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Abstract Familial amyloid polyneuropathy (FAP) is a domi-
nantly inherited disorder. This study aims to explore the ge-
netic features of a Han Chinese family with FAP, characterized
by bloating, alternating diarrhea and constipation, and weak-
ness in his feet. Amyloid presented histologically in the vessel
walls of hepatic portal area and nerves of the surgically ex-
cised liver specimens from the proband by hematoxylin and
eosin staining. Amyloid deposition was further confirmed
with Congo red treatment. A c.349G>T transversion
(p.Ala117Ser) in TTR gene exon 4 was identified in the pro-
band with typical autonomic neuropathy and peripheral motor
neuropathy, as well as in his asymptomatic son. The variant
was not detected in 200 normal ethnically matched controls.
These findings provide new insights into FAP cause and di-
agnosis and have implications for genetic counseling.
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Introduction

Familial amyloid polyneuropathy (FAP, OMIM 105210) is a
rare, autosomal-dominant disease, characterized by amyloid
accumulation in the peripheral nerves and other organs, in-
cluding the heart, kidneys, and eyes [1]. FAP was first de-
scribed in Portugal in 1952 and was originally thought to be
endemic in only a few countries including Portugal, Japan,
and Sweden. It was later reported in other locations [2, 3].
FAP can be caused by the following four genes: the
transthyretin gene (TTR, OMIM 176300), the apolipoprotein
A1 gene (APOA1, OMIM 107680), the gelsolin gene (GSN,
OMIM 137350), and the beta-2-microglobulin gene (B2M,
OMIM 109700) [4]. Of these, the TTR amyloidosis is the most
common form [5]. The TTR p.Val50Met mutation was firstly
described as the cause of FAP in 1984 [6]. Currently, more
than 125 TTR mutations have been identified, of which 13
TTR mutations seem to be non-amyloidogenic. All are mis-
sense point mutations except for one microdeletion
p.Val142del (http://www.amyloidosismutations.com/main_
menu.html). The p.Val50Met mutation is the most common
TTR mutation reported in 85% of the FAP patients from the
Familial Amyloidotic Polyneuropathy World Transplantation
Registry (FAPWTR) [5, 7].

Nerve length-dependent, sensory-motor, and autonomic
polyneuropathy beginning in the feet is the neurological fea-
ture of TTR-FAP [1, 5]. The phenotypes vary dramatically
between kindreds with different variants. It is difficult to es-
tablish a firm genotype-phenotype correlation in FAP. Clinical
phenotype variability exists even among the same family and
individuals with the same point mutation [3, 8, 9]. Though
patients with TTR p.Ile127Val mutation were reported to have
severe FAP with shorter median survival [10], individuals
with compound heterozygous p.Val50Met and p.Thr139Met
or p.Arg124His variants present with a mild form of FAP [8],
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indicating that the phenotype modifiers may be involved.
TTR-FAP prevalence varies in different populations. There is
a relatively high prevalence, 0.09% (1/1108) in northern
Portugal, which is lower in the rest of Europe and USA (ap-
proximately 1/100,000) [3, 11]. TTR-FAP may present as spo-
radic cases in other non-endemic regions [12]. Sex ratio varied
in different regions. Male-to-female ratios were significantly
higher (10.7:1) in late-onset FAP TTR p.Val50Met Japanese
patients, but much lower (0.9:1) in FAP TTR p.Val50Met
Portuguese patients [10, 13]. TTR-FAP onset age ranges wide-
ly from 16 to 80 years old [12–14]. Disorder duration ranges
from 2 to 21 years [14]. Age-dependent and geography-based
penetrance has been described in the literature [14–16]. The
penetrance was also significantly higher with maternally
inherited TTR mutations [15, 17, 18].

In this article, we describe a Han Chinese family with
c.349G>T (p.Ala117Ser) variant in the TTR gene.
Bioinformation analysis along with the absence of the variant
in 200 ethnically matched normal controls suggests that it may
be a pathogenic variant.

Methods

A dominant Han Chinese family (Taiwanese originally from
Fujian) with FAP was enrolled in the Third Xiangya Hospital,
Central South University, China (Fig. 1). The proband (Fig. 1,
III-1) received a liver transplantation. Blood samples were
collected from two members of the family and 200 unrelated,
ethnically matched mainland Chinese, normal controls (age
40–70 years old). Informed consent was obtained from the

individuals. The study received approval from the Ethics
Committee of the Third Xiangya Hospital, Central South
University, Changsha, Hunan, China.

