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Abstract Among all the biological systems in vertebrates, the
central nervous system (CNS) is the most complex, and its
function depends on specialized contacts among neurons
called synapses. The assembly and organization of synapses
must be exquisitely regulated for a normal brain function and
network activity. There has been a tremendous effort in recent
decades to understand the molecular and cellular mechanisms
participating in the formation of new synapses and their orga-
nization, maintenance, and regulation. At the vertebrate
presynapses, proteins such as Piccolo, Bassoon, RIM, RIM-
BPs, CAST/ELKS, liprin-α, and Munc13 are constant resi-
dents and participate in multiple and dynamic interactions
with other regulatory proteins, which define network activity
and normal brain function. Here, we review the function of
these active zone (AZ) proteins and diverse factors involved in
AZ assembly and maintenance, with an emphasis on axonal
trafficking of precursor vesicles, protein homo- and hetero-
oligomeric interactions as a mechanism of AZ trapping and
stabilization, and the role of F-actin in presynaptic assembly
and its modulation by Wnt signaling.
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Introduction

Chemical synapses are specialized junctions that pass signals
among neurons or from neuron to non-neuronal cells such as
those in muscles or glands. In the CNS, synapses have two
structural and functional different regions: (i) the active zone
(AZ), a specialized area of the plasma membrane located in
the presynaptic neuron, which contains the molecular machin-
ery that regulates neurotransmitter exocytosis from synaptic
vesicles; and (ii) the postsynaptic density (PSD), a membrane
region of the postsynaptic neuron which has neurotransmitter
receptors and signaling apparatus. The strength of synapse
communication at the CNS depends on pre- and postsynaptic
factors. At the presynapses, synaptic efficacy depends on the
frequency and number of vesicles released after stimulation.
Synaptic vesicles at the presynaptic terminal are organized,
transit between three different pools, and undergo a cycle of
exo- and endocytosis. The readily releasable pool (RRP) is
located closest to the AZ plasma membrane, followed by the
recycling pool and resting pool [1]. AZ proteins maintain the
structural and functional integrity of these pools, and also
recruit voltage-gated Ca2+ channels (VGCC) to the presynap-
tic membrane to allow fast and synchronous coupling between
excitation and release, thereby modulating synaptic strength
and presynaptic plasticity.

The conservation of a collection of proteins found in inver-
tebrate and vertebrates AZs suggest that they form a minimal
platform necessary for neurotransmitter release. These pro-
teins include Rab3-interacting molecules (RIMs), RIM-
binding proteins (RIM-BPs), ELKS, liprin-α, and Munc13.
Other vertebrate AZ proteins such as Piccolo and Bassoon
are less conserved among species, and they might play a more
specialized role in higher organisms. Hence, AZ proteins form
a dense accumulation called the cytomatrix at the active zone
(CAZ), which is a macromolecular complex that regulates
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synaptic vesicle trafficking cycle. The synaptic vesicle cycle
involves several steps: SVare recruited to the AZ where they
are tethered and docked. Then they are primed so that they can
fuse rapidly in response to calcium entry triggered by an ac-
tion potential [2, 3]. To complete the cycle, synaptic vesicles
undergo endocytosis, recycle, and refill with neurotransmitters
for a new round of exocytosis.

Synaptogenesis, the formation of synapses between neu-
rons in the nervous system, is a multistep process that requires
cell adhesion, transport of synaptic components along
neurites, trapping, stabilization of synaptic proteins at sites
of newly forming synapses, and maturation. This process
and the establishment of protein interactions must be timely
and spatially regulated to avoid the development of neurolog-
ical diseases [4]. There is a multivesicular-mediated mecha-
nism for the transport of AZ and synaptic vesicle proteins
from the cell soma into newly forming synapses at distal ax-
onal sites [5–8]. During trafficking, cytoskeletal and motor
proteins participate actively [9], and some AZ proteins play
a role as adapters between motor proteins and vesicles [10].
Table 1 summarizes the main described functions of these
proteins. In the last 20 years, accumulating evidence has
shown the involvement of the actin cytoskeleton and regula-
tory signaling mechanisms participating in the formation and
stabilization of new synapses in which theWnt signaling path-
way plays an important role.

Active Zone Proteins: Role in Presynaptic
Organization and Function

The overall function of the AZ is to translate an action poten-
tial into a chemical signal releasing neurotransmitters into the
synaptic cleft. Therefore, AZ proteins have to interact in a
coordinated manner for normal synaptic function to be accom-
plished. During synapse formation, AZ proteins are
transported along axons to sites of newly forming presynapses
where they interact with other AZ proteins, forming a macro-
molecular network of interactions. Furthermore, once synap-
ses are established, the AZ undergoes molecular remodeling
during the lifespan to support the requirements of synaptic
activity and plasticity. Initially, due to their modular structure,
AZ proteins were given the role of scaffolding; however, ad-
vances in live microscopy, super-resolution microscopy, elec-
tron microscopy, and genetic and molecular manipulations
combined with studies in invertebrates have deciphered more
specific and dynamic functions for some of these proteins in
the various steps of neurotransmitter release. Therefore, AZ
proteins are more than fixed scaffolds with a role in holding
SV; they also participate in SVendocytosis/exocytosis and the
maintenance, remodeling, and dynamics of the presynapses,
working as a team with specific and shared functions (Fig. 1).
The latter is thought to be part of a redundant and protective
mechanism. Most AZ proteins have several common

Table 1 Main functions of
vertebrate active zone proteins Protein MW (kDa) Function Reference

Piccolo 550 Scaffolding, CAZ organization [11, 12]

Presynapse assembly [13, 14]

Modulation of SV reserve pool movement [12, 18, 20, 21]

Regulation of F-actin dynamic [18, 19, 21]

Regulation synaptic ubiquitination and proteostasis [42, 44]

Partipation in the communication between synaptic
activity and gene expression

[43]

Bassoon 420 Key scaffolding protein of ribbon synapses [28, 31, 32, 38]

Adapter for the transport of PTVs [10, 109]

Regulation synaptic ubiquitination and proteostasis [42, 44]

Calcium channel clustering [35, 37]

Partipation in the communication between
synaptic activity and gene expression

[43]

ELKS 120 Scaffolding, CAZ organization [48–50, 54]

Negative regulator of inhibitory synapses [53, 55]

RIM 190 SV priming [62]

Calcium channel recruitment to AZ [66, 74]

Presynaptic plasticity [67–69]

RIM-BP 180 Calcium channel recruitment [77, 78]

Liprin 160 Scaffolding, CAZ organization [90, 95]

Presynaptic plasticity [93–95]

Munc13 200 SV priming and fusion [103, 104, 106]

Presynaptic plasticity [98, 105]
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characteristics: they are multi-domain, interact with other AZ
proteins, form temporal complexes with diverse proteins, and
continue to be expressed at high levels in the adult brain,
emphasizing their permanent role in synapse function. These
characteristics situate AZ proteins as key molecular entities to
modulate AZ content and efficacy during the lifespan of the
synapse.

