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Abstract The amyloid precursor protein (APP), one key
player in Alzheimer’s disease (AD), is extensively processed
by different proteases. This leads to the generation of diverg-
ing fragments including the amyloid β (Aβ) peptide, which
accumulates in brains of AD patients. Subcellular trafficking
of APP is an important aspect for its proteolytic conversion,
since the various secretases which cleave APP are located in
different cellular compartments. As a consequence, altered
subcellular targeting of APP is thought to directly affect the
degree to which Aβ is generated. The mechanisms underlying
intracellular APP transport are critical to understand AD path-
ogenesis and can serve as a target for future pharmacological
interventions. In the recent years, a number of APP interacting
proteins were identified which are implicated in sorting of
APP, thereby influencing APP processing at different angles
of the secretory or endocytic pathway. This review provides
an update on the proteolytic processing of APP and the inter-
play of the transmembrane proteins low-density lipoprotein
receptor-related protein 1, sortilin-receptor with A-type re-
peats, SorCS1c, sortilin, and calsyntenin. We discuss the spe-
cific interactions with APP, the capacity to modulate the intra-
cellular itinerary and the proteolytic conversion of APP, a
possible involvement in the clearance of Aβ, and the

implications of these transmembrane proteins in AD and other
neurodegenerative diseases.
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Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder characterized by cognitive and memory dysfunction,
accompanied by hallmark pathologies such as intraneuronal
neurofibrillary tangles and extracellular amyloid plaques. The
latter are composed of a heterogenous population of proteo-
lytically cleaved amyloid β peptides (Aβ). According to the
amyloid hypothesis, accumulation of Aβ in the brain is a
primary cause driving AD pathogenesis and reducing Aβ
would ameliorate AD symptoms [1]. Although alternative hy-
potheses have been formulated, mounting genetic evidence
strongly suggests that alterations of sequential proteolytic pro-
cessing of the amyloid precursor protein (APP) have a signif-
icant impact on AD pathology [2]. APP is proteolytically
processed at many positions. The respective enzymes reside
in different subcellular locations. As a consequence, altered
subcellular trafficking of APP is thought to directly affect the
degree to which Aβ is generated [3]. Therefore, the mecha-
nisms underlying intracellular APP transport are critical to
understand AD pathogenesis and can serve as target for future
pharmacological interventions.

APP is a type-I transmembrane protein with a large
extracellular/luminal moiety and a short cytoplasmic domain.
Intracellular sorting, targeting, and internalization of trans-
membrane proteins are mediated by signals, usually short lin-
ear sequences of amino acids, in the cytoplasmic domain
which are recognized by cytosolic adaptor proteins. So far,
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only a limited number of proteins have been identified that
interact with the APP cytosolic domain and that might direct
APP targeting [4]. Notably, specific intracellular targeting
events can occur independently of the APP intracellular do-
main, such as the anterograde axonal transport of APP [5, 6].
A number of type-I transmembrane proteins have been dem-
onstrated to modulate the intracellular itinerary of APP, its
proteolytic processing and/or clearance of Aβ. Here, we re-
view the proteolytic processing and intracellular transport of
APP and summarize current evidence suggesting that trans-
port and processing of APP is modulated by other transmem-
brane proteins.

Processing of APP

APP is processed by sequential proteolytic cleavages. The
executing enzymes and their subcellular localization have
been described, but the exact modalities and the functional
meaning of the different processing steps are still not fully
delineated.

The canonical processing of APP is described by the
amyloidogenic and the non-amyloidogenic pathway (Fig.
1a). The latter begins with cleavage of full-length APP by α-
secretase activity, which is mainly mediated by ADAM10 (A
Disintegrin And Metalloprotease 10) in neurons, but also
ADAM17 has been implicated in this cleavage step [7–9].
Cleavage by α-secretase results in the release of the
ectodomain of APP—soluble APPα (sAPPα)—and the con-
comitant generation of a membrane retained C-terminal frag-
ment (CTF) consisting of 83 amino acids (aa) (C83 or α-CTF;
reviewed in [10]). C83 is further processed by γ-secretase, a
transmembrane multiprotein complex consisting of four sub-
units: presenilin 1 or 2, nicastrin, APH-1, and PEN-2. y-
Secretase cleaves within the transmembrane domain, a mech-
anism termed Bregulated intramembrane proteolysis^ (RIP;
reviewed in [11]). APP CTFs are proteolytically processed at
three positions: first at the ε-cleavage site, then the ζ-cleavage
site, and finally, at the γ-cleavage site [12–15]. This leads to
the release of a short peptide termed Bp3^ and of the APP
intracellular domain (AICD) [16]. Instead of α-/γ-secretase
processing, APP can also be cleaved in the amyloidogenic
pathway (Fig. 1a). Here, it is first cleaved N-terminally of
the Aβ sequence by the β-secretase β-site APP cleaving en-
zyme 1 (BACE1) [17, 18]. This results in shedding of the APP
ectodomain—soluble APPβ (sAPPβ)—and the production of
a 99 aa CTF (C99 or β-CTF) [19]. C99 is subsequently
cleaved by γ-secretase, releasing the Aβ peptide and AICD
[13, 14]. Approximately 90% of the secreted Aβ peptides are
40 aa long (Aβ40) [20]. The second most common species of
Aβ, Aβ42, is more prone to aggregation than Aβ40 [21].
Aggregation of Aβ to oligomeric forms and finally so-called
amyloid plaques has been proposed to be the initial step in the

development of AD [22]. Thus, a shift in the ratio of Aβ40 to
Aβ42 towards Aβ42 is most likely explained by a decrease of
γ-secretase cleavage site specificity [23, 24], which affects the
age of onset of AD [25]. ε-Cleavage occurs mainly at the
carboxyl side of leucine49 of the Aβ sequence whereas cleav-
age at threonine48 is not as frequent [26]. Those are the
starting points for twomain product lines of γ-secretase cleav-
age. ε-Cleavage producing Aβ49, is followed by proteolytic
conversion into Aβ46 (ζ-cleavage) [12] and Aβ43, finally
ending in secretion of Aβ40 while ε-Cleavage generating
Aβ48 is further cleaved into Aβ45 and finally Aβ42 and
Aβ38.

Recently, three different non-canonical processing path-
ways were described, which start with cleavages N-
terminally located to the β-secretase cleavage site (reviewed
in [27]).

(I) APP can first be cleaved at the recently identified η
(eta)-cleavage site 504/505 by matrix metalloproteinase 5
(MT5), also named matrix metallopeptidase 24 (MMP24)
[28–31] (Fig. 1b). Subsequently, β- or α-secretase generate
two peptides of 92 or 108 amino acids in length, designated as
Aη-β or Aη-α peptides, respectively [28]. MT5 is a zinc-
dependent metalloprotease-like ADAM10 [32] and belongs
to the group of membrane type MMPs, which are mainly
located at the cell surface [33] (Fig. 2). Those type-I trans-
membrane MMPs are activated after furin cleavage in the
trans-Golgi network (TGN) and therefore presumably active
at the plasma membrane [34]. MT5 is predominantly
expressed in brain tissue and might play a role in remodeling
extracellular matrices during development [35].

(II) Three different cleavages summarized as δ-cleavage
are carried out by asparagine endopeptidase (AEP), a pH-
dependent soluble cysteine protease, which is active in lyso-
somes (Fig. 2). Cleavage of APP at Thr584 was first described
in [36]; later, two additional sites were found in the
ectodomain at positions N373 and N585 (APP695 number-
ing) (Fig. 1c) [37].

(III) APP can also be shed by Meprinβ at the cell surface,
thereby competing with ADAM10 for the substrate (Fig. 2)
[38, 39]. Meprinβ is a zinc-dependent metalloprotease-like
[40] ADAM10 and MT5 and cleaves APP at positions 1, 2,
or 3 of the Aβ sequence [41, 42]. Three additional Meprinβ
cleavage sites have been identified further distal in the
ectodomain of APP between Ala124/Asp125, Glu380/
Thr381, and Gly383/Asp384 (Fig. 1d) [42].

