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Abstract The endothelial transient receptor potential cation
channel subfamily V member 4 (TRPV4) plays a crucial role
in vascular remodeling; however, TRPV4-mediated angio-
genesis after ischemic neuronal death as a neurorestorative
strategy has not yet been thoroughly examined. In this study,
we first tested whether TRPV4 activation can improve func-
tional recovery in rats subjected to transient brain ischemia.
The possible mechanisms for TRPV4 activation-promoted
functional recovery were explored. A TRPV4 agonist, 4α-
phorbol 12,13-didecanoate (4α-PDD), was intravenously
injected via the tail vein at 6 h and 1, 2, 3, 4 days after ischemic
stroke. The treatment reduced infarct volume by almost 50%
(14.7 ± 3.7 vs. 29.2 ± 6.2%; p < 0.0001) and improved func-
tional outcomes (p = 0.03) on day 5. To explore the therapeu-
tic mechanism, we measured endothelial nitric oxide synthase
(eNOS) expression and phosphorylation, vascular endothelial
growth factor A (VEGFA) signaling, and neural
stem/progenitor cells (NPCs). TRPV4 activation significantly

increased eNOS expression and phosphorylation (serine
1177) by more than 2-fold in the ischemic region. The expres-
sions of VEGFA and VEGF receptor-2 were significantly
higher in the treated animals, especially an increase of the
proangiogenic VEGFA164a isoform while a decrease of the
antiangiogenic VEGFA165b isoform. We evaluated angiogen-
esis by detecting microvessel density in ischemic region.
Using the immunohistochemistry staining, we found that
4α-PDD treatment caused a 3.4-fold increase of microvessel
density (p < 0.0001). In addition, NPC proliferation and mi-
gration in the ischemic hemisphere were increased by 3-fold
and 5-fold, respectively. In conclusion, our data suggest that
TRPV4 activation by 4α-PDD may improve poststroke func-
tional improvement through angiogenesis and neurogenesis.
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Abbreviations
4α-PDD 4α-Phorbol 12,13-didecanoate
BBB Blood–brain barrier
EPCs Endothelial progenitor cells
ECs Endothelial cells
FSS Fluid shear stress
GS Garcia score
eNOS Endothelial nitric oxide synthase
NPCs Neural stem/progenitor cells
NO Nitric oxide
SVZ Subventricular zone
tMCAO Transient middle carotid artery occlusion
TRPV4 Transient receptor potential vanilloid 4
VEGFA Vascular endothelial growth factor A
VEGFR2 VEGF receptor-2

Introduction

Stroke is the leading cause of adult disability, and also asso-
ciated with a limited degree of functional recovery [1]. With
the advancement of the medical technology in the past de-
cades, more and more stroke patients have survived from the
initial injury. Sixty percent of survivors have disabilities in
arm or leg, and up to one third needs to stay in a nursing home
or to assistant device for independent living [2, 3].
Development of effective treatment or new therapeutic strate-
gies for ischemic stroke patients is therefore crucial.

Brain neurorestoration leads to considerable poststroke
functional recovery [4, 5]. The brain attempts to repair itself
after an ischemic stroke by neurogenesis and angiogenesis [6].
Neural stem/progenitor cells (NPCs) and endothelial progen-
itor cells (EPCs) play important roles in neurogenesis and
angiogenesis, respectively [5]. After stroke, NPCs migrate to
the ischemic boundary where angiogenesis takes place, and
NPCs migration is closely associated with cerebral vessels.
Suppression of angiogenesis substantially reduces migration
of newly formed NPCs to the ischemic region [5]. In addition
to guiding NPCs migration, activated endothelial cells (ECs)
secrete vascular endothelial growth factor A (VEGFA) to in-
crease neurogenesis [4].