Vertebrate AZ Proteins

Piccolo

Piccolo was one of the first presynaptic molecules to be de-
scribed in the vertebrate CNS [11]. There are several charac-
teristics that make Piccolo a candidate for vertebrate CAZ
assembly and organization: (a) early appearance, (b) large
size, (c) multiple domains (two N-terminal zinc fingers, three
coiled-coil, proline-rich region (Q domain), PDZ and two C2
domains), and (d) interaction with proteins of diverse function
[11–13]. The multiple interactions described for Piccolo sug-
gest that it is a very versatile molecule. Piccolo interacts di-
rectly with the AZ proteins Bassoon, ELKS, liprin-α, and
Munc13. Piccolo also binds to GIT1, a GTPase-activating
protein of the ADP-ribosylation factor family that participates
in functions such as vesicle trafficking, adhesion, and cyto-
skeletal organization [13, 14]. GIT1 colocalizes with Piccolo
at synapses and is part of a multi protein complex, suggesting
a role in the organization of the CAZ [14]. Another interaction
suggests that Piccolo has a role in SV movement and is with
the prenylated Rab acceptor protein 1 (PRA1), which might
control SV docking and fusion [12]. Piccolo is also postulated
to have a role in synaptic vesicle clathrin-mediated endocyto-
sis because of its interaction with Abp1, an F-actin-binding
protein, and the GTPase dynamin [15]. Another possible role
for Piccolo is in the scaffolding of voltage-gated calcium
through its C2A domain, but its importance has not been fur-
ther explored [16, 17]. Other recently described interactions of

Piccolo, which will be discussed in the BActive zone and Wnt
signaling^ section, are Daam1 (Disheveled associated activa-
tor of morphogenesis 1) [18] and Rho-GEF Trio [19].

A specific shRNAi for Piccolo designed by Leal-Ortiz et al.
[20] rendered non-Piccolo immunoreactive bands in western
blot analysis of lysates prepared from rat hippocampal neu-
rons [21]. The knock-down (KD) of Piccolo in rat hippocam-
pal neurons did not affect synapse formation since presynaptic
and postsynaptic proteins showed normal synaptic targeting
[20] suggesting that this protein is not essential for glutamater-
gic synapse formation, although the loss of Piccolino, the
major Piccolo isoform frommouse photoreceptor cells, causes
defects in thematuration and ultrastructure of ribbons [22, 23].
When the presynaptic function was evaluated by styryl FM
dyes [24] in the Piccolo KDmodel, no differences were found
in the total reserve pool (TRP) of SV but the destaining kinet-
ics of the TRP was more rapid in comparison with the control
suggesting changes in the exocytosis of SV. This study
showed that Piccolo negatively regulates the exocytosis of
SV by modulating the synapsin 1 dynamic at the AZ by a
calmodulin kinase II-dependent (CaMKII) mechanism [20]
that involves presynaptic F-actin polymerization [21].
Interestingly, no neurotransmission defects were found in a
study that used a mouse model with a targeted deletion of
exon 14 for the Piccolo gene [25]; however, this Piccolo
knock-out (KO) model continued to express presynaptic
Piccolo isoforms, which most likely supports Piccolo function
in neurotransmitter release [21]. Therefore, Piccolo will be
necessary to restrain SV at the reserve pool by acting as the
scaffold for several actin-binding proteins, which modulate
presynaptic F-actin polymerization. Recently, an invertebrate
homolog with conserved Piccolo functions in Drosophila,
fife, has been described [26]. Fife mutants present a decrease
in neurotransmitter release, abnormalities in the presynaptic
membranes, and reduced SV clustering [26, 27].

Overall, Piccolo, in addition to having a clear function
in scaffolding and organization of the CAZ, modulates SV

Fig. 1 General functions of main
active zone proteins. Vertebrate’s
central presynapses contain seven
functionally relevant proteins:
Piccolo, Bassoon, ELKS, RIM,
RIM-BP, liprin, andMunc13. The
figure summarizes the specific
and overlapping functions of
these main active zone proteins
suggesting that redundant
mechanisms protect central
synapse structure and function
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dynamic and homeostasis of CAZ proteins (BBassoon^
section), suggesting a participation in synaptic plasticity
(Fig. 2; Table 1).

Bassoon

Bassoon is another large structural protein that interacts with
Piccolo and other proteins of the AZ [11, 28]. Bassoon and
Piccolo are structurally related proteins sharing ten highly
conserved regions [12, 28, 29]. Bassoon contains two N-
terminal zinc finger domains, three coiled-coil domains, and
a glutamine repeats at its C-terminus [28]. Bassoon differs
from Piccolo in that it does not participate directly in F-actin
dynamic, but seems to be necessary for the synaptic architec-
ture of other non-CNS synapses because the loss of Bassoon
produces structural defects in retinal and cochlea ribbon syn-
apses [30, 31] but not at central synapses. At the retinal pho-
toreceptor synapses, the CAZ contains a specialization called
the ribbon complex, which is enriched in the protein Ribeye,
and the direct interaction of Bassoon and Ribeye links the
ribbon to the AZ compartment, maintaining its integrity
[30]. Additionally, Bassoon participates in the early formation
of nascent ribbon synaptic sites during retinal ribbon synapto-
genesis [32]. Other interactors for Bassoon include the dynein
light chains DLC1 and DLC2, which function as a cargo
adapter for the Piccolo-Bassoon transport vesicle (PTV),
allowing its retrograde trafficking and the synaptic delivery
of AZ proteins [10].