Canonical and non-canonical processing of APP is medi-
ated by enzymes with proteolytic activities at varying subcel-
lular localizations. Depending on its subunit composition, the
subcellular localization of the γ-secretase complex differs. A
γ-secretase complex comprising presenilin 1 is distributed in
the secretory and endocytic pathway and is concentrated at the
cell surface, whereas a complex formed with presenilin 2 pre-
dominates in late endosomal and lysosomal compartments
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[43, 44]. While α-secretase, MT5, and Meprinβ activity is
mainly localized to the cellular surface [34, 38], β-secretase
activity is predominantly found in endosomal compartments
and δ-cleavage occurs in lysosomes (Fig. 2) [8, 17, 37, 45,
46]. Therefore, processing of APP into amyloidogenic (Aβ)
and non-amyloidogenic fragments is highly dependent on its
intracellular itinerary. Consequently, altered subcellular
targeting of APP directly affects the degree of Aβ generation.
Thus, mistargeting of APP has been realized to cause
amyloidogenic processing and a number of factors that are
involved in APP subcellular targeting have been identified.
Mutations in APP or in components of the γ-secretase com-
plex lead to an increase in Aβ42 production and cause the rare
early onset familial form of AD (EOAD). These genetic de-
fects are usually not seen in the late onset form of AD (LOAD)
accounting for 95% of all cases [47]. Mutations in factors that
partake in APP subcellular targeting may underlie the com-
plex pathology of LOAD. Accordingly, some of these factors
discussed in this review have been genetically linked to
LOAD.

Trafficking and Endocytosis of APP

The intracellular itinerary of APP has been extensively studied
in undifferentiated cells [48]. After cleavage of its signal pep-
tide in the ER, APP enters the secretory pathway and is
translocated through the Golgi apparatus, where it is predom-
inantly localized [49–51], to the plasma membrane (Fig. 2).
Here, it can be processed or internalized. Following endocy-
tosis, APP is targeted to early endosomes and then sorted to
three different paths: (I) a subset of APP molecules undergoes
recycling to the cell surface [48, 52], (II) a different fraction of
APP is transported retrogradely from endosomes back to the
TGN in a retromer-mediated pathway [53], and (III) some
APPmolecules are targeted to late endosomes which fuse with
lysosomes where APP is degraded [54, 55]. APP is mainly
endocytosed via clathrin-coated vesicles into early endosomes
[4] and internalization of APP also depends on cholesterol
[56, 57], suggesting an overlap of clathrin- and cholesterol-
dependent endocytosis [57]. Thus, APP might be first

Fig. 1 Schematic representation of different APP processing pathways. a
The schematic shows the canonical APP processing pathways and the
pictures (b–d) show the non-canonical pathways. a The amyloid precur-
sor protein (APP) is first cleaved by α-secretase in the non-
amyloidogenic pathway (gray) within the amyloid-β (Aβ) region (shown
in red) to liberate sAPPα. The remainingα-C-terminal fragment (α-CTF)
is further cleaved by γ-secretase (yellow) and releases the small 3-kDa
peptide p3 and the APP intracellular domain (AICD). The amyloidogenic
pathway (pink) starts with β-secretase cleavage, which liberates sAPPβ
and concomitantly generates the β-C-terminal fragment (β-CTF). γ-
Secretase cleavage (yellow) of the β-CTF releases the Aβ peptide, which

can oligomerize and liberates the APP intracellular domain at the ε-
cleavage site (AICD). b Cleavage by η-secretase gives rise to the 80–
95 kDa soluble APPsη and CTFη, which is further processed by α- or β-
secretase to generate Aη-α or Aη-β. c δ-Secretase generates three soluble
APPsδ fragments and C-terminal fragment-δ (CTFδ), which is further
cleaved by β-secretase and γ-secretase. dMeprinβ cleaves APP at posi-
tions 1, 2, or 3 of the Aβ sequence. Three additional Meprinβ cleavage
sites have been identified further distal in the ectodomain of APP between
Ala124/Asp125, Glu380/Thr381, and Gly383/Asp384. The indicated
numbers refer to full-length APP695
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clustered in cholesterol-rich-coated pits and then internalized
into a specialized clathrin-dependent endocytic pathway.

Although, it has been shown that the highly conserved
YENPTY motif in the C-terminus and possibly also the
basolateral sorting signal of APP are essential for this process
[58], the molecular machinery involved in clustering and
targeting of APP to early endosomes is still unknown.

Anterograde Axonal Transport of APP

APP trafficking has also been studied in differentiated cells
with a focus on neurons and axonal transport. APP moves
along axons by fast anterograde transport as shown by nerve
ligation [59] and pulse-chase labeling experiments [60, 61].

Live cell imaging studies documented fast axonal transport
of vesicular APP distinct in morphology and transport kinetics
from synaptophysin-containing vesicles [62]. Consistently,
synaptophysin was not found in APP kinesin co-
immunoisolations [6]. Gene-silencing experiments indicated
that conventional kinesin is the main molecular motor in-
volved in the anterograde transport of APP [59, 63, 64].
Conventional kinesin is a multimeric complex composed of

two kinesin heavy chain (KHCs, kinesin-1s) and two kinesin
light chain (KLCs) subunits [65]. In mammalian brain, three
KHCs (kinesin-1a, b, and c) and two KLC (KLC1 and KLC2)
isoforms are expressed, which exist in different combinations
of kinesin-1 and KLC homodimers [66]. Kinesin-1C has been
identified as the main KHC isoform associated with APP-
containing transport vesicles [6]. The mode of interaction be-
tween conventional kinesin and APP-containing transport
vesicles is still unclear. In general, the alternatively spliced
carboxy-terminus of KLCs is assumed to mediate selective
binding of conventional kinesin to different membrane-
bound organelles [67–69], whereas the tandem repeat contain-
ing N-terminus can interact in vitro via hydrophobic patches
non-specifically with different target proteins, including APP
[70, 71]. So, it was shown that recombinant KLCs produced in
bacteria interact non-specifically with proteins as diverse as
GFP, Fe65, and PAT1a and the intracellular domain of APP,
APLP1, and APLP2 in pull-down assays [71]. Also, indirect
associations of APP to kinesin-1 via adaptor proteins, such as
JIP1b were reported [72–74]. Current data showed that knock-
down of JIP1b either specifically impairs anterograde trans-
port [74], anterograde, and retrograde transport [75] or affects

Fig. 2 APP trafficking and processing. APP is transported in the
secretory pathway (gray) from the ER to the plasma membrane via the
Golgi apparatus, where it is mainly localized. APP is internalized from the
plasma membrane to early endosomes. From there, it can either enter the
recycling pathway (yellow) or travel back to the TGN in a retromer-
mediated pathway, or can be targeted to late endosomes which fuse to

lysosomes where APP is degraded (orange). APP cleavage by η-secretase
or Meprinβ mainly takes place at the plasma membrane as well as non-
amyloidogenic processing by α- and γ-secretase. Amyloidogenic pro-
cessing of APP by β- and γ-secretase is predominantly carried out in
early and late endosomes and cleavage of δ-secretase in lysosomes
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neither anterograde nor retrograde transport of APP [76].
Further, JIP1b APP binding studies revealed at least two in-
teraction sites in KLC1 and/or KHC. Also, deletionmutants of
JIP1b argue for multiple interaction sites for KLC1 [74]. In
light of these inconsistencies and the increasing list of candi-
date protein-binding partners for both KIF5s and KLCs [70],
the in vivo significance of JIP1b as an adaptor partner has not
yet been rigorously established. Instead, indirect influences of
JIP1b on activation of kinases that in turn might modulate
kinesin-dependent transport should be taken into account.