The transient receptor potential vanilloid 4 (TRPV4) cation
channel, a member of the TRP vanilloid subfamily, is widely
expressed in a broad range of tissues [7]. Previous studies
have shown that TRPV4 channels possess multiple activation
and regulatory sites to integrate distinct physical and chemical
stimuli, and TRPV4 is involved in a wide range of physiolog-
ical functions, such as cell proliferation, survival, differentia-
tion, migration, and adhesion [8–10]. TRPV4 in ECs is in-
volved in endothelium-dependent vasorelaxation via Ca2+-in-
flux and phosphorylation of endothelial nitric oxide synthase
(eNOS) serine 1177 [11]. Endothelial TRPV4-mediated Ca2+

inflow also contributes to ECs proliferation and differentiation
[10, 12].

Fluid shear stress (FSS) leads to the development of
collateral flow conductance and the remodeling of collat-
eral vessels [13, 14]. Endothelial TRPV4 plays a crucial
role in vascular remodeling because it can transmit cir-
cumferential wall FSS to an active intracellular growth
response [15]. In addition, VEGFA, blood–brain barrier
(BBB) integrity, blood vessel growth, and vasodilatation
are also increased by FSS [16], which are critical for
neurogenesis and neuroplasticity. Therefore, this study
aimed to evaluate whether TRPV4 activation by a
TRPV4 agonist can promote poststroke functional recov-
ery via angiogenesis and neurogenesis.

Materials and Methods

Animals

All experimental procedures were approved by the
Institutional Animal Ethical Committee Kaohsiung Medical
University and were conducted according to the Guide for
the Care and Use of Laboratory Animal of the National
Institute of Health. Sprague-Dawley rats (280–350 g) were
subjected to transient cerebral ischemia by right transient mid-
dle cerebral artery occlusion (tMCAO). In brief, rats were
immobilized with isoflurane for the intraperitoneal (i.p.) injec-
tion of Equithesin (4 ml/kg) and the body temperature was
maintained at 37 ± 0.5 °C by a heating device. A midline
incision along the ventral neck was made to expose the right
common carotid artery (CCA), external carotid artery (ECA),
and internal carotid artery (ICA). A 5–0 silk suture was ligated
on the CCA and the ECA. A small vascular clip was clamped
between the CCA bifurcation and the ligature to prevent the
backward flush of blood from ICA. Thereafter, a small inci-
sion was made on the CCA to permit the insertion of a 3–0
nylon filament with silicon modification on the tip. This nylon
filament was advanced approximately 22 mm beyond the
CCA bifurcation. Reperfusion was established by gently with-
drawing the filament after 120 min of occlusion. Free access
to food and water was allowed after recovery from anesthesia
(Supplementary Fig. 1).

The neurological deficits were evaluated using the neuro-
logical deficits score 6 h post-tMCAO [17]. The neurological
deficits scores are as follows: 0, no neurological symptoms; 1,
unable to extend left forepaw fully; 2, reduced grip of the left
forelimb; 3, torso turning to the left side when held by tail; 4,
circling or walking to the left; 5, failure to walk without help;
6, no spontaneous activity or narcosis; and 7, dead. The rats
with scores 2–5 were eligible for further studies and were
randomly divided into groups.
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Functional Assessment

The Garcia score (GS) was used to evaluate the functional
recovery at 6 h and 3 and 5 days after tMCAO as described
earlier [18]. The rats were evaluated by six tests: spontaneous
activity, movement symmetry of four limbs, forepaw
outstretching, climbing, body proprioception, and vibrissae
touch tests. The score from each test was summed up to the
GS score with the range from 0 to 18 (from maximal deficit to
normal). Mild neurological dysfunction is defined as a score
between 13 and 18, moderate neurological dysfunction as a
score between 7 and 12, and severe neurological dysfunction
as a score between 1 and 6.

Drug Treatment

The phorbol ester, 4α-phorbol-12,13-didecanoate (4α-PDD,
Sigma-Aldrich), was used as a TRPV4 agonist. 4α-PDD was
dissolved in DMSO (5% v/v) right before administration to
animals and then IV injection (0.1 mg/kg/day). The initial
dose (6 h) was given after rats were evaluated for the GS. To
mimic the clinical setting, we decided to treat animals daily
before the end of study (i.e., day 5). The daily drug dosagewas
derived from a previous study where continuous infusion was
used [15]. Therefore, the treatment was given at 6 h and 1, 2,
3, and 4 days after tMCAO. Control animals received the
same dosage DMSO without 4α-PDD.