The loss of Bassoon at central synapses shows only a re-
duced number of fusion competent SV and a decrease in the
RRP pool size of vesicles at glutamatergic synapses accom-
panied by an increase in short-term depression and a high
number of silent synapses [33, 34]. The latter could be ex-
plained by the interaction of Bassoon with RIM-BP, which
modulates the recruitment of CaV2.1 (P/Q-type) channels to
SV release sites, thereby contributing to the molecular com-
position of the neurotransmitter release machinery [35]. On
the contrary, loss of Bassoon from non-central sensory synap-
ses alters the structure of the presynapses. These synapses
contain a structure called ribbon that holds synaptic vesicles
close to the AZ and present a tight vesicle-calcium channel
coupling. In the absence of Bassoon, ribbons are loss from the
synapses of retinal photoreceptors [36] and cochlear inner hair
cells [31, 37, 38]. The loss of Bassoon both from the synapses
of ribbon-type [37, 38] and Endbuld of Held synapses (a large
synapse in the mammalian auditory CNS) [39] synaptic ves-
icle replenishment and the size of RRP are decreased suggest-
ing an important role for Bassoon in the plasticity of neuro-
transmitter release.

A recent Bassoon interaction found in a two-hybrid screen
is the protein Mover [40], which negatively regulates synapse
release probability at the calyx of Held synapses [41]. It is
postulated that Bassoon might recruit Mover into this specific
type of synapse, which regulates the release probability [41].

Interestingly, two recently described functions shared by
Piccolo and Bassoon are the regulation of the homeostasis of
synaptic proteins [42] and the communication between

Fig. 2 Roles of Piccolo in
immature and mature synapse.
Piccolo is the largest protein and
one of the most versatile
molecules of the active zone.
During synaptogenesis, Piccolo’s
main function is the assembly of
new forming presynapses and in
mature synapses plays three main
functions, some of them share by
Bassoon: (i) CAZ organization
through its multi-modular
structure and interactions; (ii) the
dynamic retention of the SV
reserve pool acting as an adapter
between SV synapsin1, actin-
binding proteins, and F-actin; and
(iii) stabilization of synaptic
proteins by acting together with
Bassoon on the ubiquitin-
proteosomal system
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synaptic activity and gene expression [43]. The regulation of
homeostasis is performed in part by their zinc finger domain,
which binds to the E3 ubiquitin ligase Siah1, inhibiting its
function. Siah1 mediates ubiquitination and proteasome-
mediated degradation of specific proteins. In neurons, the ab-
sence of Piccolo and Bassoon causes a decrease in the content
of synaptic proteins due to an increase in ubiquitination and
degradation of several AZ proteins and SV proteins [42]. In
the absence of Piccolo and Bassoon, the loss of presynaptic
proteins occurs through autophagy, but this intracellular deg-
radative process is blocked in the presence of Bassoon, which
interacts and inhibits Atg5, an E3-like ligase essential for au-
tophagy [44]. Therefore, Piccolo and Bassoon stabilize pre-
synaptic proteins and avoid premature synaptic degeneration,
suggesting a role in presynaptic efficacy by regulating AZ
protein turnover. The other shared function of Bassoon and
Piccolo is mediated through their interaction with the C-
terminal-binding protein 1/brefeldin A-ADP-ribosylation sub-
strate (CtBP1/BARS) [43], called CtBP1, a transcriptional
repressor [45] that is translocated between the presynapses
and the nucleus carrying information on synaptic activity to
modulate gene expression [30]. Hence, Bassoon and Piccolo
anchor CtBP1 to the presynapses, allowing this protein to
sense synaptic activity. Similar to Piccolo, Bassoon plays di-
verse functions at the CAZ that go beyond a simple scaffold-
ing protein (Table 1).

ELKS

ELKSs are proteins with a high content of the amino acids
glutamate (E), leucine (L), lysine (K), and serine (S). In ver-
tebrates, two ELKS brain-specific isoforms have been de-
scribed: ELKS1α [46, 47] and ELKS2α [47, 48]. The multi-
coiled-coil nature of ELKS allows it to form oligomeric pro-
tein complexes with other CAZ proteins such as Munc-13,
RIM1, Piccolo, and Bassoon [48, 49]. Both Piccolo and
Bassoon bind directly to a central region of ELKS, and it binds
to Munc13-1 indirectly through RIM1α. RIM1α binds
through its domain PDZ to the carboxyl terminal of
ELKS1α and ELKS2α. Liprin-α binds directly to Piccolo
and ELKS. These multiple interactions and the fact that in
cultured neurons ELKS might function to recruit or stabilize
liprin-α and RIM [48, 50], position these proteins as candi-
dates in the molecular organization of presynaptic AZ [50].
ELKS also interacts with Rab6 in a GTP-dependent manner
that suggests a role in trans-Golgi network trafficking [51].
Additionally, the ELKS c-terminal domain also binds to a
PDZ domain of syntenin-1, a protein involved in
cytoskeletal-membrane organization and trans-membrane
protein trafficking [52]. This interaction might also contribute
to the molecular organization of the CAZ [52].

Overexpression and in vitro studies with cultured rat neu-
rons suggested that ELKS2α is necessary for neurotransmitter

release and that the interaction of ELKS2α with RIMs and
Piccolo/Bassoon is required for the function and SV release of
the AZ [48, 49]. Deletion of ELKS2α in mice causes an in-
crease in inhibitory synaptic responses and the size of the RRP
of SVof inhibitory synapses [53]. Interestingly, there were no
changes in the overall structure of these synapses or a func-
tional defect in excitatory synapses. The data suggest that
ELKS2α is a negative regulator of inhibitory synapses [53].
Additionally, a scaffold function for ELKS2α has been de-
scribed in ribbon synapses where ELKS2α KO induces re-
duced AZ size [54].