Moreover, in contradiction to the model of direct or indirect
interaction of the APP C-terminus with KLC1, APP is
transported independently of its carboxy-terminus along the
axon towards the presynaptic terminal [5, 6, 36, 77]. Thus,
APP does not fulfill the criteria expected for a conventional
kinesin receptor. Instead, APP most likely represents a cargo
protein sorted into transport vesicles associated by a so far
barely understood Rab3-dependent mechanism to kinesin-1c
[6].

Modulators of Intracellular APP Transport

Intracellular transport and processing of APP can be modulat-
ed by other transmembrane proteins, such as low-density li-
poprotein receptors (LDLRs), Vps10p-Doamin (Vps10p-D)
receptors, and calsyntenins. LDLRs are mainly known as
endocytic receptors for a wide variety of ligands, including
lipid-carrying lipoproteins and proteases or protease inhibi-
tors, but some family members also play a role in signal trans-
duction and modulation [78–80]. Ligands endocytosed by
LDLR family members are directed to endosomes and
recycling or lysosomal compartments, while the receptors
themselves are transported back to the plasma membrane
[81, 82].

In mammals, there are seven core members of the LDLR
family which vary in size and structure [80, 83]. All family
members are type-I transmembrane proteins with large extra-
cellular moieties and a short cytoplasmic domain. The extra-
cellular domains consist of ligand-binding repeats (also
named complement type repeats) and epidermal growth factor
(EGF) homology domains (Fig. 3). The intracellular domain
harbors at least one NPxY motif. Some family members con-
tain additional structural elements that separate them from the
core members. Sortilin-receptor with A-type repeats (SorLA)
for example contains in addition a domain homologous to a
sorting receptor for yeast vacuolar hydrolases that cycles be-
tween the TGN and endocytic compartments (Vps10p) [84].
SorLA is a unique mosaic receptor [85, 86] which combines
structural features of the LDLR family by harboring EGF-type
and ligand-binding repeats but presents as well the hallmark of
the Vps10p-D receptor family, an N-terminal Vps10p-D [87]
(Fig. 3). Additionally, SorLA contains a fibronectin type III

domain, the exact function of which is still elusive but might
be involved in protein-protein interactions [88]. Vps10p-D
receptors are also type-I transmembrane proteins. Their large
extracellular/luminal moieties contain a Vps10p-D and their
short cytoplasmic domains harbor canonical motifs for intra-
cellular sorting. The Vps10p-D makes up the entire
extracellular/luminal part of sortilin and is combined with a
so-called leucine-rich domain in SorCS1–3 (Fig. 3). Structural
features are thought to be shared among all Vps10p-D recep-
tors. The N-terminal part of the sortilin Vps10p-D comprises a
ten-bladed β-propeller creating a large tunnel with multiple
ligand-binding sites which is followed by the so-called ten
conserved cysteines (10CC) domain [87, 89]. This C-
terminal segment of 10CC forms five disulfide bonds [89,
90], but the amino acid identity among all Vps10p-Ds is only
modest, but high for SorCS1–3 and separates the SorCS sub-
group from sortilin and SorLA [87].

The third group of type-I transmembrane proteins modu-
lating APP transport and discussed in this review are
calsyntenins (calsyntenin 1–3, Clstn 1–3). These were initially
isolated as postsynaptic Ca2+-binding proteins [91] and have
been also named Alcadeinα, β, and γ. They belong to the
Cadherin-related family comprised of atypical Cadherins
[92]. Their extracellular moiety is characterized by a repeat
of two Cadherin-like domains [91, 93], an LNS domain (lam-
inin, nectin, sex hormone-binding globulin) [94] and kinesin
light chain-binding motifs in their cytoplasmic domains [95,
96]. Calsyntenin-1 and -2 contain two KLC1-binding motifs
consisting of a WDDS sequence, while calsyntenin-3 is lack-
ing one KLC1-binding motif [93]. Calsyntenin-1 and -2 addi-
tionally harbor a c-terminal calcium-binding site via an acidic
amino acid stretch, which is shorter in calsyntenin-2 than in
calsyntenin-1 [91, 93, 97].

Low-Density Lipoprotein Receptor-Related Protein 1

Multiple members of the LDLR family have been shown to
influence APP physiology with the focus resting on low-
density lipoprotein receptor-related protein 1 (LRP1) [83].
LRP1 is one of the largest gene family members with a size
of approximately 600 kDa and four extracellular ligand-
binding domains [98]. Like APP, LRP1 is transported along
the constitutive secretory pathway. Native LRP1 is cleaved in
the trans-Golgi by furin into a 515 kDa α-subunit and an
85 kDaβ-subunit, which stay attached in a non-covalent man-
ner [99, 100]. LRP1 has been shown to bind numerous differ-
ent ligands to its extracellular domain [101], including APP,
apolipoprotein E (apoE), and α2-macroglobulin (α2M),
which are all proteins associated with AD [102–104].
Furthermore, LRP1 itself has been identified as a risk factor
for AD [105].

LRP1 associates with APP through the N-terminal Kunitz-
protease inhibitor (KPI) domain of APP [106, 107] and the

Mol Neurobiol (2018) 55:5809–5829 5813



APP C-terminal cytoplasmic domain [108]. As neurons ex-
press mainly APP695 lacking the KPI domain [109], the C-
terminal interaction with APP appears more relevant in respect
to brain function. The cytosolic interaction between APP and
LRP1 is assumed to be mediated by the scaffolding protein
Fe65, which binds with its PTB1 domain to the NPxY motif
of LRP1 and with the PTB2 domain to the NPxY motif in the
C-terminus of APP [108, 110, 111].

The LRP1 cytoplasmic tail contains two NPxY motifs, of
which the distal motif is thought to be involved in its very fast
endocytosis, with a half-life time of less than 30 s at the cell
surface [112, 113]. LRP1 increases APP endocytosis and
causes consistently an increased secretion of Aβ and
sAPPβ, while a lack of LRP1 increases sAPPα (Fig. 4)
[106, 111, 114–116]. Notably, this holds true for APP in its
monomeric and dimeric form [117], although LRP1 binding
to APP was significantly decreased after inducing dimeriza-
tion of APP [118], which presumably affects APP trafficking.

Interestingly, the influence of LRP1B onAPP processing is
contrary to what is shown for LRP1 [119]. Both, LRP1 and
LRP1B, are highly expressed in the brain [120–122] and
LRP1 and LRP1B only differ from each other in one addition-
al ligand binding type repeat in ligand binding domain IV of
LRP1B and a larger distance between the NPxY motifs [123].
Even though these differences are subtle, LRP1B has much
slower internalization kinetics than LRP1 [123]. Assuming,
that LRP1B competes with LRP1 for binding to the Fe65-
APP complex, APP would be endocytosed at a lower rate,
explaining the increase of sAPPα and the decrease in Aβ
(Fig. 2) [119]. However, other LDLR family members, such
as VLDL could act similarly [124].