Clinical Data

The proband presented with complaints of bloating, alternat-
ing diarrhea and constipation, and muscular weakness in his
feet, over a year (Table 1). Neurological examination revealed
muscle weakness in the lower extremities. Kidney function
and ophthalmological examinations were normal. Cardiac ul-
trasound showed suspicious amyloid deposition. The pro-
band’s son (IV-1) did not complain of any sensory-motor
problem or similar gastrointestinal symptoms. The proband’s
maternal grandfather (I-1), mother (II-2), and uncle (II-3) were
unable to walk in their later years.

Light Microscope and Electron Microscopy Analysis

The hepatic specimens from the proband were fixed in 10%
formalin and embedded in paraffin. The tissues were sec-
tioned into 3 μm and stained with hematoxylin and eosin
(HE) and Congo red. Electron microscopy samples were fixed
in a 2.5% glutaraldehyde buffer for 2 h, then with osmium
acid, dehydrated in acetone, and embedded with epoxy resin.
The sections were observed under an electron microscope and
photographed.

Gene Analysis

Genomic DNAwas isolated from lymphocytes using the stan-
dard method [19]. Polymerase chain reaction (PCR) amplified
the TTR gene (NCBI Reference Sequence: NG_009490.1,
NM_000371.3) using a 9700 Thermal Cycler System
(Applied Biosystems Inc., Foster City, USA), and PCR con-
ditions were 95 °C for 3 min, followed by 35 cycles of 95 °C
for 40 s, 58 °C for 35 s, 72 °C for 45 s, and a final extension
step at 72 °C for 5 min. The primers used for PCR amplifica-
tion cover all TTR gene coding regions and exon/intron
boundaries, which were synthesized by Sangon Biotech
(Shanghai) Co., Ltd., Shanghai, China (Table 2). PCR prod-
ucts of 8.5 μl were digested by 0.8 U shrimp alkaline phos-
phatase and 8 U exonuclease I (Fermentas Inc., Burlington,
Canada) in a 10-μl reaction volume. They were then se-
quenced directionally using an 8-capillary 3500 genetic ana-
lyzer (Applied Biosystems Inc., Foster City, USA). Three on-
line tools, MutationTaster prediction (http://www.
mutationtaster.org/), Sorting Intolerant from Tolerant (SIFT)
prediction (http://sift.jcvi.org/), and HumVar-trained
PolyPhen-2 (Polymorphism Phenotyping v2, http://genetics.

Fig. 1 a Pedigree with FAP. Squares represent males; circles represent
females; white symbols symbolize unaffected individuals; black symbols
indicate individuals with FAP; slashed symbols represent deceased
individuals; arrow presents proband. N normal allele, V c.349G>T
variant. b DNA sequencing of the c.349G>T variant in the TTR gene. c
The sequencing electropherograms of wild-type TTR gene

4912 Mol Neurobiol (2018) 55:4911–4917

http://www.mutationtaster.org
http://www.mutationtaster.org
http://sift.jcvi.org
http://genetics.bwh.harvard.edu/pph2


bwh.harvard.edu/pph2/), were performed to estimate whether
a variant affected protein structure or function [20, 21]. The
structural and functional importance of the amino acid at the
variant position was further assessed by National Center for
Biotechnology Information-Basic Local Alignment Search
Tool (NCBI-BLAST) in different species.

Results

Histopathologic evaluation of the excised liver specimens
from the proband revealed that amyloid deposits were present
in the perineurium and arteries of hepatic portal area by HE
staining, further confirmed by Congo red treatment. There
was no amyloid deposition in the hepatocytes. Electron mi-
croscopy revealed amyloid fibrils, which were crossed, or
parallel-arranged, in bundles. Surrounding tissues were clear
(Fig. 2).

A known heterozygous missense variant, c.349G>T
(p.Ala117Ser), in the TTR gene, was identified in the proband
(Fig. 1). Extended analysis of the family identified the identi-
cal c.349G>T variant in his asymptomatic son. This variant
was absent in the 200 normal control subjects. This c.349G>T
(p.Ala117Ser) variant was predicted to be disease causing,
damaging, and probably damaging by MutationTaster, SIFT,
and PolyPhen-2, respectively. The alanine at the mutated po-
sition (p.Ala117) is highly conserved in different species, sug-
gesting its structural and functional importance (Fig. 3).
Cartoon representation of the protein structure is shown in
Fig. 4 created by PyMOL 1.7 based on the CPHmodels-3.3
[22]. Though recorded in the single nucleotide polymorphism

database (rs267607161), there is no frequency data of this
variant. The variant was absent in over 60,000 individuals in
the Exome Aggregation Consortium (http:/ /exac.
broadinstitute.org/). According to the American College of
Medical Genetics and Genomics guidelines [23], the c.
349G>T (p.Ala117Ser) variant was classified as a Blikely
pathogenic^ variant.