To avoid compensation mechanisms between the two brain
ELKS isoforms, both genes were removed in hippocampal
neurons in culture after synapses were established [55]. The
simultaneous loss of ELKS1α and ELKS2α resulted in a 50%
decrease in the release of neurotransmitters, accompanied by a
30% decrease in presynaptic Ca2+ influx along with a reduc-
tion in the probability of release (P) in inhibitory synapses
[55]. The findings suggest that a normal influx of calcium into
the nerve terminal of hippocampal inhibitory neurons requires
direct interaction of ELKS with calcium channels, as was
previously reported by Kiyonaka [56]. At excitatory synapses,
the removal of ELKS1α and ELKS2α decreases the RRP and
neurotransmitter release [57], but P and Ca2+ influx are not
affected as occurs in inhibitory synapses when both isoforms
are removed [55]. As both isoforms are present in both excit-
atory and inhibitory synapses, the functional differences ob-
served in the depleted neurons might be explained by synapse
specificity of other AZ proteins [57]. The removal of both
ELKS isoforms did not affect the number of synapses or ap-
pearance by electron microscopy, and the deletion did not
produce a decrease in levels of presynaptic calcium channels.
However, because ELKSs were removed after the synapses
were formed in that study, we cannot discard their participa-
tion in the formation of new synapses.

InDrosophila melanogaster, a crucial role in AZ assembly
has been proposed for the ELKS homolog, bruchpilot [58,
59]. The bruchpilot N-terminal is homologous to vertebrate
ELKS and has a C-terminal that is different from other AZ
proteins. Mutants of bruchpilot lack dense projections (T-bars)
and suffer from Ca2+ channel-clustering defects. The effect is
dramatic because no other isoforms that compensate its func-
tion exist in that species. Interestingly, the first study of ELKS
inCaenorhabditis elegans showed that this protein was a non-
essential player in neurotransmitter release [60]. However, a
syd-2 gain of function mutant was able to promote synapse
formation in the absence of syd-1, which is essential for
C. elegans synapse formation, but only in the presence of
ELKS [61]. The mild effects on synaptic structure observed
by the deletion of the two ELKS isoforms in the brain of
vertebrates and the studies in C. elegans suggest the existence
of redundant mechanisms for synapse formation to protect
synapse integrity.

Mol Neurobiol (2018) 55:4513–4528 4517



RIM

The AZ Rab3-interacting molecule (RIM) [62] is expressed
from two RIM vertebrate genes, Rims1 and Rims2, which
express five protein isoforms in the brain (RIM1α, RIM1β,
RIM2α, RIM2β, and RIM2γ). The RIM molecule has five
domains: a N-terminal zinc-finger motif, a central PDZ do-
main, two C2 domains, and a proline-rich sequence at the
carboxy-terminal [63]. RIM1α is located both in the AZ of
central synapses and in ribbon synapses and is evolutionary
conserved among species. RIM1α, in addition to Rab3, inter-
acts with Munc13-1, liprin-α, and ELKS and forms a protein
scaffold at the presynaptic AZ [49]. RIMs also interact with
RIM-BPs [64], Ca2+ channels [65, 66], and synaptotagmin 1
[65], which suggested a role in the regulation of SV
exocytosis.

The elimination of the major RIM isoform in the mouse
brain, RIM1α, did not produce major abnormalities either in
the synaptic structure or in the protein composition, but
Munc13-1 protein levels were decreased by 60% [67].
However, the RIM1αKOmice showed alterations in synaptic
function, such as defects in short-term synaptic plasticity [67],
lack of mossy fiber LTP in the hippocampus and the cerebel-
lum [68], and deficits in learning andmemory [69]. Additional
studies have shown that RIM1α mediates synaptic vesicle
docking and priming [3, 67, 70–72] and recruitment of Ca2+

channels to the AZ [73–75]. The role in SV docking for
RIM1α has been supposed because of its interaction with
Rab3 and the priming factor Munc13 [71, 74, 76]. RIMs in-
teract directly with Ca2+ channels through its PDZ domain and
indirectly through RIM-BPs [74, 77], localizing Ca2+ chan-
nels to the AZ. Therefore, the interaction of RIM with RIM-
BP is necessary for proper localization of Ca2+ channels close
to the synaptic vesicle release machinery [73, 74, 78]. At the
functional level, the depletion of the five isoforms caused, in
addition to the defect in priming and neurotransmitter release
observed in the single gene deletion, a decrease in Ca2+ influx,
and diminution of responsiveness and synchronization of re-
lease were observed [74]. Elimination of the two RIM-BP
isoforms does not affect neurotransmitter release but is neces-
sary for high-fidelity coupling of synaptic transmission [78].
However, simultaneous deletion of RIMs and RIM-BPs af-
fects synapse function by blocking SV priming, delocalizing
Ca2+ channels, and altering postsynaptic organization, sug-
gesting a redundant function for these two presynaptic pro-
teins [79].

A function worth mentioning, although observed in the
Drosophila neuromuscular junction, is the role of RIM
and RIM-BP in homeostatic plasticity. In homeostatic pre-
synaptic plasticity, different levels of postsynaptic recep-
tor perturbation induce compensatory mechanisms at the
presynapses. Both RIM and RIM-BP perform this role
by modulating the RRP of synaptic vesicles [80, 81],

and RIM-BP in addition regulates the presynaptic Ca2+

influx [81].
Hence, the main functions for RIM are SV priming and

synaptic plasticity (Table 1).

RIM-BP

Vertebrate RIM-BPs consist of three isoforms containing three
SH3-domains, which bind to voltage-gated Ca2+ channels and
RIM1α, and two-three fibronectin III repeats [64, 82]. RIM-
BP1 and RIM-BP2 present different expression pattern in the
brain. About the RIM-BP’s functions mentioned in previous
sections, we can highlight the coupling of voltage-gated Ca2+

channels to RIM and Bassoon proteins in order to regulate the
strength of synaptic transmission [77]. Hence, brain RIM-
BPs, although not essential for synaptic transmission, they
are important in the tight coupling between voltage-gated
Ca2+ channels and the release machinery [78]. Loss of the
main hippocampal isoform RIM-BP2 induces an increase in
the distance between Bassoon and the voltage-gated Ca2+

channel subunit CaV2.1, which explain the decrease in both
the vesicular release probability and the defect in short-term
plasticity [83].