Accumulating evidence suggests that LRP1 affects APP
transport also in the secretory pathway (Fig. 4). APP interacts
with LRP1 before it is cleaved by furin, implying an interac-
tion of APP with LRP1 early in the secretory pathway [111].
Accordingly, APP still binds LRP1 when a dilysine ER-
retention motif (KKAA) is introduced to the LRP1

Fig. 3 Schematic representation and domain structure of LRP1,
members of the Vps10p-D receptor family and calsyntenin-1–3. Low-
density lipoprotein receptor-related protein 1 (LRP1) is a type-I trans-
membrane protein. The extracellular domain consists of four ligand-
binding repeats (also named complement type repeats) and epidermal
growth factor (EGF) homology domains and β-propeller domains, which
are important for pH-dependent release of bound ligands in endosomes.
SorLA, sortilin, and SorCS1–3 are members of the vacuolar protein
sorting 10 protein (Vps10p) domain receptor family. SorLA contains
two additional types of domains not present in LRP1: the fibronectin type

III domain and the Vps10p domain. The extracellular domain of sortilin is
comprised solely of the Vps10p domain while SorCS1–3 contain an
additional leucine-rich domain in the juxtamembrane region. The amino
acid identity among all Vps10p-Ds is only modest, but high for SorCS1–3
and separates the SorCS subgroup from sortilin and SorLA. Calsyntenin
1–3 contain two cadherin-like domains in the ectodomain and one lami-
nin, nectin, sex hormone (LNS) binding globulin) domain. Calsyntenin-1
and -2 contain an acidic region, which is able to bind calcium in their
cytoplasmic tail and twoKLC1 binding motifs. The acidic region and one
KLC1 binding motif are lacking in Calsyntenin-3
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cytoplasmic domain [100]. Moreover, co-localization and co-
transport of LRP1 and APP along the secretory pathway has
been reported recently [117]. Live cell imaging analyses re-
vealed that LRP1 and APP are trafficked in distinct antero-
grade transport vesicles, whereby LRP1 is transported with
velocities ≤ 1 μm/s and APP with velocities ≥ 1 μm/s.
However, elevated expression levels of LRP1 altered APP
transport kinetics to those observed for LRP1 before. In con-
trast, lowered levels of LRP1 lead to a significant decrease in
APP stationary vesicles and to a significant increased mean
velocity [117]. This strongly suggests that LRP1 affects APP
transport by recruitment of APP into common transport vesi-
cles, thereby regulating its cell surface localization and in turn,
its processing by proteases located at the plasma membrane,
including ADAM10, MT5-MMP, and Meprinβ.

LRP1 can be proteolytically processed and might therefore
affect APP physiology and pathogenicity not only by modu-
lating its transport kinetics but also through competition with
APP for the secretase BACE1 [125, 126] and γ-secretase
[127, 128].

Further, multiple studies showed that Aβ is taken up by
LRP1 either through direct binding to the LRP1 N-terminal
domain [129, 130] or bound to ApoE or α2M [131]. Here,
LRP1 was demonstrated to function as one of the major Aβ
clearance receptors from brain to blood through transcytotic
transport over the blood-brain-barrier [132–134]. Also, LRP1
was shown to bind Aβ in the blood and to target it for degra-
dation [135] and to play an important role in cellular uptake of
Aβ in microglia [136].

Taken together, the actual data strongly argue that besides
its role in endocytosis, LRP1 functions as a sorting receptor
for APP, recruiting APP to specific transport vesicles. Here,
LRP1 interestingly affects both, the secretory as well as the
endocytic pathway, which might be pivotal for sorting in bi-
polar cells.

Sortilin-Related Receptor Containing LDLR A Repeats

SorLA (also termed BLR11^ or BSORL1^) is a 250-kDa type-
I transmembrane protein [85, 86] (Fig. 3) that shares several
ligands with the LDL receptor family, including apolipopro-
tein E (ApoE), apolipoprotein A-V, LDLR-associated protein
(RAP), lipoprotein lipase, platelet-derived growth factor-BB
(PDGF-BB), and components of the plasminogen-activating
system, such as urokinase-type plasminogen activator (uPA)
and tissue-type plasminogen activator (tPA) [137–140]. These
ligands probably all bind to the cluster of 11 complement-type
repeats (CR) of SorLA (Fig. 3) [140, 141]. The Vps10p-D of
SorLA functions as an additional ligand-binding domain. It
specifically binds a variety of growth factors and neuropep-
tides including neurotensin, glial cell-derived neurotrophic
factor (GDNF), ciliary neurotrophic factor (CNTF), and
interleukin-6 [90, 141–143]. SorLA binds APP directly and
sequesters APP in intracellular compartments which results in
reduced processing into Aβ [144]. The interaction has been
mapped to the carbohydrate (E2) domain of APP and the CR
domains 5–8 of SorLA [144, 145]. Deletion of the CR cluster
abolishes the ability of SorLA to protect APP from processing
[145]. Moreover, a second interaction site involving the

Fig. 4 LRP1 modulates APP
trafficking. APP interacts with
LRP1 presumably early in the
secretory pathway before LRP1 is
cleaved by furin in the TGN. APP
and LRP1 are trafficking in
different transport vesicles in
anterograde direction to the cell
surface, APP with faster transport
kinetics. Internalization of APP is
facilitated by LRP1, which
associates with APP on the cell
surface, thereby increasing
sAPPβ and Aβ production
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cytoplasmic domains of APP and SorLA has been proposed
[146]. As outlined above, the Vps10p-D of SorLA functions
as an independent ligand-binding site. It binds monomeric Aβ
in a pH-dependent manner and is thought to facilitate its sub-
cellular targeting to lysosomes [147, 148]. This interaction
seems specific for the SorLAVps10p-D as the Vps10p-D of
sortilin has been incapable to bind Aβ [147].

SorLA is highly expressed in the brain where it shows
predominant localization in neurons of the cerebral cortex,
hippocampus, and cerebellum, but it is expressed as well in
a variety of other organs [149]. Genetic analysis revealed that
SorLA modulates the risk for late onset as well as early onset
AD (reviewed in [150]). SorLA expression levels are reduced
in brains of AD patients as compared to healthy non-demented
subjects [151]. Mouse models supported the significance of
SorLA as a negative regulator of APP processing in vivo be-
cause knockout mice exhibit higher Aβ-levels in the brain as
compared with wild-type mice [152]. Moreover, overexpres-
sion of SorLA in neurons decreased Aβ levels [152]. Taken
together, the current data support the notion that SorLA is a
sorting receptor for APP and Aβ. Thus, understanding the
determinants of SorLA’s subcellular itinerary is key to under-
stand APP processing and degradation of monomeric Aβ.

On a subcellular level, SorLA is mainly localized to Golgi
compartments and endosomes and only a minor fraction is
present on the cellular surface [141, 153, 154]. This localiza-
tion has been observed in undifferentiated cells [141] and
recent studies demonstrated a predominant somatic-dendritic
localization of SorLA in neurons and targeting of SorLA to
the basolateral membrane and to sorting endosomes in polar-
ized MDCK cells [155].

SorLA is synthesized as a precursor and converted in the
trans-Golgi network to mature receptor by proprotein
convertase-mediated cleavage and subsequent dissociation
of its N-terminal propeptide which is a prerequisite for binding
of exogenous ligands to its Vps10p-D [141]. Ectodomain
shedding followed by regulated intramembrane proteolysis
as described for APP has been also observed for SorLA. It
serves as a substrate for ADAM17, whose active site is located
in the aqueous environment of the extracellular domain and
can function as α-secretase which can be stimulated by
phorbol esters or by some ligands. PDGF-BB, for example,
stimulates shedding of SorLA, whereas other ligands have no
effect [156]. The primary cleavage elicits subsequent gamma-
secretase-mediated proteolysis within the transmembrane seg-
ment. This cleavage releases the cytoplasmic domain, which
is rapidly degraded [156, 157]. Interestingly, a nuclear locali-
zation of the SorLA cytoplasmic domain fused to green fluo-
rescent protein was demonstrated and a transcriptional activity
of the SorLA cytoplasmic domain suggested [157].

