

FUS 2009 UPS Yes [22]

FIG4 2009 Autophagy nc

OPTN 2010 Autophagy Yes [23, 24]

VCP 2010 UPS/autophagy/ERAD Yes [25]

C9ORF72 2011 Autophagy Yes [26, 27]

SQSTM1/p62 2011 Autophagy Yes [28]

SIGMAR1 2011 ERAD nc

UBQLN2 2012 UPS/autophagy/ERAD Yes [29, 30]

TBK1 2015 Autophagy Yes [31, 32]

PDIA1 and PDIA3 2015 ERAD nc

CCNF 2016 UPS nc

SOD1 superoxide dismutase 1, VAPB VAMP (vesicle-associated membrane protein)-associated protein B,
TARDBP TAR DNA-binding protein 43, FUS fused in sarcoma, FIG4 factor-induced gene phosphoinositide 5-
phosphatase, OPTN Optineurin, VCP valosin-containing protein, C9ORF72 chromosome 9 open reading frame
72, SQSTM1/p62 sequestosome 1, SIGMAR1 sigma non-opioid intracellular receptor 1, UBQLN2 ubiquilin 2,
TBK1 TANK-binding kinase 1, CCNF cyclin F, PDIA protein disulfide isomerase family A member, nc non
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Fig. 1 Trend of publications in PubMed (MEDLINE) for research with
the words: BALS ubiquitin,^ BALS proteasome,^ and BALS autophagy^
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implication of the ER and, particularly, ER stress in ALS has
been questionable for many years [53, 54]. A thorough review
on this particular point has been previously published [55].
Causes of ER stress in motor neurons are several. Briefly, how-
ever, as protein folding is calcium-dependent, an imbalance of
calcium levels in the ER may be at play [56]. Inhibition of ER-
Golgi transport by mutant SOD1, TDP-43, or FUS can also
result in ER stress [57]. The most studied causes of ER stress
in ALS are genetic mutations leading to accumulations of pro-
teins in the ER and consequently to a stress.

SUMO Pathway

The UPS system has a tight relationship with the SUMO path-
way. Like ubiquitin, SUMO proteins are expressed as precur-
sors and, after being cleaved by SENPs (sentrin-specific

proteases), they enter the SUMO pathway. The main contribu-
tion of the SUMO pathway in proteostasis is its ability to co-
operate with or balance the UPS system [58]. Indeed, these two
systems work cooperatively [59]. Nevertheless, they can com-
pete if a certain lysine residue on the target protein can be either
ubiquitinated or SUMOylated. Proteins encoded by genes mu-
tated in ALS patients, such as SOD1, VCP, and TDP-43, are
targets of the SUMO pathway. SOD1 mutants co-localize in
aggregates in cells with ubiquitin but also with SUMO proteins.
Studies have reported that SUMO1 and SUMO3 increase ag-
gregation of SOD1mutants [60, 61]. Remarkably, we observed
an inhibition of mutant SOD1 aggregation in motor neurons
through the prevention of its SUMOylation on lysine 75 [62].
We have also reported that other proteins encoded by ALS-
related genes, such as OPTN or VAPB, contain SUMO consen-
sus sites and, thus, could be SUMOylated [63]. Finally, an

19S

19S

20S

Proteasome 26S

Peptides

Ubiquitination

Ubiquitin 

recycling

Hsp70

CAP

UPS presentation

BAG2

Folding

UBQLN2

VCP

CCNF

Misfolded proteins

FUS

CHIP

Hsp70

CHIP

SOD1

BAG1

Ubiquitination 

via CHIP

SOD1

VCPUBQLN2

+ ATPE1

E2

E3

C9ORF72

UBQLN2

VCP

SOD1

U

U

U

Un

Un

C
y
to

p
la

s
m

Fig. 2 Schematic representation
of mechanisms implicated in
ubiquitin proteasome system
(UPS) and links with ALS.
Misfolded proteins are poly-
ubiquitinated (Un) through the
coordinated activity of an ubiqui-
tin activating enzyme (E1), a
conjugating enzyme (E2), and a
ligase (E3). UBD (ubiquitin-
binding domain) containing pro-
teins (such as UBLQN2, VCP)
bind ubiquitin-tagged substrates
before degradation by the protea-
some 26S. Chaperone-assisted
proteasomal degradation (CAP)
pathway contributes to improve
the presentation of ubiquitinated
proteins to the proteasome thanks
to co-chaperone and an E3 ligase
called CHIP. CHIP is able to bind
Hsc70/Hsp70 which are associat-
ed with misfolded or aggregated
proteins during protein quality
control. Other proteins are impli-
cated in CAP: BAG1 recruitment
leads to proteasomal degradation
and BAG2 binding leads to cor-
rect folding and stops degrada-
tion. In red, genesmutated inALS
and their implication in UPS:
chromosome 9 open reading
frame 72 (C9ORF72), ubiquilin 2
(UBQNL2), valosin-containing
protein (VCP), fused in sarcoma
(FUS), cyclin F (CCNF), super-
oxide dismutase 1 (SOD1)
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additional observation relating the SUMO pathway to ALS is
the fused in sarcoma protein (FUS), a SUMO1 E3 ligase
encoded by an ALS causative gene [64].

Chaperone-Assisted Proteasomal Degradation

Molecular chaperones are facilitators of protein folding and as-
sembly. They also play a central role in protein degradation by
facilitating the sorting ofmisfolded proteins to the proteasome or
the lysosomal compartment. The chaperone-assisted
proteasomal degradation (CAP) is one of these facilitating sys-
tems. CAP improves the access of ubiquitinated proteins to the
26S proteasome using a co-chaperone ubiquitin ligase called
CHIP. CHIP binds Hsc70/Hsp70 and Hsp90, which are associ-
ated with misfolded or aggregated proteins during protein

quality control (Fig. 2). InALS, CHIP promotes the proteasomal
degradation of ALS-linked mutant SOD1 by ubiquitinating
Hsp/Hsc70 [40]. CHIP-mediated CAP is also linked to the deg-
radation of several proteins that aggregate in neurodegenerative
diseases such as Alzheimer’s and Parkinson’s diseases [65].
Studies have revealed that Hsps are sequestered within SOD1-
positive aggregates in ALS, reducing their capacity to take care
of with misfolded proteins [66] (Fig. 2).