Liprin-α

The liprin-α family of proteins was identified by their inter-
action with LAR-RPTPs (LAR family of receptor protein ty-
rosine phosphatases) [84, 85]. In vertebrates, there are four
liprin-α genes, liprin-α1, -α2, -α3, and -α4, all of which are
expressed in the brain, but the α1 and α4 isoforms are also
expressed in non-neuronal tissues. Liprin-α amino acid orga-
nization suggests the presence of coiled-coil at the N-terminal
and three C-terminal SAM domains [84]. The liprin-α N-ter-
minal binds to itself, forming homodimers, or binds to the AZ
proteins, RIM, and ELKS [86–88]. The C-terminal of liprin-α
binds to liprin-β [89], CASK [90], and LAR-type receptor
phosphotyrosine phosphatases [84].

In mature hippocampal synapses, liprin-α2 was found to be
a very dynamic protein in comparison with Munc13 and
Bassoon, which are very stable [91, 92], and through its inter-
actions with RIM1 and CASK, it regulates presynaptic orga-
nization and hence SV release in response to network activity
[93, 94]. Elimination of liprin-α2 by knockdown in mature
hippocampal neurons does not affect the number of active
synapses but does alter the efficiency of SV release by regu-
lating RRP size. An ultrastructural analysis shows lengthening
of the synapse and a reduced number of docked vesicles. The
presence of liprin-α2 at synapses does not depend on deple-
tion of several AZ proteins [95]. Depletion of liprin-α2 de-
creases the levels of its direct interactors CASK and RIM and
other AZ proteins, such as Bassoon, Rab3, Munc18, VAMP2,
and synapsin, and vesicular glutamate transporter VGlut and
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P/Q voltage-gated Ca2+ channel Cav2.1 are partially dimin-
ished [95]. Furthermore, in the absence of liprin-α2, the re-
maining synaptic CASK and RIM become more stable, sug-
gesting a role in the dynamics of these proteins and conse-
quently SV release efficacy.

In C. elegans and Drosophila loss of liprin-α produced an
increase in the size of AZ and affected SV accumulation [61,
96]. Liprin-α participation in presynaptic assembly will be
modulated by its interaction with the LAR-type receptor
phosphotyrosine phosphatase PTP-3, thereby stabilizing the
active zone, Ca2+ channels and SV by linking synaptic cell
adhesion to core AZ proteins [88].

In summary, vertebrate liprin-α2 association with the CAZ
is regulated by synaptic activity and is a key organizer of
mature presynapses and modulates the dynamics of RIM
and CASK, which regulate synaptic plasticity. In vertebrates,
there are no studies of liprin-α2 depletion before synapses are
formed, and hence, a role in the assembly of new presynapses
cannot be ruled out.

Munc13

The Munc13 family comprehends the three specific brain iso-
forms, Munc13-1, bMunc13-2, and Munc13-3 [97].
Additionally, there is a ubiquitously expressed Munc13-2
splice variant called ubMunc13-2 [98]. Munc13-1 and
ubMunc13-2 have the same domain structure: (a) N-terminal
C2 domain (C2A) and a Ca2+/CaM-binding site, (b) a central
diacylglycerol and phorbol ester–binding C1 domain and a
second C2 domain (C2B), and (c) a C-terminus with a
Munc13 homology or minimal Munc13 priming domain and
a third C2 domain (C2C). The isoform Munc13-1 is the most
abundant in the brain, and only 10% of cortical and hippocam-
pal synapses contain both Munc13-1 and bMunc13-2 [99].
Both bMunc13-2 and Munc13-3 differ from the other two
isoforms at the N-terminus [100–102].

The two main functions described for Munc13 in neuro-
transmitter exocytosis are SV priming and modulation of pre-
synaptic plasticity. The first function is accomplished by act-
ing on the SNARE/SM protein fusion machinery, resulting in
SV competent for exocytosis. Munc13s prime SVs by acting
on syntaxin, which is a t-SNARE (acronym for SNAP Soluble
NSF Attachment Protein REceptor). A SNARE complex is
formed on the vesicle side by SNAP-25, and syntaxin and
synaptobrevin proteins are located at the target synaptic mem-
brane. During SV priming, syntaxin-1 shifts from a closed
state that binds Munc18-1 toward an open state conformation
that is able to form part of the SNARE complex; this last step
is accelerated byMunc13s [103]. The isoformsMunc13-1 and
ubMunc13-2 bind to the Zn2+ finger region ofαRIMs via their
conserved N-terminal region [97, 104, 105], thereby forming
Munc13-RIM1α-Rab3 complexes which are a requisite for
Munc13s-mediated SV priming [70]. Although the

recruitment of the primary brain Munc13-1 isoform to AZ
requires its interaction with RIM1, the anchoring of
bMunc13-2 is mediated by ELKS1α in a small subset of syn-
aptic terminals in hippocampal neurons [99]. This synaptic
specific anchoring explains the molecular and functional het-
erogeneity of presynaptic AZs.

As Munc13 KO hippocampal neurons show normal AZ
structure [97], a role in AZ assembly is discarded, but the N-
terminal region of Munc13-1 may be the hub for the AZ pro-
teins Piccolo, Bassoon, ELKS, and RIM1, which serve as a
core for the physical and functional integrity of the protein
machinery at the AZ, thereby orchestrating SV priming
[106]. However, all AZ proteins seem to have that character-
istic according to their multi-interactions.

Mechanisms Modulating Recruitment of AZ
Proteins to Sites of Newly Forming Synapses

AZ Proteins, Cell Soma Packing, and Traffic
along the Axon.