Discussion

This study detected the presence of amyloid deposits in the
perineurium and arteries of the proband’s hepatic portal area
using HE staining. Amyloid deposition exhibited affinity for
Congo red. A heterozygous missense variant c.349G>T
(p.Ala117Ser), previously reported as Ala97Ser by other stud-
ies [24–30], was identified in the proband’s and his asymptom-
atic son’s TTR gene. Amyloid deposition in tissue and a proven
amyloidogenic variant in the TTR gene confirmed this patient’s
diagnosis of TTR-FAP. Patients with p.Ala117Ser TTR-FAP
usually had a late age at onset, different from those with TTR
p.Val50Met mutation [25, 26]. Almost all TTR p.Ala117Ser
patients have motor and sensory symptoms. Autonomic symp-
toms, such as gastrointestinal symptoms and orthostatic hypo-
tension, are common (Table 3). The patient in our study
showed gastrointestinal symptoms, autonomic nerve function
damage, and lower limb weakness, which are typical manifes-
tations in the TTR-FAP cases. He presented no significant sen-
sory symptom. Disease progression is usually described as
having three stages according to the patients’ signs and symp-
toms. Stage I patients are ambulatory. Stage II patients are

Table 2 Primers for the TTR
gene Exon Forward (5′-3′) Reverse (5′-3′) Product size (bp)

1 AGTGAGTATAAAAGCCCCAGG TGCTCAGAGTTCAAGTCCCA 330

2 TCTTGTTTCGCTCCAGATTTCT AGCAGATGATGTGAGCCTCT 313

3 TGCCATGCCATTTGTTTCCT CCAAAACCAAAACAACCCTCG 231

4 TTTCGGGCTCTGGTGGAAAT TTGTCTCTGCCTGGACTTCT 276

Table 1 Clinical and
pathological features of the TTR
variant patient and carrier in this
study

Subjects III-1 IV-1

Sex Male Male

Age (years) 69 43

Age of onset (years) 68 /

Symptom of onset Bloating, alternating diarrhea, and constipation /

Associated clinical features Weakness in the lower extremities /

Pathological features Amyloid deposition presented in the vessel
walls and nerves of the surgically excised
liver specimen

/
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ambulatory but require assistance. Stage III patients are either
bedridden or wheelchair-bound [3]. The proband in this study
is in the early stages of the disease and suffers mild motor
impairment of the lower extremities, moderate autonomic man-
ifestations, and full ambulation.

The human TTR gene, located on 18q12.1, includes 4
exons spanning over 7 kb and encodes 147 amino acids. The
TTR protein is a 56 kDa homotetrameric protein formed by
the 127-residue polypeptides. It is a soluble protein circulating
in peripheral blood and cerebrospinal fluid [5]. Half of the
residues in eachmonomer are composed of twoβ-sheets, each
of which is composed of four strands. The remaining residues
loop attaches to theβ-strands [31]. TTR, as a plasma-transport
protein for thyroxin (T4) and vitamin A, is primarily synthe-
sized in the liver [5, 7]. The remainder is in choroid plexus

cells and retinal cells [5]. Energetic studies of a large number
of recombinant TTR variants suggested that amyloidogenic
mutations destabilize the native quaternary and tertiary struc-
tures of TTR, thereby inducing conformational changes [32,
33]. When the TTR gene mutates, TTR tetramer dissociates
into monomers as the initial step which allows subsequent
partial misfolding and misassembly. This leads to the forma-
tion of TTR amyloid fibrils and several aggregate morphol-
ogies [32, 34]. Dissociation of TTR tetramer into monomers
depends on pH. Under acidic conditions, tetrameric TTR mu-
tant dissociates into monomers to a much greater extent than
that of wild-type TTR [33, 35]. The mutated alanine p.Ala117
located on the carboxy terminus, the F-strand of the TTR
molecule, is part of the hydrophobic core [26, 36]. A
misTTR antibody and a peptide inhibitor that selectively tar-
get TTR residues in the F-strand can inhibit fibrillogenesis or
protein aggregation [37, 38], which supports the importance
of F-strand for TTR protein aggregation. The substitution of
alanine p.Ala117 with the less hydrophobic serine might de-
stabilize the structure and cause the dissociation of the TTR
tetramer.