Autophagy

Autophagy plays a significant role in neurodegenerative dis-
eases. For instance, the inactivation of constitutive autophagy,
in Atg7 (autophagy-related 7)-deficient mice, results in the
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by UPS (ERAD). Because proteasomes are in the cytoplasm,
ubiquitinated substrates are translocated back in cytosol through trans-
membrane proteins cooperating with protein such as UBQLN2 in order to
present substrates to degradation. In red, genes mutated in ALS and their
implication in ERAD: protein disulfide isomerase family A member
(PDIA), sigma non-opioid intracellular receptor 1 (SIGMAR1), vesicle-
associated membrane protein-associated protein B/C (VAPB), fused in
sarcoma (FUS), valosin-containing protein (VCP), ubiquilin 2 (UBQNL2)
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formation of Ub-positive, cytoplasmic protein inclusions in
neurons and drives behavioral defects and neurodegeneration
[67]. Its implication in ALS is critical as demonstrated by the
fact that several proteins encoded by genes mutated in FALS
participate in autophagy processes. The term autophagy en-
tails three protein-presentation mechanisms on lysosomal ves-
icles for degradation: macro-autophagy (including chaperone-
assisted selective autophagy, CASA), chaperone-mediated au-
tophagy (CMA), and micro-autophagy. Macro-autophagy
comprises in the removal of aggregated proteins via the for-
mation of a bilayer membrane autophagosome that encapsu-
lates substrates in the cytosol, such as misfolded proteins,
before fusing with the lysosome to allow degradation and
recycling (Fig. 4). Chaperone-mediated autophagy (CMA)
degrades cytosolic proteins containing the pentapeptide motif,
KFERQ, recognized by Hsp70 and sent to lysosomes (Fig. 4).

P62/sequestosome1 is an autophagy receptor that binds
ubiquitinated proteins and recruits them to the autophagosome
[68]. Several observations directly link P62/sequestosome1 to
ALS. For example, the depletion in C9ORF72 protein, which
is one of the possible pathogenic mechanisms in C9ORF72-
linked ALS, causes the accumulation of p62/sequestosome1-
positive inclusions in cell lines and primary neurons. Notably,
C9ORF72 controls the Rab1a-dependent trafficking of the
ULK1 autophagy initiation complex [69]. Another example
is that mutant SOD1 can be recognized by p62/sequestosome1
in an ubiquitin-independent manner and targeted to for au-
tophagy [70].

Moreover, optineurin is another important autophagy re-
ceptor presenting ubiquitinated substrates to autophagic pro-
cesses [71]. Target components of autophagy containing p62/
sequestosome1 or optineurin, called cargo or substrates, are
then associated with a bilayer membrane vacuole, called
phagophore, through the interaction with autophagic receptor
with light chain 3 II (LC3-II). Then, the phagophore extends
its membrane to engulf cargo. This autophagosome can merge
with the lysosome to create an autolysosome, where cargo
degradation occurs. These formations of vesicles, from
phagophores to autolysosomes, are regulated by several pro-
teins, one of which is TANK-binding kinase 1, a cargo recruit-
er in autophagy [31]. Recently, mutations in its gene TBK1
were found in ALS [72].

Autophagy and ubiquitin proteasome system and have
been viewed as two separate pathways with no or little inter-
play. Recent works indicate that this is not the case. Crosstalk
exists from the UPS to the autophagy and from the autophagy
to the UPS [73]. For example, bortezomib, a proteasome in-
hibitor, induces autophagy [74]. Autophagic inhibition can
also impair proteasomal function, resulting in protein accumu-
lation and aggregation [75]. Cooperation seems also very im-
portant between UPS and autophagy. These two systems act
together for protein degradation in cells, with the UPS mainly
implicated in degradation of soluble proteins, and autophagy

in degradation of insoluble and/or aggregated proteins. For
example, CHIP protein is directly implicated in the choice
between UPS and autophagy. Indeed, as previously men-
tioned, CHIP acts in CAP, leading to proteasomal degradation
of misfolded proteins. But it can also mediate autophagic deg-
radation of misfolded and/or aggregated proteins [76].

Causative Genes in ALS and Protein
Degradation Pathways

Significant advances have been made in the genetic footprint
of ALS since the discovery of mutations in the SOD1 gene in
ALS patients in 1993 [26, 27]. To date, more than 30 genes
have been demonstrated to be involved in familial ALS. They
are listed in the Amyotrophic Lateral Sclerosis Online
Genetics Database website (http://alsod.iop.kcl.ac.uk/).
These genes have mostly been identified through exome
screening analysis, candidate gene strategies and linkage
approaches have also rendered important results. For
instance, a hexanucleotide repeat expansion (HRE) in the first
exon of C9ORF72 was discovered in ALS patients thanks to
linkage analyses followed by sequencing [77, 78]. These dis-
coveries indicated the involvement of several molecular
mechanisms in the disease, including those regulating proteins
degradation in cells.

C9ORF72

The pathogenic hexanucleotide repeat expansion (HRE)
(GGGGCC)n found in C9ORF72 is the most common genetic
cause of ALS [77, 78]. It is present in up to 50% of FALS
cases and around 10% of SALS cases [79]. This mutation in
C9ORF72 is associated with neuronal inclusions [80, 81]. The
function of C9ORF72 protein is still unclear. Conditional
knockout of C9ORF72 in mice does not result in motor neu-
ron degeneration [82]. Bioinformatics studies have indicated
the presence of a DENN domain (differentially expressed in
normal and neoplastic cells) in C9ORF72 protein. This partic-
ular domain has been ascertained in more than 20 proteins,
whose function is often to act as guanine nucleotide exchange
factors (GEFs) for Rab GTPases or Rag GTPases [83, 84].
The consequences of the HRE mutations could be multiple.
Three mechanisms have been proposed: loss of function
caused by a decreased expression of the protein, production
of toxic GGGGCC repeat-containing RNAs, and accumula-
tion of dipeptide repeat proteins (DPR) produced by non-
canonical translation (repeat-associated non-ATG translation,
RAN) [2, 85, 86].