The generation and maintenance of functional presynaptic
sites require time and site-specific delivery of AZ and SV
components. In the last two decades, sustained advances have
been made in understanding the mechanisms involved in the
transport of presynaptic proteins. Those studies have shown
that presynaptic proteins are not transported as individual
units, but they travel along axons in groups linked to vesicles
originating at the Golgi apparatus. In 1998, Nakata et al. [107]
used GFP-tagged proteins and laser scan microscopy to show
that putative precursors of SV were transported by
tubulovesicular organelles, suggesting that SVs are not
transported as a mature unit but are synthesized locally by
recycling at the nerve terminal [107]. Ahmari et al. strength-
ened the idea of precursor vesicles as sources of presynaptic
specialization [5]. In their study, they used the synaptic vesicle
protein VAMP tagged with GFP and time lapse microscopy
combined with DIC imaging to study the dynamics of VAMP-
GFP in young hippocampal neurons in culture before synap-
ses were formed [5]. They observed mobile packets that stop
at sites of axon-dendrite contacts and analysis by electron
microscopy showed that the contact areas contained
tubulovesicular structures, dense core vesicles and small pleo-
morphic vesicles with no resemblance to mature synaptic ves-
icles [5]. Those contact areas apparently became functional
presynaptic recycling sites, as evidenced by FM 4-63 uptake,
soon after contacts were formed [5, 108]. Other proteins such
as SV2, synapsin I, and calcium channel subunit α1 were
found on those packets, suggesting that the AZ in bulk might
be transported in the VAMP-GFP labeled packets [5] (Fig. 3).
Thereafter, a specific AZ precursor vesicle immunoisolated
from young rat brains was identified to transport Piccolo and
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Bassoon [8]. This vesicle with an 80-nm diameter had a dense
core suggesting the transport of secreted synaptogenic factors,
and analysis by western blot identified the presence of a pleth-
ora of other AZ proteins [8, 48]. However, no synaptic vesicle
proteins were detected, suggesting that this factor was a spe-
cific AZ protein transport vesicle [8]. This AZ precursor ves-
icle, named PTV, has an origin at the trans-Golgi network
(TGN) where Piccolo, Bassoon, and ELKS are recruited [6,
109, 110]. Additional evidence for the hypothesis of a
multivesicular mechanism for presynapse formation came
from the studies of Tao-Cheng, who used an ultrastructural
analysis to show that AZ and SV proteins are transported
together in large aggregates, but they are carried in different
types of vesicles [7]. Interestingly, not all AZ proteins seem to
be associated with the same vesicle (e.g., Munc13-1α is
transported in a different TGN-derived vesicle than Piccolo
and Bassoon) [6], and RIM1α only seems to associate with
PTVs during axonal trafficking [6]. RIM has also been asso-
ciated with a vesicle that transports neurexin, CASK, and
voltage-dependent Ca2+ channels [111] (Fig. 3). Hence, as
golgi-derived PTVs travel along the axon, they are thought
to suffer further maturation before reaching nascent
presynapses [6] (Fig. 3).

The traffic of presynaptic precursor vesicles involves motor
proteins that transport cargo bidirectionally along actin and
microtubule cytoskeletal tracks. Actin employs myosin, and
microtubules use kinesin and dynein as motors. The specific-
ity of the transport is provided by a molecular adapter that is
part of the vesicle. In the case of PTVs, Bassoon interacts with

DLC1 and DLC2 and functions as a cargo adapter for retro-
grade trafficking of this vesicle [10]. Although PTVs move
both anterograde and retrograde, their net movement is anter-
ograde; however, the retrograde movement regulated by
Bassoon is necessary for synaptic delivery of AZ proteins
[10]. Furthermore, syntabulin, a kinesin-1 family member
5B motor adaptor protein [112], mediates the transport of
AZ components through an unknown vesicle adapter during
synapse formation and during synaptic plasticity [113].

Thus, the assembly of the presynapse seems to occur by the
simultaneous deposition of SV proteins and AZ proteins,
which are carried in different types of vesicles (Fig. 3).
Precursor vesicles for synaptic vesicles (STVs) and AZ pro-
teins will then be transported in axonal aggregates [7, 114],
which co-pause at common axonal sites, probably responding
to unidentified local signals specific for each type of vesicle
[115]. Therefore, the sites in the axon where these vesicles
deliver their content seem to be predefined and independent
of the existence of a neuronal contact [114]. The signals de-
termining the stop and clustering of AZ proteins at newly
forming synapses remain to be identified.

Homo and Hetero-Oligomerization as a Mechanism of AZ
Trapping/Assembly

After biogenesis and axonal trafficking, presynaptic proteins
have to be trapped and then maintained at the AZ of mature
synapses. The conformation state of the protein might be rel-
evant for its correct trapping and posterior proteome assembly.

Fig. 3 Schematic representation
of the precursor vesicles model of
active zone formation. The figure
shows the mechanism of axonal
transport of several presynaptic
proteins during synapse
formation. Piccolo, Bassoon, and
ELKS exit the trans-Golgi
network associated to Golgi-PTV
(gPTV), with Munc13 using a
different Golgi-derived vesicle.
RIM and Munc13 also associate
to a soluble pool. During its traffic
along the axon, RIM andMunc13
are loaded by an unknown
mechanism into gPTV, which
turns into mature PTV (mPTV).
Synaptic vesicle proteins and
other presynaptic protein use
different Golgi-derived precursor
vesicles with pleomorphic shapes
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Several years ago, we proposed a theoretical model of AZ
protein trapping [116] that postulates that particular presynap-
tic proteins undergo a prion-like concentration-dependent
conversion, adopting a conformation that will stimulate their
own aggregation and aggregation of other proteins. Generally,
domains that aggregate in prion proteins are rich in the amino
acids glutamine (Q) and asparagine (N). Two vertebrate pre-
synaptic proteins with this characteristic are Piccolo and
Bassoon, which have Q-rich areas. Interestingly, Bassoon
and Piccolo are known to be homo- and heterodimerizing
binding partners [28, 110, 117] and form large aggregates
when overexpressed in neurons and heterologous cells [15,
110, 118], and in the case of Bassoon, segments of the protein
that do not contain Q domain are unable to interact with the
AZ. These presynaptic proteins, with prion-like domains,
seem to be under the control of a specific enzyme that modu-
lates their state of aggregation. That is the case with the
Drosophila AZ protein, bruchpilot, the homolog of ELKS in
vertebrates that contains regions rich in Q or Q/N and is es-
sential for the structural integrity of the Drosophila AZ.
Bruchpilot travels along the axon and is associated with a
protein complex that contains the motor adaptor protein
Aplip1 [119]. The presence of Aplip1 allows proper transport
in axons and avoids premature aggregation of the bruchpilot
molecular complex [119], an event regulated by the Serine
Arginine Protein Kinase (SRPK)79D. SRPK79D was identi-
fied in Drosophila by two parallel studies [120, 121] and was
found to colocalize with the T-bar-associated protein
bruchpilot in both axons as synapses. A mutated SRPK79D
causes nerve bruchpilot aggregates in motoneurons [120].
Curiously, although ELKS does not have Q domains, it has
a tendency to aggregate if expressed in heterologous cells.
Therefore, the presence of coiled-coil domains in its structure,
the region homologous to the N-terminus of bruchpilot, might
also be the key in its self-clustering and binding to other AZ
proteins [48, 49].