SorLA conveys rapid internalization of ligands, but as
compared to LRP1, SorLA is endocytosed more slowly
[140]. SorLA contains canonical cytoplasmic interaction

motifs and a number of cytosolic adaptors have been identi-
fied. It has been demonstrated that internalization of SorLA
depends on an acidic cluster and on adaptor protein-2 (AP-2)
interaction [158]. SorLA binds additional cytosolic adaptors,
including AP-1; Golgi-localized, gamma adaptin ear-contain-
ing, ARF-binding (GGAs); phosphofurin acidic cluster
sorting protein 1 (PACS1), and retromer, which govern the
itinerary between TGN and endosomal compartments. The
acidic cluster of the SorLA cytoplasmic domain is a functional
interaction motif for AP-1 and PACS1 [158, 159]. Both adap-
tors are engaged in retrograde endosome to TGN sorting and
deletion of one of the adaptors results in an altered subcellular
localization of SorLA [158, 159]. The interaction of AP-1
with the acidic cluster and additional amino acids in SorLA’s
cytoplasmic domain underlie the polarized distribution of
SorLA in neurons and other polarized cells [155].
Anterograde Golgi to endosome sorting of SorLA depends
on the acidic cluster combined with a dileucine motif and on
the GGA-binding motif DXXM [158]. GGA1 and GGA2
interact with SorLA and have been suggested to guide this
type of sorting [158–161]. However, disruption of the GGA
interaction motif in mice in vivo had no impact on APP pro-
cessing but increased Aβ levels in the brain [162]. Thus, the
disrupted motif might rather modulate SorLA-mediated lyso-
somal targeting of Aβ. The SorLA cytoplasmic domain inter-
acts via its FANSHYmotif with retromer, an adaptor complex
engaged in endosome to Golgi retrieval [163]. In mammals,
retromer is composed of a trimer comprised of VPS26,
VPS29, and VPS35 and a dimer of two sorting nexins
(SNX) [164]. Retromer deficiency in mice and flies increases
production of Aβ and the retromer-dependent endosomal-
trans-Golgi sorting pathway has been suggested to be impli-
cated in late onset AD [165, 166]. In agreement, VPS35 and
VPS26 expressions are reduced in vulnerable regions of AD
brains and knockdown of retromer elements in cell culture led
to increased Aβ production, while overexpression of retromer
elements decreased Aβ levels [167]. So far, there is no evi-
dence that retromer interacts directly with APP. Knockdown
of VPS35 or SNX1 results in reduced SorLA expression
[158], VPS26 interacts directly with SorLA and mutations in
the SorLA cytoplasmic domain that affect the retromer bind-
ing site result in APP missorting and enhanced processing
[163] and in agreement, disruption of part of the FANSHY
motif in mice in vivo resulted in accumulation of SorLA in
endosomes and increased APP processing [162]. This is in
line with very recent time lapse imaging results in primary
cortical neurons showing that after co-expression of SorLA,
APP stationary vesicles and anterograde vesicles were signif-
icantly decreased while there is clear increase in the number of
retrograde vesicles, suggesting that SorLA is mainly involved
in retrograde transport of APP [118] (Fig. 5). Interestingly, the
percentage of vesicles co-transporting APP and SorLA is only
about 10% [118] and the co-transport rate of APP and SorLA

5816 Mol Neurobiol (2018) 55:5809–5829



was significantly reduced after inducing dimerization of APP
[118], which is in line with results from Willnow and col-
leagues showing an impact of SorLA on the extent of APP
dimerization [168].

Thus, SorLA likely connects retromer and APP. In addi-
tion, an interaction of SorLA and SNX27was proposed [169].
SNX27 contains a PDZ domain and has been shown to serve
as a cargo selector for the retromer complex. The binding of
other transmembrane proteins occurs through the SNX27
PDZ domain and respective binding motifs in the cytoplasmic
domain of the cargo [170]. In contrast, the binding of SorLA
appears independent of the SNX27 PDZ domain [169].
However, SNX27 mediates sorting from endosomes to the
plasma membrane [171] and in agreement with this, SNX27
enhances SorLA and APP surface levels and promotes non-
amyloidogenic APP processing [169].

In conclusion, current data suggest a dual role for SorLA in
modulating APP processing and Aβ accumulation. One func-
tion is retrograde sorting of APP from endosomal compart-
ments to the trans-Golgi and thereby reducing amyloidogenic
processing of APP. The other function is targeting of already
processed monomeric Aβ for lysosomal degradation.

Sortilin-Related Receptor CNS Expressed 1

Another member of the Vps10p-D receptor family, sortilin-
related receptor CNS expressed 1 (SorCS1), has been geneti-
cally linked to late onset AD [172–176]. SorCS1 is a 130 kDa
type-I transmembrane protein with an N-terminal Vps10p-D
followed by a leucine-rich domain, a transmembrane domain,
and a short cytoplasmic tail (Fig. 3) [177]. SorCS1 binds
PDGF-BB and presumably other growth factors through its
Vps10p-D [156]. In addition, the SorCS1 Vps10p-D interacts
directly with neurexin1 (Nrxn1) [178, 179]. Proteomic analy-
sis of the synaptic SorCS1 interactome revealed that SorCS1
forms a complex with Nrxn1 and Nrxn2, neuroligin 1 (Nlgn1)
a n d N l g n 3 , α - am i n o - 3 - h y d r o x y - 5 -m e t h y l - 4 -
isoxazolepropionic acid receptor (AMPAR) subunits, Ntrk2
(also known as brain-derived neurotrophic factor receptor,
TrkB) and APP [178]. Accordingly, other studies had demon-
strated the interaction of SorCS1 and APP by co-
immunoprecipitations before [174, 180, 181].

SorCS1 is predominantly expressed in the developing and
adult brain and neuronal activity can induce its expression in
the hippocampus [182–184]. Genetic variations in SORCS1
are associated with memory performance [185]. In addition,
expression analysis revealed lower SorCS1 levels in the
amygdala from AD brains as compared to unaffected brains

Fig. 5 SorLA modulates APP trafficking. SorLA is mainly localized to
Golgi compartments and endosomes, where it strongly co-localizes with
APP. Only a minor fraction of SorLA is present on the cellular surface and
can be shed by α- and γ-secretase. After endocytosis, SorLA binds cy-
tosolic adaptors which shuttle SorLA between endosomes and the TGN
(black arrow). SorLA likely connects retromer and APP. Binding of

SorLA to GGAs or AP1 in the TGN shuttles SorLA back to endosomes.
Co-expression of SorLA leads to a significant decrease in APP stationary
vesicles and anterograde vesicles with a concomitant increase in the num-
ber of APP containing retrograde vesicles, indicating that SorLA is main-
ly involved in retrograde transport of APP
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[174]. Cellular analyses demonstrate that high SorCS1 expres-
sion levels result in a modest decrease of Aβ and a reduction
of SorCS1 expression leads to an increase of Aβ levels [174,
180].Moreover, studies in hypomorphic SorCS1mice support
the impact of SorCS1 on APP processing [180]. These obser-
vations are reminiscent of SorLAmodulating APP processing.
Like SorLA, SorCS1 is subject to ectodomain shedding by
ADAM17 which can be stimulated by phorbol esters or
PDGF-BB and is followed by γ-secretase-mediated proteoly-
sis within the transmembrane segment [156].

SorCS1 is expressed in different alternative splice variants
with identical extracellular and transmembrane moieties, but
different cytoplasmic domains conveying varying trafficking
properties [87, 181, 186, 187]. Whereas some cytoplasmic
domains mediate rapid cellular uptake of ligands, others direct
the receptor to the cellular surface and do not mediate rapid
internalization. It has been demonstrated that the endocytic
isoforms of SorCS1 are internalized in an AP-2-dependent
manner and are capable of targeting internalized cargo to ly-
sosomes [187]. In accordance, affinity-purified SorCS1 com-
plexes revealed the presence of AP-2 [178] and a direct inter-
action of SorCS1a and AP-2 has been shown [187]. SorCS1
has been linked to SorLA and the retromer subunit Vps35 by
co-immunoprecipitation [180]. However, a direct binding of
SorCS1 to the retromer complex or a retromer-mediated trans-
port of SorCS1 awaits demonstration. All analyzed SorCS1
cytoplasmic domains failed to convey Golgi to late-
endosomal transport in an assay in which the SorLA cytoplas-
mic domain was mediating this type of intracellular transport
(Fig. 6) [158, 187]. Moreover, none of the SorCS1 cytoplas-
mic domains interacts with GGAs [186, 188]. Therefore, it
was concluded that SorCS1 isoforms are not engaged in me-
diating Golgi to late-endosomal transport [187]. This is an
important difference to SorLA, which conveys this type of
sorting [158]. Thus, it is likely that SorCS1 has a function
different from SorLA in APP trafficking. In neurons SorCS1
presents mainly a somato-dendritic localization [178, 181] and
depending on the splice variant, SorCS1 is localized to
endosomes or to the plasma membrane [181, 186]. SorCS1
is translocated to postsynaptic sites where it regulates Nrxn
and AMPAR surface trafficking and in agreement SorCS1
deficiency leads to reduced glutamatergic synaptic transmis-
sion [178]. Uptake of APP appears to be independent of
SorCS1 [181], but APP and the endocytic splice variant
SorCS1c share a common postendocytic pathway. Both pro-
teins share vesicular transport characteristics and overexpres-
sion of SorCS1c, but not of SorCS1b, reduces neuronal anter-
ograde transport of APP and increases the fraction of APP
localized to stationary vesicles [181].