Ubiquitin-positive inclusions are present in post-mortem
brains and in skeletal muscles of C9ORF72 ALS patients,
suggesting an implication of the ubiquitin pathway in the
pathogenesis [87]. Transcriptional studies in C9ORF72
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expansion carriers have displayed significant dysregulation of
ubiquitination-related genes such as E2 genes UBE2I,
UBE2Q1, UBE2E1, and UBE2N [88] (Fig. 2). The two
gain-of function hypotheses, i.e., the production of toxic
hexanucleotide repeat-containing RNAs and toxic dipeptide

repeat proteins (DPR), could impair the ubiquitin proteasome
pathway. Concerning the DPR hypothesis, a recent in vitro
study on the effects of proline/arginine dipeptide repeats (20
repeats) in rat primary spinal cord cultures demonstrated a
reduction in flux through both the proteasomal and autophagic
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Fig. 4 Schematic representation of autophagy and links with ALS.
Chaperone-mediated autophagy (CMA) pathway is dedicated to
misfolded proteins containing a specific motif: KFERQ (sequence present
in 30% of cytoplasmic proteins). These misfolded proteins are recognized
by Hsc70/co-chaperones complex and delivered to the lysosome through
lysosomal membrane-associated protein 2A (LAMP-2A), a CMA adap-
tor. Concerning macro-autophagy, poly-Ub chains on cytoplasmic pro-
teins triggers autophagy receptor recruitment (such as OPTN, p62/
sequestosome1, UBLQN2) thanks to their ubiquitin-binding domain.
Cargos are associated with a double membrane vacuole (phagophore)
through the interaction of autophagic receptor with light chain 3 II
(LC3-II). LC3-II proteins are activated by cleavage and lipidation of
LC3 form by autophagy-related proteins 5 and 7 (Atg5/7) before incor-
poration in the phagophore membrane. The phagophore extend his

membrane to engulf cargos. Next, the autophagosome can merge with
lysosomes to create an autolysosome where protein degradation occurs.
Chaperone-assisted selective autophagy (CASA) is a particular macro-
autophagy pathway: Hsc/Hsp70 and HspB8 chaperones with the associ-
ation of BAG3, a co-chaperone, improves the recognition of cargos and
attracts components of the autophagy machinery. BAG 3 facilitates bind-
ing with p62, an autophagic receptor. In red, genes mutated in ALS and
their implication in autophagy: superoxide dismutase 1 (SOD1),
optineurin (OPTN), TANK-binding kinase 1 (TBK1), TAR DNA-
binding protein (TARDBP), ubiquilin 2 (UBQNL2), p62/sequestosome1
(SQSTM1), chromosome 9 open reading frame 72 (C9ORF72), valosin-
containing protein (VCP) , fused in sarcoma (FUS), FIG4
phosphoinositide 5-phosphatase (FIG4)
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degradation pathways [89]. A recent study challenges the im-
pact of DPR in neurodegeneration since there is not much
DPR aggregation in motor neurons from C9ORF72 mutated
ALS patient’s spinal cord [90]. DPR accumulation may be not
responsible for motor neuron loss; nonetheless, potential con-
tribution of DPR in the disease could go through other mech-
anisms than aggregation. In vitro studies related an UPS im-
pairment and evidence of ER stress in primary neurons ex-
pressing DPR poly-GA [91].

Neuronal, cytoplasmic inclusions are also positive for p62
protein (sequestosome 1, SQSTM1) in post-mortem brain tis-
sues from C9ORF72 ALS patients [92]. Levels of p62 and
LC3, another protein directly involved in autophagy, are in-
creased in mice lacking C9ORF72 [93]. Abnormalities in au-
tophagy pathways have been found in patient-derived neurons
[94]. This might be a consequence of a defect in
autophagosome formation, because C9ORF72 controls the
Rab1a-dependant trafficking of the ULK1 autophagy initia-
tion complex. Cells expressing endogenous tagged
C9ORF72, using a CRISPR-Cas9 approach, revealed its lo-
calization on the surface of lysosomes when cells were starved
of amino acids [17]. Surprisingly, recent studies have indicat-
ed the implication of C9ORF72 in a protein complex contain-
ing SMCR8 (another DENN domain-containing protein) and
WDR41 [18]. These proteins have also been found on lyso-
somes [19]. This complex regulates the autophagy-lysosome
pathway (Fig. 4). Altogether, current knowledge supports a
defect of both ubiquitin proteasome pathway and autophagic
pathway in ALS pathogenesis linked to C9ORF72 mutation.

SOD1

The superoxide dismutase 1 (SOD1) gene is altered in 20% of
FALS cases and in 2–7% of SALS cases (http://alsod.iop.kcl.
ac.uk). More than 180 mutations have been described. The
enzyme encoded by SOD1 is part of the defense mechanisms
against oxidative stress. SOD1 inactivates superoxide radicals
by generating dioxygen and hydrogen peroxide [95]. Several
transgenic murine lines for SOD1 studies have been
generated—knockout mice deficient in SOD1 and mice
bearing a human transgene of FALS-associated mutant SOD1
[96, 97]. These mice, which exhibit a reduced life span, togeth-
er with in vitro experiments, support a gain-of-function mech-
anism for ALS-linked SOD1 mutations.