Infarct Volume Measurement

Five days after tMCAO, stroke rats were sacrificed and their
brains were dissected from the cranium and immersed in cold
(4 °C) saline for 5min. Each rat brainwas cut into 2mm coronal
sections for a total of eight slices of coronal sections. The brain
slices were stained with 0.1% 2,3,5-triphenyltetrazolium chlo-
ride, and the viable brain parenchymawas stained in red and the
infarct region in pale white. The infarct area was calculated
using ImageJ (NIH) to calculate the infarct area and the percent-
age of infarction. The percentage of infarct volume was deter-
mined according to an indirect method: Infarct volume = (area
of contralateral hemisphere − area of normal region in the ipsi-
lateral hemisphere) / area of contralateral hemisphere × 100%.

RNA Isolation and Quantitative Real-Time Reverse
Transcription-PCR

Total RNA extraction from brain tissues was carried out using
TRIzol according to the manufacturer’s instructions.
Complementary DNA (cDNA) was synthesized from 1 μg
total RNA using random primer and the MultiScribe reverse
transcriptase kit.

For quantitative real-time PCR, specific primers for all rat
eNOS, VEGFA, VEGFA164a, VEGFA165b, VEGF receptor-2

(VEGFR2), and GAPDH were designed (supplementary
Table S1). Relative quantification of gene expression was per-
formedwith preoptimized conditions using the ABI 7900 real-
time PCR machine (Applied Biosystems). PCRs were per-
formed in duplicate using 5 μl 2× SYBR Green PCR Master
Mix, 0.2 μl primer sets, 1 μl cDNA, and 3.6 μl nuclease-free
H2O to yield a 10-μl reaction. The expression ratios were
calculated as the normalized CT difference between control
and sample, with adjustment for amplification efficiency rel-
ative to the expression level of GAPDH.

Protein Isolation and Western Blotting

Brain tissues were homogenized in RIPA buffer (150 mM
NaCl, 1% NP-40, 0.5% deoxycholic acid, 0.1% SDS, and
50 mM Tris) (GeneTex), and insoluble constituents were re-
moved by centrifugation. Protein lysates were denatured and
loaded onto a 4–12% SDS polyacrylamide gel. The separated
proteins were then transferred onto a PVDF membrane (Merck
Millipore) and blockedwith 5% non-fat drymilk for 1 h at room
temperature. The membrane was incubated overnight at 4 °C in
5% non-fat dry milk /PBST containing the primary antibodies.
Primary antibodies against phospho-ser1177-eNOS (1:125,
Abgent), VEGFA (1:125, EMD Millipore), VEGFA165b

(8 μg/ml, EMD Millipore), VEGFR2 (1:25, Abcam), and
GAPDH (0.25 μg/ml, EMD Millipore) were used. The mem-
brane was incubated with the secondary antibody conjugated to
horseradish peroxidase. The ECL non-radioactive detection
system was used to detect the antibody–protein complexes by
LAS-3000 imaging system (Fujifilm). Blot intensity was semi-
quantitatively measured using ImageJ (NIH).

Immunohistochemistry

Rats were sacrificed at day 5 after tMCAO and perfused
transcardially with 0.9% saline at 4 °C followed by 4% parafor-
maldehyde in phosphate buffer (0.1 mol/l, pH 7.4). The brains
were removed, fixed in the above fixation for 8 h at 4 °C, and
then immersed sequentially in 20 and 30% sucrose until sinking
occurred. Coronal sections (10 μm thick) were selected from
bregma 1.0 to −0.20 mm. Primary antibodies and dilutions used
in immunostaining were CD31 (1:200, GeneTex) and Sox2
(1:200, Proteintech). For immunostaining, sections were first
treated with 3% H2O2 for 20 min and incubated with block
reagent for 1 h at room temperature, and were then incubated
with primary antibody for 2 h, followed by incubation with
biotinylated secondary antibody (1:200, BioTnA).