Transgenic Drosophila melanogasters, with TTR Leu55Pro
or engineered TTR Val14Asn/Val16Glu, showed peripheral
toxicity, accompanied by premature death and locomoter be-
havioral alterations [39]. In transgenic mice carrying human
TTR mutants, amyloid deposition was detected in the gastro-
intestinal tract and other organs and tissues, which became
more remarkable with aging [40, 41].

Fig. 2 Pathological imaging of the proband’s liver. a HE-stained section
demonstrates that amyloid deposition is accumulated in nerve fascicle. b
The amyloid deposition exhibits affinity for Congo red within a nerve
fascicle. c HE-stained section demonstrates that amyloid materials are

accumulated in the vessel. d The amyloid deposition was positive for
Congo red staining within a vessel. e Amyloid fibrils under electron
microscope. f Amyloid fibrils were crossed or parallel arranged in bun-
dles under electron microscope

Fig. 3 Conservation analysis of TTR p.Ala117 amino acid residue
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The current reference treatment for TTR-FAP is liver trans-
plantation [12, 32]. Liver transplantation is recommended to
early onset TTR-FAP patients with p.Val50Met mutation be-
fore 50 years old except for women, aiming to remove the
main source of systemic mutant TTR [12]. To our knowledge,
this is the first liver transplantation case reported with a TTR
p.Ala117Ser variant, and the patient had a liver transplantation
at an early stage of TTR-FAP. By 6 months after surgery,
patient’s gastrointestinal symptoms eased. There had been

no further progression of the neuropathy though long-term
effects need further follow-up observation.

Recently, some new therapeutic strategies intended to sta-
bilize TTR have become available. Tafamidis, a specific TTR
stabilizer, is the first TTR-FAP drug approved for use in
Europe and some other countries (Japan, Mexico, and
Argentina) [32, 42]. In the latest study of early treatment with
tafamidis over a 5.5-year period, it resulted in delay in neuro-
logic progression and long-term preservation of nutritional

Fig. 4 Cartoon representation of
the model structure of TTR by
PyMOL 1.7 based on the
CPHmodels-3.3: the wild-type
alanine (a) and mutated serine (b)
located at position 117 are shown
as ball-and-stick models

Table 3 Clinical presentations of the patients with c.349G>T variant of TTR gene

References Lai et al. [25] Yang et al. [26] Liu et al. [27] Chao et al. [28] Tachibana et al. [29] Klein et al. [30] Our study

Origin Taiwan Taiwan Taiwan Taiwan Taiwan USA Mainland China

Sex ratio (male:female) 14:4 16:3 3:2 25:3 1:0 1:0 1:0

Age-onset (years) 65.2 ± 5.4 59.5 ± 5.7 51.2 59.9 ± 6.0 68 64 68

Motor symptom N/A 19/19 5/5 28/28 + N/A +

Sensory symptoms N/A 19/19 5/5 28/28 + N/A −
Paresthesia N/A 19/19 5/5 28/28 + N/A −
Pain N/A 11/19 N/A 15/28 − N/A −
Autonomic symptoms N/A 19/19 5/5 22/28 + N/A +

Gastrointestinal symptoms N/A 18/19 5/5 N/A + N/A +

Orthostatic hypotension N/A 14/19 2/5 N/A − N/A −
Cardiac involvement N/A N/A 3/5 N/A + N/A +

N/A not applicable, B+^ with this symptom, B−^ without this symptom
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status [43]. Some other new therapeutic strategies for TTR
amyloidosis including antibody [44, 45], TTR siRNA treat-
ment [46], and tauroursodeoxycholic acid and curcumin [47]
are currently being explored, which may shed a new light on
the therapy of TTR-FAP.

Conclusions

The missense variant c.349G>T (p.Ala117Ser) of the TTR
gene may be responsible for the Han Chinese family with
FAP. Sanger sequencing of TTR gene provides a cost-
effective approach to identify variant responsible for patients
of FAP. These findings provide new insights into FAP cause
and diagnosis and have implications for genetic counseling.
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