SOD1/ubiquitin-positive aggregates are found in ALS pa-
tients carrying a mutation in the SOD1 gene [26, 98]. These
protein aggregates can be observed both in animal and in cel-
lular models expressing mutants SOD1 [99, 100]. Several
mechanisms have proposed to explain the cause of toxicity
by mutant SOD1 proteins, but the main hypothesis states that
mutations induce structural destabilization, prompting the im-
proper folding of SOD1 followed by its aggregation [101, 102].
The accumulation of mutant, unfolded/misfolded SOD1

proteins in the ER triggers a stress signal that activates the
UPR. For example, mutants SOD1 interact with Derlin-1, a
component of the ERAD machinery, and trigger ER stress
[103]. This ER stress has been observed in human-transgenic
animals and cellular models expressing mutants SOD1 [104].
SOD1mutations can also impaired proteasome activity. Indeed
the level of the 20S proteasome was reduced in lumbar spinal
motor neurons relative to the surrounding neuropil in the spinal
cord of transgenic mice expressing the familial ALS superoxide
dismutase 1 (SOD1) G93A mutant. Several strategies have
been employed to prevent or diminish the formation of SOD1
positive aggregates. We recently presented that inhibition of
SOD1 SUMOylation inhibits mutant SOD1 aggregation
in vitro [62]. In neurons, the E3 ubiquitin ligase dorfin
ubiquitinates mutant SOD1 proteins and targets them for
proteasomal degradation [105]. Interestingly, human Dorfin
overexpression in SOD1G93A mice decreases the amount of
mutant SOD1 protein in the spinal cord and improves neuro-
logical phenotypes [106]. Another mechanism for mutant
SOD1 protein toxicity could be a direct effect on proteasomal
activity. Double transgenic mice expressing a fluorescent re-
porter substrate of the proteasome (UbG76V-GFP) and
SOD1G93A revealed a lowered expression of proteasomal sub-
units, followed by a build-up of the reporter substrate [46].

Autophagic processes also appear to play an important role
in toxicity generated by mutants SOD1. Parkin, an E3 ubiq-
uitin ligase related to Parkinson’s disease, allows the poly-
ubiquitination of mutants SOD1, promoting their degradation
by the autophagy-lysosome system [107]. The clearance of
aggregates, mutated SOD1 by macro-autophagy is mediated
by Hsp70 and its co-chaperone BAG3 [108]. Not long ago,
the E3 ligase Mahogunin ring finger 1 (MGRN1) was shown
to contribute to the clearance of toxic mutant SOD1 aggre-
gates likely through autophagy [109]. SQSTM1 and ALS2,
two ALS-linked factors, have displayed additive protective
roles against mutant SOD1-mediated toxicity through modu-
lating proteostasis perhaps by way of autophagic processes
[110]. The reason behind the selective degeneration of motor
neurons in SOD1-linked ALS is still not understood. One
proposed idea argues that these neurons are less able to cor-
rectly degrade unfolded/misfolded proteins. It is intriguing to
note that comparisons between the NSC-34 motor neuronal
cell line and the the C2C12 muscle cell line revealed that the
efficiency of activation of the autophagic system in the context
of SOD1 mutants expression is reduced in NSC-34 cells. All
these data support an implication of both the UPS and autoph-
agy in SOD1-assoiated ALS.

TARDBP

The TARDBP (trans-activation element DNA-binding protein)
gene is mutated in 5% of FALS cases and 1% in SALS cases
[111, 112]. More than 50 different mutations have been
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identified. A majority of these mutations are located in the 3′
region encoding a glycin-rich domain in its product, TDP-43.
TDP-43 is for the most part expressed in the nucleus. It par-
ticipates in RNA metabolism in many ways—transcriptional
regulation, splicing, mRNA stabilization (including its own
transcript), and miRNA processing. TDP-43 also regulates
axonal transport and neuronal plasticity [113]. In ALS, TDP-
43 is often observed in the cytoplasm, which corresponds to
its mislocalization. Post-mortem studies on ALS patients as-
sociated with studies on animal and cellular models express-
ing mutant human TDP-43 support the role of two mecha-
nisms in TDP-43’s pathogenesis [114]: A cytoplasmic build-
up of hyper-phosphorylated TDP-43 and a clearance of nucle-
ar TDP-43.

The observations of TDP-43-positive aggregates in post-
mortem studies of ALS patients preceded the discovery of
mutations in its gene TARDBP [9]. These aggregates were
also ubiquitin-positive. Notably, TDP-43-positive aggre-
gates are present even in the absence of mutations in the
TARDBP gene. Mutations in other ALS-related genes, such
as C9ORF72 or FUS for example are associated with cyto-
plasmic aggregates containing TDP-43 [115, 116]. A strong
connection between TDP-43 and UPS has been proposed.
Cells treated with proteasome inhibitors demonstrated an
accumulation of ubiquitinated and insoluble TDP-43 parti-
cles [117]. Several enzymes participate in TDP-43
ubiquitination, such as UBE2E3 and UBPY [118]. TDP-
43 aggregates consist of the adaptor proteins sequestosome
1 and ubiquilin 2, two proteins associated with UPS and
autophagy [119]. The precise role of UPS in TDP-43
proteostasis still remains to be determined. Research efforts
in cell lines showed that the UPS primarily acts on the
degradation of soluble TDP-43 proteins, whereas aggregat-
ed TDP-43 requires autophagic clearance [120].

Several observations support an important role for autoph-
agy in TDP-43-linked pathogenesis. RNAi knockdown of
TDP-43 in Neuro2A cells shows downregulation of
autophagy-related protein 7 (ATG7) at both the mRNA and
protein level [121]. ATG7 is an integral constituent of the
autophagy machinery (Fig. 4). Several chemical compounds
that stimulate autophagy improved TDP-43 clearance and en-
hanced survival of primary murine neurons and human stem
cell-derived neurons harboring mutant TDP-43 [122]. TDP-
43 could also influence or interfere with autophagy by an
effect on stress granules (SGs). TDP-43 mutants perturb SG
dynamics, engendering their persistence in the cytoplasm and
a possible toxic gain-of-function [123]. SG breakdown is de-
pendent on selective autophagy [22]. In fact, administration of
rapamycin, an inducer of autophagy, promotes SG clearance.
It is now clear that TDP-43 is a major factor in motor neuron
death in ALS by directly or indirectly disturbing the dynamics
of several cellular machineries, such as the UPS, the break-
down of stress granules, and autophagy. Further studies on the

mechanisms of TDP-43 aggregation and its localization in the
nucleus versus the cytoplasm in motor neurons are necessary.
Remarkably, a recent study showed that a physiological olig-
omerization of TDP-43 through its N-terminal domain antag-
onizes its pathological aggregation [124].