Immunostaining images were obtained with a TS100
Inverted Biological Microscope (Nikon). Every three coronal
sections from bregma 1.0 to −0.20 mm of each rat brain follow-
ing immunostaining were taken. Microvessel density as an in-
dex of angiogenesis, defined as follows: CD31-positive cells
area / total surface area of each section × 100%, in the ischemic
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penumbra was counted in each of the five randomly magnified
(×400) fields. The number of Sox2-positive cells in the SVZ
was estimated using a ×400 magnification objective and in the
ischemic penumbra using the three randomly magnified (×400)
fields. Images were processed using ImageJ (NIH).

Statistical Analysis

Data are presented as means ± standard error of the mean
(SEM). Statistical differences between groups were assessed
byMann-WhitneyU test. p < 0.05 was considered statistically
significant.

Results

TRPV4 Activation by 4α-PDD Reduces Infarct Volumes
and Improves Functional Outcomes

4α-PDD is a TRPV4 agonist. Based on the neurological def-
icits score measured at 6 h poststroke, a total of 49 rats were
eligible for the experiments. Among these 49 rats, 13 rats died
(5 rats in the treated group and 8 rats in control group) before
the end of the study, which led to 18 rats in each group in the
end of the study. The data on 18 rats of each group were used
for analyses at all time points including 6 h, day 3, and day 5.
The mortality rates were no significant difference between the
two groups (supplementary Fig. 2). Compared to the control
group, 4α-PDD treatment significantly reduced the infarct
volume (14.7 ± 3.7 vs. 29.2 ± 6.2%; p < 0.0001) in stroke rats
(Fig. 1a). In addition, 4α-PDD treatment significantly promot-
ed functional outcomes on day 5 after tMCAO (p < 0.05;

Fig. 1b). Among six GS tests, three tests were statistically
different on day 5 (supplementary Table S2).

TRPV4 Activation by 4α-PDD Increases eNOS, VEGFA,
and VEGFR2 Expressions

The mRNA expression level of eNOS was higher in the infarct
hemisphere of 4α-PDD-treated rats than the placebo-treated rats
by 2.7-fold (Fig. 2a). Similarly, the level of eNOS phosphory-
lation (serine 1177) of the infarct hemisphere was higher in 4α-
PDD group than the control group by 2.49-fold (Fig. 2b, c).

We further tested whether VEGFA was also increased by
TRPV4 activation, and the result showed that VEGFA level in
infarct hemisphere was significantly higher by 2.7-fold in the
4α-PDD group than the control group (Fig. 3a). Two VEGFA
isoforms, pro-angiogenic VEGFA164a isoform and
antiangiogenic VEGFA165b isoform, were specifically mea-
sured. We found that the increase of VEGFA mRNA was
primarily caused by the pro-angiogenic isoform VEGFA164a

(a 2.8-fold increase) in the infarct hemisphere of 4α-PDD-
treated rats (Fig. 3a), while no significant change of
VEGFA165b level (Fig. 3a). Furthermore, VEGFR2 mRNA
was also significantly increased by 2.6-fold in the infarct
hemisphere of 4α-PDD-treated rats (Fig. 3a). Consistently,
the protein amounts of VEGFA and VEGFR2 were increased
by 4α-PDD treatment, while VEGFA165b protein reduced sig-
nificantly (Fig. 3b). There were 1.39-fold increases of VEGFA
protein, 5.38-fold increase of VEGFR2 protein, and 0.43-fold
decrease of VEGFA165b protein (Fig. 3c). These data suggests
that 4α-PDD treatment can activate TRPV4 to influence
VEGFA-VEGFR2 expression. Because of no commercially
available antibody for VEGFA164a, no VEGFA164a protein
data could be presented in Fig. 3.