Taken together, current data suggest that SorCS1 is en-
gaged in the regulation of sorting and anterograde targeting
of APP. Notably, SorCS1 is genetically associated as well with
type-I and -II diabetes [189–192]. Diabetes is a known risk

factor for AD. Therefore, SorCS1 might link diabetes and AD
pathology.

Sortilin

Sortilin (SORT1), also known as neurotensin receptor3 [193]
or gp95 (glycoprotein of 95 kDa) [138] is expressed in neu-
rons of the CNS and PNS [138, 194, 195] as well as in non-
neuronal tissues like heart, lung, skeletal muscle, and testis
[138].

Sortilin is synthesized as an inactive precursor which is
converted in the TGN to the mature receptor by furin-
mediated cleavage of a 44-residue N-terminal propeptide
[196]. The propeptide of sortilin precludes binding of ligands
by sterical hindrance [196]. Therefore, the unprocessed recep-
tor is unable to bind ligands. This characteristic has been de-
scribed as well for the SorLAVps10p-D whereas receptors of
the SorCS subgroup seem to bind ligands independently of
their N-terminal processing [141, 186, 197]. Remarkably,
sortilin binds the propeptide of SorCS1 which itself does not
bind its propeptide [198]. However, the functional relevance
of this interaction is not completely understood, but it has a
pronounced effect on sortilin’s ability to mediate specific cel-
lular functions [198].

In addition to its own propeptide, the extracellular/luminal
domain of sortilin interacts with neuropeptides, such as
neurotensin, and neurotrophic factors, such as the proforms
of nerve growth factor (NGF) and brain-derived neurotrophic
factor (BDNF) and ciliary neurotrophic factor (CNTF) [193,
199–201], but as well with ligands typical for the LDLR fam-
ily, such as the LDLR-associated protein (RAP), lipoprotein
lipase (LpL), lipoprotein AV, and apolipoprotein E (APOE) 2,
3, 4 [196, 202–204]. Sortilin appears promiscuous as it binds
various ligands and is unique as it is the only known non-
LDLR family member that binds RAP. In addition, it interacts
with other ligands of the LDLR family, whereas the Vps10p-
Ds of SorCS1, -2, and -3 do not bind RAP and other typical
LDLR ligands [90, 186].

Sortilin enters the secretory pathway and might transport
ligands anterogradely [154]. However, once internalized from
the plasma membrane, the receptor is capable to direct cargo
to late endosomal compartments and to lysosomes for degra-
dation [202]. Sortilin is internalized through clathrin-coated
pits and this depends on canonical AP-2 binding motifs.
Like SorLA, sortilin interacts with GGAs, AP-1, and retromer
complex and these interactions convey the cycling of sortilin
between the TGN and late endosomes (Fig. 7) [202,
205–207].

Sortilin functions as an APOE receptor [204], a known risk
factor in sporadic AD [208]. Sortilin mediates cellular uptake
of Aβ bound to APOE and sortilin KO mice crossed to two
different AD mouse models show increased Aβ plaque bur-
den and significantly increased Aβ40 levels, but no changes

5818 Mol Neurobiol (2018) 55:5809–5829



on C-terminal fragments of APP generated by α- or β-
secretase [204]. Therefore, sortilin might play a role in catab-
olizing Aβ peptides.

Sortilin has also been shown to co-localize and to interact
with APP in neurons [154, 209]. FRET analysis and co-
immunoprecipitation identified the ectodomain as well as the
intracellular region as interaction domains, whereby binding
via the C-terminus seemed to be more prominent [209]. The
binding site in APP was mapped to amino acids 1–141 [209]
within the E1 domain (aa 31–191) [210], more specifically

mainly to the growth factor-like domain (GFLD) (aa 28–
123). In agreement, Gustafsen et al. detected the interaction
of sortilin and APP by co-immunoprecipitation, demonstrated
that the extracellular domain of APP is internalized by sortilin
and sorted differentially by SorLA and sortilin [154].
However, Gustafsen et al. mapped the APP-sortilin interaction
via surface plasmon resonance analysis to a different region
(6A) within the APP ectodomain, further distal to the E1 do-
main and binding was inhibited by the sortilin propeptide
[154]. Although more than one binding site may exist, these

Fig. 7 Sortilin modulates APP trafficking. Sortilin is located
predominantly in the TGN and cycles between endosomes and TGN
similarly as SorLA. In contrast, sortilin might shuttle APP mainly in
anterograde direction and then to the cell surface. Sortilin is an

endocytic receptor, which internalizes various ligands by receptor-
mediated endocytosis and delivers them to lysosomes, but its possible
role on APP endocytosis needs to be determined

Fig. 6 SoCS1c modulates APP trafficking. SorCS1c is an endocytic
receptor, but internalization of APP appears to be independent of
SorCS1, although SorCS1c and APP share a common postendocytic

pathway. SorCS1c was shown to reduce the anterograde transport rate
of APP in neurons. Further involvement of SorCS1c in APP trafficking
from sorting endosomes to the Golgi needs to be determined
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potentially conflicting results need clarification. Yang et al.
further identified within the APP C-terminus, the
NPTYKFFE sequence (residues 759–766) as a sortilin inter-
action site [209]. This contains the internalization motif for
clathrin-dependent endocytosis NPTY [211] and the KFFE
motif, which had been shown to be important for APP trans-
port mediated via the μ4 subunit of AP4 [212].

Microarray expression analysis of sortilin in brain tissue of
the occipital lobe and cerebellum showed no significant dif-
ference between AD and control patients [213]. A different
study reported unchanged sortilin protein levels in frontal or
temporal cortical tissue and no association between sortilin
levels and antemortem cognitive test scores [214]. However,
there was a positive association between temporal cortex
sortilin levels and severity of neuropathology by Braak and
NIA-Reagan diagnoses [214]. Moreover, sortilin fragments
were identified in senile plaques [215]. In contrast to the mi-
croarray data, protein levels of sortilin were found to be sig-
nificantly increased in postmortem temporal cortex of AD
patients, which may relate to the finding that sortilin overex-
pression leads to increased BACE1 cleavage of APP and
thereby also to elevated Aβ production [216–218].
Remarkably, sortilin also interacts with BACE1 and influ-
ences its retrograde transport to the TGN [216]. Increased
levels of sAPPβ and Aβ after sortilin overexpression in cul-
tured cells were reported while RNAi-mediated suppression
of sortilin resulted in decreased BACE1 mediated cleavage of
APP [216]. Thus, sortilin seems to influence the proteolytic
conversion of APP. Albeit, a different study suggests that
overexpression of sortilin leads to increased sAPPα and de-
creased sAPPβ levels [154] while overexpressed SORLA
leads to decreased sAPPα/sAPPβ products. This supports a
different impact on APP trafficking of these two APP sorting
molecules.