FUS

The implication of the FUS gene (fused in sarcoma) mutations
in ALS was recognized in 2009 [23, 125]. Mutant FUS is
observed in 4% of FALS patients and 1% of SALS patients
[23, 112, 125].More than 79mutations have been described at
present, predominantly in the 3′ region encoding an arginine/
glycine-rich region and a NLS domain (nuclear localization
signal). FUS, which is essentially localized in the nucleus,
regulates RNA processing, splicing, and mRNA trafficking
[126]. FUS can also bind DNA, taking part in genomic integ-
rity. Furthermore, FUS possesses SUMO E3 ligase activity
[64] (Fig. 2). In contrast to Tdp-43, the homozygous knockout
of Fus is lethal in embryos [127]. FUS’s connection to ALS
pathogenesis could be related to both loss and gain-of-
function mechanisms [128].

Pathogenic mutations of FUS are associated with aggre-
gates immune-reactive for FUS within the cytoplasm of neu-
rons and glial cells [129]. These aggregates and the
mislocalization of FUS appear essential in the processes of
degeneration in ALS. In Drosophila, the ectopic expression
of human FUS mutant influences motor neuron degeneration.
Strikingly, if mutations are introduced into the RNA-binding
region of FUS, aggregation and degeneration are abridged,
suggesting that the RNA-binding activity of FUS is critical
for aggregate formation [130]. Several studies have exhibited
a co-localization of FUS and ubiquitin in some aggregates, but
not all [24, 131]. This suggests that ubiquitination of FUS
could be a late event in the formation of aggregates and that
the UPS may not be crucial in FUS-associated neurodegener-
ation [132].

A recent work on transgenic mice overexpressing FUS
without a NLS domain showed neuronal loss in the motor
cortex and the presence of ubiquitin/p62-positive aggregates.
RNA-seq analysis revealed specific transcriptome alterations,
such as genes regulating endoplasmic reticulum stress [133].
Studies also showed an implication of FUS in SGs dynamics.
ALS-associated mutants of FUS increased the lifetime of SGs
in the cytoplasm [134]. These mutants also disrupt the autoph-
agy mechanisms by inhibi t ing the format ion of
autophagosomes [135] (Fig. 4). Overexpression of Rab1, a
protein involved in autophagosome formation, restores the
autophagy defects induced by mutant FUS. Despite these re-
cent efforts, the role of autophagy in degeneration associated
with mutant FUS remains enigmatic. Nevertheless, many
findings advocate that abnormalities in RNA metabolism en-
compass the cause of neurodegeneration in FUS-linked ALS.
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Altered RNAmetabolism promotes the expression of atypical
RNAs and proteins that form aggregates, disrupting the ubiq-
uitin pathway and autophagy.

OPTN

Mutations in the OPTN gene coding for optineurin were first
linked to glaucoma [136]. The mutation in OPTN was then
described in ALS [137]. Mutations were found in approxi-
mately 1% (2/161) of FALS and 3.5% (4/113) of SALS in
an Italian cohort [138]. In a Japanese cohort, 3.8% of FALS
patients and 0.29% of SALS patients carriedOPTNmutations
[28]. Optineurin plays a role in the maintenance of Golgi
apparatus and vesicular and membrane trafficking. It contains
a ubiquitin-binding domain (UBD) and a LC3-interacting re-
gion (LIR), indicating functions in both the UPS and
autophagy.

Optineurin-positive aggregates are present in FALS and
less frequently in SALS. These inclusions are also composed
of ubiquitin and other proteins involved in ALS, such as TDP-
43 and FUS [131, 137]. A recent work showed that optineurin
is mainly degraded by the UPS [139]. The E3 ubiquitin ligase
Hdr1 might be a key protein in this pathway because its over-
expression enhances the degradation of optineurin. This study
also suggested that the formation of optineurin-containing ag-
gregates is dependent on the UPS. Autophagy seems to play a
less significant role in this particular function. However,
optineurin has paramount functions in autophagy in physio-
logical conditions. It is a ubiquitin-binding receptor that inter-
acts, through its UBD, amino acid 474–479, in a complex with
TBK1 (TANK-binding kinase 1), another protein whose gene
is mutated in ALS [140]. TBK1 phosphorylates optineurin,
enhancing its interaction (amino acid region 412–520 contain-
ing UBD) with LC3 [71] (Fig. 4). Optineurin also regulates
autophagy through its interaction with myosin VI, which pro-
motes the fusion of autophagosomes with lysosomes [141,
142] (Fig. 4). Genetic analyses of ALS patients pinpoint a
mutation within the UBD (p.E478G) which provokes alter-
ation in LC3 level and turnover thereupon decreased autoph-
agy and displayed weakened interaction with myosin VI, en-
gendering autophagosomes’ poor maturation [143].
Conjointly, this mutant and another ALS-related mutation
(p.Q398X) disrupt myosin VI-mediated autophagosome-lyso-
some fusion and intracellular trafficking pathways and induce
ER stress [144]. Recent studies support several major roles for
optineurin in neuroprotection: regulation of autophagy, partic-
ipation in inflammatory signaling, blockade of necroptosis,
and regulation of apoptosis [145]. A recent study reports that
OPTN regulates apoptosis via linear ubiquitin binding [146].
Additional research will consequently be necessary to precise-
ly describe which functions of optineurin are particularly in-
volved in neurodegenerative processes in ALS.

SQSTM1/p62

Mutations in SQSTM1 have been described in 1 to 3% of
patients with FALS [25, 147]. SQSTM1 encodes the protein
p62/SQSTM1 (sequestosome 1) which regulates various bio-
logical processes such as transcription, degradation by UPS
and autophagy, and apoptosis.