Fig. 1 TRPV4 activation by 4α-PDD reduces the infarct volume and
improves neurological recovery. a Quantitation of the infarct volume
showed that 4α-PDD mediated TRPV4 activation significantly reduced
infarct volume on day 5 post-tMCAO. All data are represented as

means ± SEM. n = 9 per group. b tMCAO caused a markedly
neurological deficit, and 4α-PDD-mediated TRPV4 activation
improved the Garcia score on day 5 after tMCAO. All data are
represented as means ± SEM. n = 18 per group
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TRPV4 Activation by 4α-PDD Promotes the Angiogenesis
Around Ischemic Region

Microvessels were identified by the CD31 monoclonal
antibody in the penumbra around the infarct region. In

the control group, the density of microvessels in the
penumbra was significantly lower than that in the 4α-
PDD group in penumbra (2.08 ± 1.48% in control
g roup vs . 7 . 16 ± 3 .44% in 4α - PDD group ;
p < 0.0001; Fig. 4).

Fig. 2 TRPV4 activation by 4α-PDD promotes eNOS expression and
function. a 4α-PDD-mediated TRPV4 activation significantly increased
eNOS mRNA level in the infarct hemisphere (n = 9 per group). b
Representative images show that 4α-PDD treatment caused enhanced

expression of eNOS phosphorylation (serine 1177). c Semi-quantitative
analysis revealed greater eNOS phosphorylation (serine 1177) expression
after 4α-PDD-mediated TRPV4 activation (n = 6 per group). All data are
represented as means ± SEM

Fig. 3 TRPV4 activation by 4α-PDD enhances VEGFA-VEGFR2
expression. a mRNA levels of VEGFA, VEGFA164a, and VEGFR2
were elevated after 4α-PDD treatment. 4α-PDD treatment non-
significantly increased VEGFA165b (n = 9 per group). b Representative
images show that 4α-PDD treatment caused higher expression of

VEGFA and VEGFR2 protein and lower expression of VEGFA165b

protein. c Semi-quantitative analysis of VEGFA and VEGFR2 protein
increased after 4α-PDD treatment. VEGFA165b protein level reduced
significantly in the 4α-PDD group (n = 6 per group). All data are
represented as means ± SEM
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TRPV4 Activation by 4α-PDD Enhances Poststroke
Neurogenesis

We used Sox2 as the marker to identify neural stem cells. The
number of Sox2+ cells in the ipsilateral subventricular zone
(SVZ) of the lateral ventricle was significantly higher (Fig. 5a,
b) in the 4α-PDD group than the control group (53.22 ± 18.69
vs. 16.22 ± 9.0; p < 0.001) on day 5. In addition, the 4α-PDD
treatment increased Sox2+ cells in the peri-infarct area
(15.44 ± 9.27 in 4α-PDD group vs. 3.07 ± 2.88 in control
group; p < 0.0001) (Fig. 5c, d).

Discussion

This present study shows that TRPV4 activation by 4α-PDD
can reduce brain infarction, augment angiogenesis, and pro-
mote neurogenesis leading to better functional recovery. Our

findings are schematically summarized in Fig. 6. The benefi-
cial effects of 4α-PDD treatment may be mediated by several
pathways including upregulation of eNOS to increase NO
levels, an increase of VEGFA–VEGFR2 pathway to promote
neovascularization and activation of NPCs for neurogenesis.
TRPV4 is highly expressed in ECs but its role in poststroke
angiogenesis and neurogenesis has been barely explored.
Although TRPV4 has been considered to be activated by
FSS, the present study showed that a chemical stimulation
can mimic FSS effect on activation of TRPV4. Our result
indicates an opportunity of developing TRPV4 stimulant to
treat acute ischemic stroke.