A similar oligomerization mechanism has been observed in
C. elegans because a mutation in a small protein called Arl-8
produces abnormal clustering of Rab-3, UNC-10, and SYD-2
(the last two are homologous to the mammalian RIM and
liprin, respectively) close to the cell body, suggesting a pre-
mature and abnormal delivery of AZ proteins. Therefore, Arl-
8 would be necessary to avoid ectopic aggregation of presyn-
aptic proteins in this nematode [122]. The abnormal accumu-
lation in these mutants was partially suppressed bymutation in
a JNK MAP kinase pathway. Hence, in C. elegans AZ pro-
teins, aggregation is regulated by the interplay between Arl-8
and the JNK MAP kinase pathway.

Therefore, a conserved and specialized mechanism exists
in vertebrate and invertebrate neurons that regulates the
temporo-spatial aggregation of particular presynaptic proteins
to avoid premature AZ protein interactions, trapping, and as-
sembly, and the regulating molecules need to be identified.

AZ Proteins and Its Relationship with the F-actin
Dynamic

Actin is globular and is the most abundant protein in the ma-
jority of eukaryotic cells, playing several roles in cells, such as
cellular movement, scaffolding, and intracellular trafficking.
Actin has the capacity to polymerize and form filamentous-
actin (F-actin) by a highly dynamic process that is under the
control of diverse known and unknown clues that determine the
function of actin in a specific time and space manner. During
CNS development, neurons migrate and develop axons and
dendrites to build an intricate network of communication.
Axon outgrowth occurs until a contact with the appropriate
postsynaptic partner triggers formation of a synapse. During
all these processes, the actin cytoskeleton and mainly F-actin
participates actively. It is well known that actin is present in
young presynaptic terminals and is involved in the assembly
and development of presynaptic specializations, participating as
a primordial scaffold [123–126]. Accordingly, AZ assembly
and structure in young neurons but not in old neurons is F-
actin dependent, as disrupting agents such as latrunculin block
presynapse formation [125]. However, in mature presynapses,
F-actin plays primarily a structural role holding SV and
preventing its premature non-regulated fusion [124, 127], there-
by modulating synaptic transmission and efficacy [128].
Interestingly, AZ and SV precursor vesicles that deposit at new-
ly forming presynapses utilize different and not well-
understood mechanisms of F-actin dynamics, indicating the
existence of two structurally separate F-actin pools at this loca-
tion early during synaptogenesis [129].

There is not much knowledge about which AZ proteins
participate in presynaptic F-actin assembly. In C. elegans,
the AZ protein NAB-1/neurabin mislocalizes if F-actin is
disassembled by latrunculin [130]. NAB-1/neurabin is an
actin-binding protein that recruits AZ proteins SYD-1 and
SYD-2 (liprin-α) (core proteins in C. elegans AZ assembly)
acting as a bridge between F-actin and AZ proteins during
synapse development [130]. In the case of vertebrates,
Piccolo is the only AZ protein known to be required for the
activity-dependent assembly of presynaptic F-actin through its
interaction with actin-binding proteins. These proteins are
Profilin2 [29], Epac2 [131], Abp1 [15], GIT1 [14], and
Daam1 [18]. The role of these interactions has been described
in mature synapses where they regulate the delivery and
recycling of SVs at the presynaptic terminal [18]. In this re-
spect, it is postulated that Piccolo serves as a platform coordi-
nating the activity of Profilin2, GIT1, and Daam1 with the
spatial assembly of F-actin, which is necessary for the recruit-
ment of CaMKII and the regulation of the kinetics of
Synapsin1a during activity-dependent exocytosis [18, 20,
132]. In other words, the interaction of Piccolo with these
proteins will hold SV at the reserve pool by modulating
synapsin I through F-actin assembly [20, 132].
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Active Zone and Wnt Signaling

Wnt signaling plays diverse functions in the development of
the mature nervous system. During brain development, Wnt
proteins play critical roles in cell differentiation, migration,
neurite polarization, and synapse assembly and plasticity
[133–135]. In the adult nervous system, Wnt signaling is re-
quired for synapse maintenance, synaptic activity, and plastic-
ity [136–139]. There are 19 Wnt ligands [140] that activate
three alternative signaling pathways: (1) the canonical Wnt/β-
catenin pathway, (2) the Wnt-Planar Cell Polarity (Wnt/PCP)
pathway, and (3) the Wnt/calcium pathway [134, 141, 142].
All three pathways are activated by the binding of Wnt ligand
to a Frizzled (Fz) receptor, which activates intracellular di-
shevelled (Dvl) protein. In the canonical pathway, the Wnt
ligand signals through β-catenin, which enters the nucleus to
activate Wnt target genes. In the Wnt/PCP pathway, the Wnt
ligand binds to its receptor Fz, thereby activating Dvl, which
signals through two independent and parallel pathways acti-
vating the small GTPases Rho and Rac. The activation of Rho
GTPase occurs through Daam1 leading to the activation of the
Rho-associated kinase Rock and consequently cytoskeletal
organization [143]. The other pathway signaling through
Rac, which in turn activates c-Jun N-terminal kinase (JNK)
targeting gene transcription that culminates with the reorgani-
zation of the cytoskeleton [144, 145]. In the Wnt/Ca2+ path-
way, the ligand binds to Fz receptors, activating classical G
protein pathways and phospholipase C (PLC), which acts on
phosphatidylinositol 4,5-biphospahte (PIP2) and produces di-
acylglycerol (DAG) and inositol triphosphate (IP3). This pro-
cess generates an increase in intracellular Ca2+ that activates
Ca2+-dependent proteins and the transcription factor nuclear
factor associated with Tcells (NFAT) to promote the transcrip-
tion of target genes [139, 146].