Aggregates harboring p62 have been identified in patients
with ALS and ALS/FTD [148]. p62 is a ubiquitin-binding pro-
tein and, thus, may be involved in the regulation of the UPS
[149]. p62 is better known for its role in autophagy. Indeed, as
optineurin, p62 is an autophagy receptor that interacts with
LC3, a key protein in autophagy [150] (Fig. 4). ALS-
associated mutations located in the LC3-interacting region of
p62 have been characterized in ALS [151]. Inhibition of p62
expression utilizing RNA interference has been seen to lead to
autophagy defects. In vivo studies on a zebrafish knockdown
model on a sqstm1 ortholog have showed locomotive impair-
ment and have supported an association between ALS and
mutated SQSTM1 through a loss-of-function mechanism
[152]. Yet, gain-of-function mechanism is also fathomable, be-
cause p62 is related to the UPS and the proteostatic and redox
balance. p62 participates in one of the mechanisms controlling
redox stress, the Keap1-Nrf2 pathway that activates the expres-
sion of antioxidant enzymes [153, 154]. In fact, a recent study
proposed that the E3 ligase TRIM21 ubiquitinates p62 and that
the binding of p62 to ubiquitin plays an essential role in p62-
regulated redox homeostasis [155].

VCP

Mutations in the VCP gene (valosin-containing protein, p97)
were initially observed in inclusion bodymyopathy associated
with Paget Disease of bone and frontotemporal dementia
[156]. VCP’s pathology is characterized by aggregates con-
taining ubiquitin and TDP-43. Neuroanatomic results have
revealed the presence of VCP in ubiquitin-staining inclusions
in several other neurodegenerative diseases, including ALS
[157]. A mutation in VCP has been also identified in familial
case of ALS with dominant inheritance [49]. Today, mutations
in the VCP gene are found in approximately 2% of FALS case
studies [49]. This gene codes for a protein from the AAA+
ATPase family involved in protein homeostasis and protein
structure remodeling [30]. Loss of VCP in mouse models is
lethal prior to implantation, indicating a crucial role for this
protein [158].

VCP is involved in many cellular functions, including reg-
ulation of transcription and cell proliferation. Its participation
in ALS pathogenesis may be related to its role in mitochon-
drial energy production [159]. But VCP is best recognized for
its role in proteostasis, particularly for the UPS. It binds to
ubiquitinated proteins through its N-terminal domain [160]
(Fig. 2). This function overlaps with the ERAD mechanism,
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which allows the release of aberrant proteins from the ER to
be degraded by the proteasome [161] (Fig. 3). VCP has links
with ER stress. The mutation in the domain of VCP that en-
codes a hexameric ATPase crucial for protein degradation
during ER stress. Also, ER stress caused by protein aggrega-
tion activates the SUMOylation of VCP, a post-translational
modification, generating its assembly into a hexameric form
and its capacity to participate in the ERAD response [162].
The SUMOylation of VCP at its N-terminal domain is re-
duced by ALS-causing mutations. Another link between
VCP and the UPS is its interaction with PI31 protein
(PMSF1), a regulator of proteasome complex activity [163].
It is very likely that there is a strong relationship between
defects in the UPS caused by mutated VCP and motor neuron
degeneration in ALS, but defects in autophagy may also be at
play. Indeed, depletion of VCP in cell cultures disrupts
autophagosome maturation [164, 165] (Fig. 4). Also, a recent
study showed that VCP regulates the clearance of lysosomes
by autophagy [166] (Fig. 4). In motor neurons, many endog-
enous factors, such as protein aggregates and reactive oxygen
species (ROS), induce lysosomal damage. A loss of this par-
ticular function of VCP in autophagy could, as a result, influ-
ence ALS pathogenesis, by way of defects in protein degra-
dation by the UPS.

UBQLN2

The UBQLN2 gene is currently the only X-linked gene in-
volved in ALS. Its mutation results in a dominant inheritance
pattern [48]. UBQLN2 encodes for the ubiquilin 2 protein
containing an N-terminal ubiquitin-like domain (UBL) and a
C-terminal ubiquitin-associated domain (UBA) [167]. The
UBA domain binds poly-ubiquitinated proteins, while the
UBL domain binds the cap of the 26S proteasome. Thus,
ubiquilin 2 delivers poly-ubiquitinated proteins to the protea-
some for degradation (Fig. 2). It is also involved in autophagy,
cell signaling, cell cycle progression, and cytoskeletal associ-
ation. [20].

Histopathological analyses on familial and sporadic ALS
cases have showed aggregates with ubiquilin 2, regardless of
UBQLN2mutation. These aggregates are sometimes also pos-
itive for TDP-43, FUS, p62, and ubiquitin [21, 48]. A recent
study showed that ubiquilin 2 associates with the chaperone
HSP70 to clear protein aggregates via the proteasome, and
that ALS-related mutants ubiquilin 2 are defective in chaper-
one binding [168]. Moreover, ubiquilin 2 appears to be in-
volved in the ERAD response [169] (Fig. 3). Concerning au-
tophagy, ubiquilin 2 interacts with LC3, suggesting that it
participates in delivering cargo to autophagosomes [170,
171] (Fig. 4). This could mean that mutant UBQNL2 fails to
deliver cargo to the proteasome for degradation [172] (Fig. 4).
Altogether, these findings indicate that ubiquilin 2 has a sig-
nificant function in regulating protein homeostasis by

mediating protein degradation by UPS and autophagy and
thus acts as a neuroprotective protein. A deficit in functional
ubiquilin 2 would therefore be a risky situation for motor
neurons. Current efforts in rodent models, such as transgenic
rats, have advocated that an excess of ubiquilin 2 instills a
toxic gain-of-function in motor neurons [173]. In contrast,
another study showed that mice expressing ALS/FTD-linked
UBQLN2mutants demonstrate cognitive deficits and develop
motor neuron disease, but mice overexpressingWTUBQLN2
were mostly devoid of clinical and pathological signs of ALS
[174]. In conclusion, the relation betweenUBQLN2mutations
and defects in proteostasis appears to be paramount in ALS,
but the precise mechanisms have not been unequivocally iden-
tified. A possible solution could result from studies done di-
rectly on patients’ cells. For example, a recent work on lym-
phoblasts from ALS patients carrying mutations in UBQLN2
reported increased LC3-II and p62 levels, supporting a
deregulated proteasome and lysosome in ALS [175]. Further
investigations on these cells could further shed extensive in-
formation on this matter.