Like APP, SorLA, and SorCS1, sortilin is cleaved by α-
and γ-secretases [156, 219]. The metalloproteinases
ADAM10 and ADAM17 are thought to act mainly as α-
secretases. ADAM10 and ADAM17 can be activated experi-
mentally by two different reagents. Phorbol 12-myristate 13-
acetate (PMA), an activator of metalloproteinases via the pro-
tein kinase C (PKC) pathway specifically activates ADAM17,
whereas ionomycin, a calcium ionophore strongly activates
ADAM10 in a calmodulin-dependent manner [220]. PMA
has been demonstrated to activate shedding of SorLA and
SorCS1 [156]. In parallel experiments, shedding of sortilin
induced by PMAwas only minor. Using ionomycin to induce
cleavage by ADAM10 significantly increased the level of
shed sortilin [221]. Analysis of mouse embryonic fibroblasts
lacking either ADAM10 or ADAM17 revealed that in these
cells, shedding of sortilin was mainly carried out byADAM10
[221]. Therefore, the proteolytic conversion of sortilin in the
juxtamembrane stalk region is thought to be mainly mediated
by ADAM10. However, shedding of sortilin has been

analyzed in different cell types [156, 221, 222] and has been
reported to be activated by PKC in a tumor cell line [222].
This may indicate that sortilin could be cleaved by ADAM17
in a certain cellular environment.

Different studies indicate that sortilin plays a role in other
human diseases like cardiovascular diseases (CVD) or
frontotemporal lobar degeneration (FTLD). Remarkably, sin-
gle nucleotide polymorphisms (SNPs) within and in the vicin-
ity of the SORT1 gene, encoding sortilin, have been associated
with CVD [223–228] and CVD is considered as a risk factor
for AD [229]. A number of studies analyzed SNPs in different
populations regarding AD, but in contrast to SorLA and
SorCS1, no higher risk has been directly associated with AD
so far in this kind of surveys [213, 230–236].

Although no strong genetic association has been reported
for sortilin in AD so far, there are several indications that
sortilin seems to be involved in another neurodegenerative
disease, in FTLD [237, 238], which is the second most prev-
alent form of early onset dementia after AD (between age 45
and 65) [239]. One important player in FTLD is progranulin,
since pathogenic mutations in progranulin (GRN) were iden-
tified throughout the gene, and all cause the disease via
haploinsufficiency resulting in reduced progranulin levels
[238]. Sortilin was the first identified receptor of progranulin
[240, 241]. Sortilin binds progranulin with high affinity, me-
diates its rapid endocytosis, and subjects it to lysosomal deg-
radation [240, 242]. Sortilin has been additionally linked to
FTLD via the TAR DNA-binding protein 43 (TDP-43) which
has been described as a major risk protein in amyotrophic
lateral sclerosis (ALS) and frontotemporal lobar degeneration
with ubiquitin inclusions (FTLD-U) [243]. TDP-43 is in-
volved in splicing events of sortilin and progranulin [244]
and dysregulation of sortilin splicing via TDP-43 was shown
to lead to an altered progranulin metabolism [245].

In conclusion, sortilin is an additional member of the
Vps10p family interacting with APP, shown to modulate
APP processing. There is no strong genetic association for
sortilin in AD so far, but sortilin might play a role in FTLD.

Calsyntenin

Calsyntenin-1 was first identified in a screen for proteins re-
leased from synapse forming spinal cord neurons [91]. A dif-
ferent study used the binding partner of the APP cytoplasmic
domain, X11L/X11β/mint2 [246], as a bait in a yeast two-
hybrid screen to identify the molecular machinery which reg-
ulates APP trafficking [97] (Fig. 8). Thereby, Alcadein
(Alzheimer-related cadherin-like protein) (Alc) was found,
which is identical to calsyntenin-1 [97]. The protein belongs
to a family of three homologs (Fig. 3) in humans and in mice,
alcadeinα, β, and γ or calsyntenin 1–3, which are all predom-
inantly expressed in neurons [91, 93, 97]. In addition, there
exist two splice forms of alcadeinα termed Balcadeinα1^ and
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Balcadeinα2^ [97]. For simplification, we will use the term
Bcalsyntenin.^

In situ hybridizations of different developmental murine
stages (E14–P48) revealed calsyntenin-1 mRNA expression
throughout the body and in all brain regions [91, 247]. In
contrast, calsyntenin-2 and -3 mRNAs are restricted to the
CNS. Calsyntenin-2 is mainly present in the hippocampus
and the olfactory bulb, at later stages also in cortex and cere-
bellum while calsyntenin-3 is present in various brain areas
[247]. Moreover, calsyntenin-2 and -3 are expressed in inter-
neurons of the hippocampus and the neocortex [93, 94] and
calsyntenin-1 was localized to excitatory and inhibitory
postsynapses [91].

The 150 kDa full-length calsyntenin-1, -2, and -3 can be
proteolytically cleaved into one secreted 115-kDa fragment
and one C-terminal 34-kDa fragment (CTF) by ADAM10 as
well as ADAM17 [91, 248, 249]. Cleavage of calsyntenin-1
mainly takes place in the secretory pathway [250]. Moreover,
it has been shown that calsyntenin-3 is extensively shed since
inmouse brain less than half of calsyntenin-3 is present as full-
length protein and more than half of it as the shed ectodomain
[94]. The 34-kDa CTF fragment can be further processed by
γ-secretase which results in release of the intracellular domain
(ICD) and a secreted Aβ-like fragment which was also termed
p3 [248, 249, 251]. The calsyntenin ICD can suppress gene
transactivation of the APP ICD possibly by titrating away
Fe65 binding partners of APP [248].

Calsyntenins have been suggested as biomarkers in AD
because altered levels were observed in AD. Thus, in
presenilin 1 familial Alzheimer’s disease (FAD) mutants,

which lead to an altered Aβ40/42 ratio for APP concomitantly
altered C-termini for the calsyntenin-1 p335/38 fragments were
observed [249]. Furthermore, elevated levels of calsyntenin-1
p338 fragments were detected in the CSF of patients of various
clinical populations including sporadic AD [251].
Additionally, calsyntenin-1 full-length protein levels were de-
creased in the brains of AD patients [252] and an involvement
of calsyntenin-3 in AD has been implicated in a recent prote-
omics study showing decreased calsyntenin-3 levels in CSF of
FAD patients [253]. A potential role of calsyntenins in AD is
in line with a survey indicating that calsyntenin-3 accumulates
in dystrophic neurites surrounding amyloid-β (Aβ) plaques
[254].

So far, calsyntenins have not been genetically linked to
AD, but there is accumulating evidence that calsyntenin-1 is
involved in APP transport. Several studies demonstrated par-
tial co-localization of APP and calsyntenin-1, which are both
present in the soma, in dendrites, and axons of neurons [252,
255]. In the soma, both proteins are mainly localized to the
trans-Golgi network [252, 255, 256]. About 29–41% of ves-
icles in axons of the sciatic nerve, hippocampal, or cortical
neurons contained both APP and calsyntenin-1 [95, 252,
257]. Additionally, immunostainings revealed that APP and
calsyntenin-1 co-localize to about 48% in the central domain
of growth cones in hippocampal neurons, but only to about
12% in the peripheral domain of growth cones [96, 257]. Live
cell imaging analyses of cells transfected with fluorophore-
tagged calsyntenin-1 or APP have been performed in different
cellular systems. Velocities of antero- and retrograde moving
vesicles containing one of the proteins varied in the different

Fig. 8 Calsyntenin-1 modulates APP trafficking. Calsyntenin-1 and APP
are mainly co-localized in the TGN and interact indirectly via X11L.
Knockdown of calsyntenin-1 inhibits anterograde movement of APP
leading to an accumulation in the TGN. Additionally, calsyntenin-1 and

APP are co-localized in Rab5 positive early endosomes, but not in Rab11
positive recycling endosomes. The synaptogenic calsyntenin-3 is thought
to act differently and shows a more abundant localization at the cell
surface than calsyntenin-1 or -2
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surveys [6, 62, 95, 96, 252, 258, 259]. However, co-
transfection in neurons demonstrated co-transport of both pro-
teins [252]. Those results suggest that APP and calsyntenin-1
co-localize and are partially co-transported (Fig. 8). However,
attempts to prove a direct interaction of calsyntenin-1 and
APP failed. The association of both proteins is rather bridged
by the cytoplasmic interaction partner X11L [97]. X11L ex-
pression leads to a decrease in Aβ40 and sAPP production
[260–262]. Expression of the tr ipart i te complex
X11L/calsyntenin-1/APP leads to an even more severe reduc-
tion of Aβ levels, but not calsyntenin-1/APP expression
alone. X11L expression enhances the half-life time of APP
and this effect is even more pronounced in the presence of
calsyntenin-1 [97].