Several regulatory pathways contribute to the pro-
angiogenic effects of TRPV4. Neovascularization as indicated
by the increase of microvessel density could be attributed to
upregulation of pro-angiogenic genes (eNOS, VEGFA, and
VEGFR2). First, NO can stimulate EC proliferation and mi-
gration, and mediate progenitor cell mobilization, all of which

Fig. 4 TRPV4 activation by 4α-
PDD increases microvessel
density. a Representative images
show that the 4α-PDD treatment
caused more intensive
microvessels (CD31+ endothelial
cells, arrows) in peri-lesional area
than the control group on day 5
post-tMCAO. b Quantification of
microvessel density, represented
as percentage of CD31+-stained
cells, significantly increased after
4α-PDD treatment. All data are
represented as means ± SEM.
n = 9 per group
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cause neovascularization [19, 20]. Secondly, TRPV4 activa-
tion increases both VEGFA and VEGFR2 simultaneously,
which are ligand and receptor, respectively. VEGFA and
VEGFR2 are important determinants in pro-angiogenic sig-
naling and play key roles in promoting angiogenesis after
stroke [5, 21]. Thirdly, TRPV4 activation elevates the
proangiogenic VEGFA splice isoform (VEGFA164a) while re-
duces the antiangiogenic VEGFA165b splice isoform. Because
of the critical role of VEGFA in ischemic diseases, there were
several clinical trials of VEGFA therapy. However, these clin-
ical interventions revealed limited efficacy in stroke [22] and
in PAD [23]. The unsatisfied results from clinical trials may be
partially due to VEGFA contains pro- and antiangiogenic iso-
forms [22]. Recent works also have identified that although
higher circulating levels of total VEGFA are found in PAD,

pro-angiogenic VEGFA164a is reduced while antiangiogenic
VEGFA165b is elevated [24]. Notably, VEGFA165b competes
with VEGFA164a for the binding to VEGFR2 [25]. TRPV4
activation was also shown to facilitate proliferating and
sprouting of ECs. The activation of TRPV4 may change
Ca2+-dependent signaling in human brain ECs to affect angio-
genesis [10], and can also influence EPC proliferation [12].

The exact mechanism for NPCs activation by TRPV4 ac-
tivation is not clear. Ca2+ influx through TRPV4 may also
stimulate ECs to produce and release certain factors (i.e. NO
and VEGFA), which consequently facilitate neurotrophic ac-
tivities [20, 26–28]. NO has been shown to stimulate epider-
mal growth factor receptor to increase NPCs proliferation [29,
30] and neuroblast migration [20]. On the contrary, eNOS-
deficient mice exhibit reduced poststroke NPCs proliferation

Fig. 5 TRPV4 activation by 4α-PDD increases NPCs proliferation and
migration. a, c Representative images show that in the 4α-PDD group,
intensive NPCs (Sox2+ cells, arrows) were found in the ipsilateral SVZ
(a) and peri-infarct area (c) on day 5 post-tMCAO. In contrast, in control

group, the density of NPCs wasmuch lower than the 4α-PDD group. b, d
Quantification showed that 4α-PDD treatment significantly enhanced
Sox2+ cells in the ipsilateral SVZ (b) and peri-infarct area (d). All data
are represented as means ± SEM. n = 9 per group

Fig. 6 Graphic representation of
the effects of TRPV4
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[31]. Further works are warranted to elucidate how TRPV4
activation increases neurogenesis.

This is the first demonstration of the importance of TRPV4
activation in stroke treatment. Compared to intra-
cerebroventricular activation of TRPV4 [32, 33], our ap-
proach provides neuroprotection and a more clinical feasible
route. Using growth factors to treat acute stroke may lead to
uncontrolled vessel growth, BBB leakage, and neuronal dam-
age [34], while our study using TRPV4 activation does not
show such unwanted effects. Furthermore, given that endothe-
lial TRPV4 activation is one mechanism underlying FSS ef-
fects, chemical induced- TRPV4 activation may become an
alternative for patients who have difficult for exercise in the
acute stroke.

In conclusion, TRPV4 activation increases recovery of
neurological function, decreases brain infarction size, and en-
hances the angiogenesis and neurogenesis in ischemic stroke
rats. These effects may be mediated through upregulation of
the eNOS, VEGFA164a, and VEGFR2. The results implied the
potential clinical usefulness of TRPV4 activation in ischemic
stroke. Further studies to replicate the results and explore safe-
ty issues are warranted before it can be applied to clinical
practice.
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