VAPB

VAMP/synaptobrevin-associated protein (VAPB) gene is mu-
tated in rare cases of ALS. The first mutation was discovered
in a Brazilian family in 2004 [32]. This study, together with
others, indicated that mutations in VAPB are associated with
the following phenotypes with dominant, autosomal inheri-
tance: classic, adult form of ALS, atypical form with postural
tremor, and adult late-onset proximal SMA [32]. VAPB par-
ticipates in the UPR [176] (Fig. 3). However, mechanisms by
which VAPB mutations cause motor neuron degeneration are
still unclear.

The most studied mutation, P56S, causes aggregation of
VAPB in transfected cells and animal models [177, 178].
Overexpression of wild-type or mutant VAPB in primary
motor neuronal cultures leads to cytosolic aggregates and
ER stress [179]. Chen and collaborators also performed
functional studies on neuronal cells expressing mutant
VAPB (VAPBT46I). They observed intracellular protein ag-
gregates containing ubiquitin ultimately resulting in cell
death [180]. Co-transfection experiments have suggested
that mutant VAPB inhibits the ability of wild-type VAPB
from mediating the unfolded protein response. These data
support the argument that mutations in VAPB in ALS stim-
ulate ER stress and produce defects in the UPS, contribut-
ing to weakened protein homeostasis and, consequently, to
motor neuronal loss. Interestingly, cellular models express-
ing moderate levels of mutant VAPB contain cytoplasmic
aggregates that are not only cytosolic but are also associ-
ated with the ER. In these models, VAPB mutants cause
dramatic ER restructuring [181, 182].
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TBK1

TBK1 (TANK1-binding kinase 1) has recently emerged as a
new gene related to ALS, ALS-FTD, and FTD. Causal muta-
tions could be responsible for 0.4 to 4% of ALS cases [72,
183, 184]. This protein is involved in two pathological mech-
anisms in ALS: inflammation and autophagy [185, 186].
TBK1 participates in the autophagosomes engulfment of
poly-Ub targets by phosphorylating autophagic receptors,
such as OPTN and p62/SQSTM1 [71, 187, 188] (Fig. 4).
Phosphorylation aids to increase the affinity for LC3 [189].

Neuropathological studies of FTD patient carrying muta-
tions in TBK1 display moderate to high amount of TDP-43
and p62 neuronal, cytoplasmic inclusions in agreement with a
TDP-43 proteinopathy [72, 190]. These observations support
the hypothesis that a loss of TBK1 function induces flaws in
protein clearance in neurons. The relationship between TBK1
and the autophagy adapters OPTN and p62 also enforces the
notion that a defect in mitophagy leading to neurodegenera-
tion [191, 192]. It is worthwhile to note that ALS/FTD-linked
mutations in TBK1 result in a reduction in the amount of
TBK1 and/or in modifications in its C-terminal region capable
of binding OPTN [72]. TBK1 is also implicated in the innate
immune response by regulating the production of IFNα and β
[193]. These various roles of TBK1 in the central nervous
system suggest a pathogenic mechanism. TBK1 mutations
probably generate malfunctions in protein clearance and mi-
tochondrial turnover, which would lead to neuronal damage
triggering innate responses by surrounding neurons.

FIG4

Mutations have also been discovered in the FIG4 gene in ALS
[194]. However, its role remains debatable with respect to
ALS [195]. A recent finding, nonetheless, suggests a role spe-
cifically in ALS with longer disease duration and upper motor
neuron predominance [196]. FIG4 is a member of the SAC
domain-containing protein family with a phosphoinositide 5-
phosphatase activity. FIG4 regulates the cellular level of
PI(3,5)P2 maintaining endomembrane homeostasis and
endosomal trafficking. PI(3,5)P2 is recognized by lysosomes
and merges to gain access to the lysosomal machinery.
Inactivation of FIG4 in spontaneous mutant mice reveals neu-
rodegeneration and large vacuoles containing lysosome recep-
tor LAMP-2A, suggesting perturbations in the endosome-
lysosome network (Fig. 4). Autophagic substrates (p62, Ub,
LAMP-2A, and LC3-II) are upregulated and accumulate in
neurons in the spinal cord of these mutant mice.

SIGMAR1

The SIGMAR1 gene encodes for the transmembrane chaper-
one called sigma non-opioid intracellular receptor 1 (Sig-R1)

that localizes predominantly on the mitochondrion-associated
ER membrane [197]. Sig-R1 not only facilitates the proper
folding of newly synthesized proteins, but also prevents the
accumulation of misfolded proteins by consigning them to the
ERAD [198] (Fig. 3). Sig-R1 has also a role in autophagy
through its participation in autophagosome maturation [199].
It is also involved in the ER stress response, Ca2+ metabolism,
and chaperone activity, all implicated in neurodegeneration
[200]. In 2011, a missense mutation in SIGMAR1 leading to
an amino acid change in the transmembrane domain of Sig-R1
was associated with a juvenile ALS incidences [201]. This
mutation creates an abnormal subcellular distribution and
modification of Sig-R1 provoking modifications in the ER
structure, formation of ER-derived autophagic vacuoles, and
the induction of ER stress [202]. A contemporary study on an
ALS-linked mutant, E102Q of SIGMAR1, proposed a syner-
gistic mechanism of both a gain in toxic function and a loss of
function involving altered ER activity, a lack of in protein
homeostasis, and a dysregulation of RNA-binding proteins
[203].

CCNF

Another current study by whole exome sequencing of an
ALS-FTD family identified the CCNF gene as a new ALS-
generating gene [204]. CCNF encodes the ubiquitously
expressed cyclin F protein member of cyclin protein family
that acts in cell cycle, mainly by activating cyclin-dependent
kinases (CDK) enzymes. Compared to others cyclins, cyclin F
is the only one that cannot bind CDK enzymes. Actually, it is
part of a Skp1-Cul1-F-box (SCF) E3 ubiquitin ligase complex
enabling ubiquitination of target proteins for proteasome-
directed degradation [205, 206] (Fig. 2). Later studies identi-
fied other mutations in CCNF in FALS and SALS cases from
various countries. Functional studies on some of these mutant
proteins in NSC-34 and Neuro-2A cell lines showed pertur-
bations in the UPS and increased ubiquitination of TDP-43.