As exemplified above, a large body of evidence suggests
that APP represents one of several transmembrane proteins
that undergo fast axonal transport by means of conventional
kinesin but does not interact directly with kinesin (reviewed in
[263]). A number of studies strongly indicate that calsyntenin-
1 acts as an organelle adaptor that links kinesin-1 light chain to
transport vesicles because it directly binds KLC’s via its C-
terminal domain [95, 96, 256]. Immunostainings showed that
calsyntenin-1-positive organelles are aligned along microtu-
bules in axons of neurons and co-localize partly with kinesin-1
[96]. Calsyntenin-1 can induce vesicle association with
KLC1, as shown via live cell imaging [95]. Taken together,
current results suggest that calsyntenin-1 links certain types of
vesicles to kinesin.

Immunoisolates of calsyntenin-1 from mouse brains iden-
tified two different types of calsyntenin-containing transport
organelles [257]. One was characterized by early endosomal
markers like Rab5 and contained APP [257]. In contrast, the
other calsyntenin-containing transport organelle which was
characterized by the recycling vesicle marker Rab11 was lack-
ing APP [257]. The presence of APP in early endosomal ves-
icles is consistent with previous studies, showing co-
localization of APP with Rab5-positive endosomes [264,
265]. Rab5 immunoisolates contained mainly the calsyntenin
CTF while APP immunoisolates contained calsyntenin main-
ly in the full-length form [257]. These data together with time
lapse imaging analyses lead to the hypothesis that calsyntenin-
1 docks kinesin to different endosomal carriers transporting
APP and other cargo anterogradely along the axon to the
growth cone [255, 257].

In line with this notion are calsyntenin-1 knockdown ex-
periments which resulted in a significant increase in APP
levels in the TGN [252], corroborating the idea that
calsyntenin-1 mediates kinesin-1 transport of cargoes on
post-Golgi carriers [255, 256]. Knockdown of calsyntenin in
neurons leads to suppressed anterograde (64.3%) and retro-
grade transport (46.6%) of APP [252], but not to a complete
inhibition of APP movement. This supports the assumption

that calsyntenin function underlies only one of several trans-
port mechanisms of APP.

Remarkably, knockdown or overexpression of calsyntenin
seems to influence APP processing, presumably by altering
APP transport. So far, the corresponding data are conflicting.
A significant increase in α- and β-CTF production after
knockdown of calsyntenin-1 was shown [255]. On the con-
trary, coexpression of calsyntenin-1 or of the ICD of
calsyntenin with APP suppressed APP anterograde transport
and facilitated Aβ40 and Aβ42 production [95]. In contrast, a
study of Vagnoni et al. showed an increase in Aβ40 and Aβ42

levels and β-CTF and sAPPβ after knockdown of
calsyntenin-1 while sAPPα and α-CTFs were reduced.
Moreover, calsyntenin-1 levels are reduced in AD brains
which correlates inversely with Aβ levels [252]. Therefore,
further studies are required to understand the impact of
calsyntenin-1 on APP processing.

Calsyntenin-1 and -2 seem to play similar cellular roles,
whereas a different function for calsyntenin-3 is likely, be-
cause this protein lacks the C-terminal KLC1 binding motifs
as well as the calcium-binding region in its C-terminus [93]
and shows a more prominent surface localization than
calsyntenin-1 and -2 [94]. This is consistent with the fact that,
so far, no role for calsyntenin-3 has been demonstrated in
organelle transport [96]. Albeit, the impact of calsyntenin-3
on APP transport has not been analyzed in detail. In accor-
dance with a different function, it has been recently reported
that calsyntenin-3, but not calsyntenin-1 or -2, is able to in-
duce presynaptic differentiation [94, 247]. It shares this capac-
ity with APP and other well characterized synaptic adhesion
molecules (SAMs) [266–270]. One of the best described
SAM’s are neuroligins, which are located at the postsynapse
interacting in trans with presynaptic neurexins [271].
Neurexin genes each encode a longer α form and a shorter
β form [272]. Conflicting results described an interaction of
postsynaptic calsyntenin-3 with neurexin1α in a direct fashion
[94, 273], but not with neurexin1β [94]. However, a different
study failed to reproduce the direct interaction between
calsyntenin-3 and neurexin1 in similar cell surface binding
assays, raising the question whether calsyntenin-3 binds
neurexin1 directly [247].Moreover, calsyntenin-1 and -2 were
reported not to interact with neurexin [94]. The physiological
relevance of these findings still needs to be resolved but
calsyntein-3 might affect synapse formation and or stabiliza-
tion, which are important determinants in AD [274].

In conclusion, current knowledge implies that calsyntenins
are not genetically linked to AD, although altered calsyntenin
fragment levels have been observed in AD brains.
Calsyntenin-1 and most likely calsyntenin-2 modulate APP
transport and presumably its processing.
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Conclusions

Intracellular transport of APP determines its processing by
different proteolytic enzymes and altered subcellular traffick-
ing of APP is thought to directly affect the degree to which Aβ
is generated. The type-I transmembrane proteins LRP1,
SorLA, SorCS1, sortilin, and calsyntenin-1 have been demon-
strated to modulate APPs intracellular targeting and process-
ing. Genetic linkage analyses underscore the role of SorLA in
the development of EOAD and LOAD, whereas LRP1 and
SorCS1 were identified in some studies as LOAD risk factors.
On the other hand, a genetic association of sortilin and
calsyntenin-1 with AD has not been demonstrated so far.

APP interacts directly with LRP1, SorLA, SorCS1, and
sortilin and these interactions are thought to link APP to spe-
cific intracellular sorting machineries. Thus, SorLA seems to
link APP to the retromer complex which has been suggested
as an AD risk factor, but retromer does not interact directly
with APP. In contrast, LRP1 also interacts indirectly with APP
via Fe65 and calsyntenin-1 interacts indirectly with APP and
this interaction is bridged by the cytosolic adaptor protein
X11L. This indirect interaction could link APP through
calsyntenin-1 to kinesins and enable microtubule-dependent
axonal transport.

In addition to full-length APP, LRP1, SorLA, and sortilin
interact directly, or in the case of sortilin indirectly, with Aβ
and are expected to partake in its clearance. It is under debate
which cells convey Aβ clearance. However, recent human
genome-wide association studies and systems-biology ap-
proaches have identified an unexpectedly dominant role of
the microglial innate immune response in increasing the risk
of developing AD [275]. SorLA, LRP1, and calsyntenin-1 are
expressed in microglia [276] and LRP1 associates with the
lipid transporter ABCA7 on the cell membrane [277].
ABCA7 and other transmembrane proteins such as Trem2
and CD33 have been recognized as LOAD risk factors, iden-
tified in microglia, related to the immune response and Aβ
clearance [275, 278, 279]. Future studies will have to prove if
SorLA in addition to LRP1 functions as a microglial scaven-
ger receptor for Aβ.

In conclusion, our understanding which proteins are mod-
ulating APPs intracellular transport has improved, but we still
lack detailed information on the specific sorting steps deter-
mining APPs subcellular targeting and which miss targeting
events underlie disease development.
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