Wnt signaling has shown to play a role not only in axon
guidance and remodeling but also participates in presynaptic
assembly [136] (Table 2). In the cerebellum, granular cells
secrete Wnt7a, which induces mossy fiber axonal spreading
and branching accompanied by an increase in the clustering of
synapsin I [147, 148]. Similar results were observed in rat
hippocampal neurons where Wnt7a stimulates the clustering
of synaptophysin and induces recycling and exocytosis of SV
[149]. The ligand Wnt7b induces clustering of VAMP2 both
inmossy fibers and hippocampal neurons as early as 15min of

treatment [150]. The AZ protein Bassoon clustering is in-
creased in 10 DIV hippocampal cultures treated with Wnt7b
[150], and Dvl was found to be necessary for the clustering of
this AZ protein [150]. Additionally, Wnt3a/Fz1 in hippocam-
pal neurons in culture stimulates the clustering of Bassoon and
increases the number of functional presynaptic sites [151].
Interestingly, the Wnt-mediated effect of presynaptic cluster-
ing of both synaptic proteins and AZ proteins are observed at
15–30 min, suggesting that immediate local changes induce
clustering [149–151].

As mentioned above, there would be two distinct pools of
F-actin at new forming presynapses, one that participates in
the recruitment of AZ proteins and another that participates in
the recruitment of SV proteins during synapse formation
[129]. As clustering of AZ proteins and SV proteins is induced
both byWnt3a andWnt7a and requires Dvl, the Wnt pathway
diverges after Dvl, acting specifically on those F-actin pools.
Piccolo might act as a link between Wnt signaling and the
cytoskeleton because it interacts with AZ proteins, diverse
actin-binding proteins (see BPiccolo^ section) and with two
proteins of the Wnt pathway: (1) Daam1, which has been
postulated to modulate actin dynamics through Wnt/PCP sig-
naling [18, 143, 152, 153], and (2) Rho-GEF Trio, which also
interacts with Bassoon [19] and is an activator of the Rho
family of GTPases [154] and F-act in dynamics.
Interestingly, Piccolo interacts with Daam1 only when it is
in its open activated conformation [18]. The latter suggests
that presynaptic assembly in young neurons and/or synaptic
efficacy in mature neurons mediated by Piccolo might be reg-
ulated by the Wnt/PCP signaling (Fig. 4).

Nervous system integrity requires that synapse assembly be
tightly coordinated with synapse maturation and maintenance.
Fulfillment of this requisite depends on precise control of both
protein and organelle synthesis and degradation. Some of the
postulated mechanisms that account for control of neuronal
protein and organelle half-life include involvement of the
ubiquitin/proteosomal system [155–157] and autophagy
[158, 159]. Another likely requirement includes tight regula-
tion of local calcium levels in order to support neuronal life
and synaptic stability [160, 161]. A defect in either of these
systems leads to neuronal degeneration. Although it is not the
focus of the present work to review the mechanisms that reg-
ulate the intracellular processes involved in synapse mainte-
nance the evidence suggests a role for the Wnt pathway. In

Table 2 Wnt ligands inducing
synaptic protein clustering Wnt ligand Neuron type studied Synaptic protein clustering Reference

Wnt7a Cerebellum granular cells Synapsin I [147, 148]

Wnt7a Hippocampal neurons Synaptophysin [149]

Wnt7b Mossy fiber/hippocampal VAMP2 [150]

Wnt7b Hippocampal neurons Bassoon [150]

Wnt3a Hippocampal neurons Bassoon [151]
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fact, Wnt signaling, in addition to playing a role in the devel-
opment of the central nervous system, is one of the mecha-
nisms postulated to regulate synaptic stability. It has been
shown that neuronal activity promotes the stability of synap-
ses by modulating the levels of endogenous-secreted Wnts
[162–165]. Incubation of neurons with Dickkopf, a secreted
Wnt pathway antagonist, delocalizes pre- and postsynaptic
components in mature and stable hippocampal synapses in-
ducing disassembly of synapses in mature neurons [166].
Also, it was recently reported that Wnt5a is necessary for
maintaining dendritic arbor and spines in the adult hippocam-
pus [167]. Future studies are needed to decipher the down-
stream signals of the Wnt receptors that would control the
assembly and maintenance of the synapse.

Concluding Remarks

In vertebrate CNS synapses, there is no protein to which a
strict role in AZ assembly can be attributed, mainly because
studies of loss of function do not show an evident abnormal
presynaptic structure. However, this lack of evidence does not
mean that an alteration in one of the AZ proteins could pro-
duce an abnormal synaptic function over time. Three

presynaptic mechanisms that will contribute to stability of
vertebrate central synapses are the following: (1) AZ proteins
with overlapping functions, (2) additional isoforms, and (3)
the existence of proteins with related structural domains.

In the vertebrate brain, the AZ proteins Piccolo, Bassoon,
RIM, RIM-BP, Munc13, liprin-α, and ELKS form an interac-
tion network that gives the structural framework to the CAZ
and allows regulated communication between them to re-
spond efficiently to synaptic demands. These proteins also
interact temporarily with other molecules that regulate F-
actin dynamics and consequently synaptic plasticity according
to the prevailing physiological situation. This group of pro-
teins participates directly in the recruitment of Ca2+-channels
in which RIM and Munc13 have a more specialized role in
docking and priming of SV, and Bassoon with Piccolo will be
key in the stability of several presynaptic proteins.
Furthermore, among AZ proteins, Piccolo seems to be one
of the most versatile component of the CAZ due to its partic-
ipation in multiple functions at the presynapses. Interestingly,
a newly emerging function of some AZ proteins is to commu-
nicate with the transcription apparatus in the nucleus to inform
the actual synaptic activity.

Therefore, although substantial information has been accu-
mulating about the AZ interactome and functions of its

Fig. 4 Piccolo could be an important link between Wnt signaling and
presynaptic assembly. In the left panel is represented Piccolo as the hub
between active zone proteins, F-actin dynamic, and Wnt signaling mole-
cules. The panel on the right represents a simplified model of how the

Wnt signaling pathway would mediate the assembly of the active zone
through Piccolo. Piccolo through its interaction with actin-binding pro-
teins (ABP), and molecules of the Wnt signaling would allow communi-
cation of the Wnt signaling with the organization of the active zone
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constituents, there are many questions that remain to be an-
swered, such as the cell signaling pathways regulating the
dynamics of these interactions during synapse formation and
plasticity, and how a defect in any of these interactions is
translated to cognitive impairment in childhood and
adulthood.
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