PDIA1 and PDIA3

PDIA1 (P4HB) and PDIA3 (ERp57) are genes encoding the
proteins disulfide-isomerases 1 and 3, respectively [207].
These proteins are mostly present in the ER where proteins
are synthesized. They catalyze the rearrangement of disulfide
bond between cysteine residues in proteins (Fig. 3). This con-
fers to PDIA proteins their role as chaperones in protein fold-
ing. In 2015, a novel study described variants in these two
PDIA genes in ALS patients [208]. Functional studies in
zebrafish modes and in cell lines showed that these ALS-
related PDIA mutations cause defects in the function of
PDIA1/3 proteins leading to the disruption of motor neuron
connectivity and the impairment neuritogenesis [209]. This
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observation supports ER proteostasis imbalance as a risk fac-
tor for ALS.

Proteostasis and Therapeutic Strategies
in ALS

Recent genetic discoveries in ALS will have reasons for clin-
ical management [27].We can also hope that these discoveries
lead more rapidly to therapeutics against ALS. Evidently, the
mechanisms of proteostasis are attractive targets. Many com-
pounds targeting various elements of the UPS and autophagy
pathways are currently being tested, either as single agents or
in combination, in various pathologies including cancer and
neurodegenerative diseases, such as ALS. It is possible to
remove pathogenic proteins by stimulating the expression or
function of chaperones engaged in the UPS or in autophagy
[210]. Indeed, the specificity of certain heat-proteins to
misfolded proteins can be stimulated for degradation by au-
tophagy. For example, the enhanced expression of Hsp22 in-
creases clearance of mutant SOD1 [211]. Directly targeting
autophagy in neurodegenerative diseases with aggregates
may also be of interest, as shown by several studies employing
small molecules such as valproate, rapamycin, or lithium,
which are autophagic inducers [212–214]. However, they do
not have the same impact depending on the disease.
Rapamycin, an inhibitor of mTOR, ameliorates clearance of
pathogenic aggregates in Parkinson’s and Alzheimer’s mouse
models but not in a SOD1G93A model of ALS. The mood
stabilizer lithium succeeds in promoting the degradation of
SOD1G93A in cytoplasmic inclusions and extends survival
and delays the onset of ALS [214]. Targeting heat shock pro-
teins seems also interesting, since these proteins are partici-
pants in the unfolded protein response, proteasomal degrada-
tion and autophagy [215]. Several studies highlight the neu-
roprotective effects of arimoclomol, a hydroxylamine deriva-
tive that co-induces heat shock proteins expression. Still under
investigation, this compound extends motor neuron lifespan,
diminishes muscular dysfunction, and protects motor neurons
in a mouse model of ALS [216, 217]. In addition, these small
molecules can have interesting effects on cells by acting on
other pathways, leading to synergistic effects. The develop-
ment of new monoclonal antibodies could also create a very
interesting future for ALS treatment, as in other neurodegen-
erative diseases [218, 219]. Injected by the intracerebroven-
tricular route, a monoclonal antibody against mutant SOD1
was able to reduce its level in the spinal cord and to prolong
the lifespan of transgenic SOD1G93A mice [220]. Another
captivating strategy to reduce the formation of misfolded pro-
teins aggregates is, of course, to reduce the synthesis of the
mutated protein. Several antisense strategies are currently be-
ing examined. For example, an ISIS antisense technology
targeting at the genetic level the production of SOD1 protein

and its mutant form is presently being tested in ALS patients
(ClinicalTrials.gov ID:NCT02623699). The mouse model
SOD1 G93A is the most commonly used animal model to
test potential therapeutic agents in ALS. Several preclinical
studies using these mice reported interesting results as
previously described. However, success in human clinical
trials following preclinical-studies using these mice was rare,
suggesting for example that this animal model is not relevant
for all preclinical studies. Indeed, this model could be of in-
terest for only familial forms of ALS with mutation in SOD1
gene (5% of FALS), but not for the majority of ALS patients
[221]. Nevertheless, in conclusion, blocking aggregation,
modifying aggregate formation dynamics, modifying the lo-
cation of aggregates in cells, and promoting disaggregation all
seem to be promising research for therapeutic strategies in
combatting ALS.

Conclusion

The observation of aggregates of misfolded proteins in ALS
has argued for more than 20 years in the implication of im-
paired protein degradation pathways in the disease. In parallel
with these histological observations, mutations have been dis-
covered in SOD1, TARDBP, and FUS genes. Interestingly,
proteins encoded by these genes turn out to be also present
in aggregates. Thirty other genes associated with familial ALS
have been linked to ALS to date [222]. Many of them are
directly involved in proteostasis and particularly in the protein
degradation pathways UPS and autophagy. The UPS plays a
major role in the degradation of a plethora of cellular proteins,
especially short-lived proteins. Autophagy also plays an es-
sential role in degrading misfolded or abnormally long-lived
proteins. The proper activity of these pathways is essential to
removemisfolded proteins that are naturally produced in cells.
These pathways are not independent; several connections ex-
ist such as their links with ER stress. These two mechanisms,
UPS and autophagy, become less efficient with age. In ALS,
genetic mutations and environmental factors such as oxidative
stress and excitotoxicity promote the production of misfolded
proteins by acting directly on mechanisms of proteostasis
[223]. The UPS and/or autophagy dysfunction induces vulner-
ability that ultimately lead to cell death. Thus, the misfolding
of proteins and certainly their aggregation are directly in-
volved in ALS pathogenesis. One has yet to understand the
relationships between these steps. Numerous studies argue to
investigate more closely the intracellular localization of these
aggregates and their formation instead of their size [224]. For
these experiments, it will be essential to develop innovative
cellular and animal models with chronic expression of mutant
proteins, for example, and not simply their overexpression.
These studies can be performed ideally beginning directly
from cells of the patient, such as lymphocytes if the gene is
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expressed there. The studies can also be done using differen-
tiated motor neurons or glial cells from induced pluripotent
stem cells derived from fibroblasts of patients. The CRISPR/
CAS 9 system could also be employed in order to create
models carrying ALS mutations that would better mirror the
conditions of the patients. These newmodels will certainly aid
in better understanding the mechanisms of aggregation, the
precise location of these aggregates in cells, and in testing
novel therapeutic strategies in the upcoming years.
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