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Abstract Attention-deficit/hyperactivity disorder (ADHD) is a
common, behavioral, and heterogeneous neurodevelopmental
condition characterized by hyperactivity, impulsivity, and inat-
tention. Symptoms of this disorder are managed by treatment
with methylphenidate, amphetamine, and/or atomoxetine. The
cause of ADHD is unknown, but substantial evidence indicates
that this disorder has a significant genetic component. Transgenic
animals have become an essential tool in uncovering the genetic
factors underlying ADHD. Although they cannot accurately re-
flect the human condition, they can provide insights into the
disorder that cannot be obtained from human studies due to
various limitations. An ideal animal model of ADHDmust have
face (similarity in symptoms), predictive (similarity in response
to treatment or medications), and construct (similarity in etiology
or underlying pathophysiological mechanism) validity. As the
exact etiology of ADHD remains unclear, the construct validity
of animal models of ADHD would always be limited. The pro-
posed transgenic animal models of ADHD have substantially
increased and diversified over the years. In this paper, we com-
piled and explored the validity of proposed transgenic animal
models of ADHD. Each of the reviewed transgenic animal
models has strengths and limitations. Some fulfill most of the
validity criteria of an animal model of ADHD and have been
extensively used, while there are others that require further vali-
dation. Nevertheless, these transgenic animal models of ADHD
have provided and will continue to provide valuable insights into
the genetic underpinnings of this complex disorder.
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Introduction

Attention-deficit hyperactivity disorder (ADHD) is a complex
neurodevelopmental condition characterized by the core
symptoms of hyperactivity, impulsivity, and inattention [1].
Diagnosis of ADHD has been on the rise since it was recog-
nized as a distinct disorder in the 1970s. Currently, the world-
wide prevalence rate of ADHD is approximately 5 to 7%,
making it the most common psychiatric disorder among chil-
dren [1–3]. Although most frequently diagnosed during child-
hood, ADHDmay continually affect an individual throughout
life. Studies have shown that about 30 to 50% of children with
ADHD may continue to show symptoms of the disorder dur-
ing adulthood [4, 5]. ADHD is also associated with other
psychiatric disorders including anxiety, depression, personal-
ity disorders, and substance abuse [6, 7]. Thus, this disorder
has serious academic, financial, and social implications that
can cause a significant burden to the patient and the patient’s
family members.

Symptoms of ADHD are usually managed by pharmaco-
logical treatment. Currently, the most commonly used and
approved medications for ADHD are methylphenidate, am-
phetamine, and atomoxetine [8]. Other drugs such as
guanfacine, bupropion, and clonidine are also being consid-
ered as alternative medications [8]. Methylphenidate
(Ritalin® or Concerta®) is the most prescribed stimulant drug
for ADHD, accounting for approximately 70% of patients
who are under stimulant treatment [9, 10]. Amphetamine
(Adderall®) is also a psychostimulant drug proven to be ef-
fective in managing ADHD symptoms in children [11].
Methylphenidate and amphetamine work by antagonizing
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the action of dopamine and norepinephrine transporters, there-
by increasing extracellular dopamine and norepinephrine
levels. Moreover, there is evidence that these drugs affect
the serotonergic system [12–14]. Atomoxetine (Strattera®)
is a nonstimulant medication pharmacologically classified as
a norepinephr ine reuptake inhib i tor. S imi lar to
psychostimulants, atomoxetine also increases extracellular
norepinephrine and dopamine levels in the brain [15]. The fact
that ADHD drugs act by increasing brain monoamine levels
clearly indicates that disturbances in monoaminergic neuro-
transmission are involved in the pathophysiology of ADHD.

Despite this information, the exact cause of ADHD remains
unknown. There are no known objective biomarkers of
ADHD, and diagnosis is predominantly behavioral and based
on the Diagnostic and Statistical Manual of Mental Disorders
(DSM) [1]. Further complicating the nature of this disorder is
its heterogeneity; ADHD is a clinically heterogeneous disor-
der presenting as various combinations of hyperactivity, im-
pulsivity, and inattention symptoms [1, 16]. Despite its het-
erogeneity, there is compelling evidence that ADHD has a
significant genetic component. Studies have shown that
ADHD is a highly heritable disorder, with heritability estimat-
ed at 76% [2, 17]. Consistent with disturbances in monoam-
inergic neurotransmission, associations have been found in
genes that are involved in dopamine, norepinephrine, and se-
rotonin neurotransmitter systems. Polymorphisms in genes
that encode D4 and D5 subtypes of the dopamine receptor
(DRD4 andDRD5), dopamine transporter (DAT), norepineph-
rine transporter (SLC6A2), serotonin (5-hydroxytryptamine)
transporter (SLC6A4), and serotonin 1B receptor (HTR1B)
have been found [2, 17–21]. Positive associations have also
been found in genes that generate products that interact with
these neurotransmitter systems, such as catechol-O-
methyltransferase (COMT), monoamine oxidase A (MAOA),
dopamine β-hydroxylase (DBH), and SNAP-25 (a protein-
coding gene that plays a major role in the regulation of neu-
rotransmitter release and synaptic function) [2, 17–21].
Furthermore, several other gene variants have also been asso-
ciated with ADHD; these include BDNF,CHRNA4, ADRA2A,
and others [2, 17–21]. The abundance of genes linked to
ADHD indicates that the genetic factors underlying the spec-
trum of abnormal behaviors in this disorder are complex.

Transgenic animals have become an essential tool in
uncovering the genetic underpinnings of various human psy-
chiatric disorders, including ADHD. Although animal models
cannot accurately reflect the human condition, they can yield
insight into the disorder that cannot be obtained from human
studies due to numerous limitations [22]. A transgenic animal
pertains to an animal in which there has been a deliberate
modification of the genome, either through the addition of
foreign genetic information or specific inhibition of endoge-
nous gene expression [23]. The use of transgenic animal
models [knockout (KO), knockin (KI), knockdown (KD),

overexpressing (OE), or mutant animals] in ADHD research
has been on the rise (Fig. 1). These animal models have con-
firmed or refuted previous ADHD theories, have contributed
novel insights into the genetic underpinnings of this complex
disorder, and have provided an opportunity to screen for po-
tential treatment strategies. In this paper, we compiled and
discussed the validity of currently proposed transgenic animal
models of ADHD. We included models from various species
provided that the genetic modification is clearly defined.
Those with unknown genetic origins or based on environmen-
tal or chemical interventions were not included (for reviews of
these animal models, see [22, 24]).

Criteria for Validating Animal Models of ADHD

Animal models of psychiatric disorders are usually evaluated
and validated with regard to three criteria: (1) face validity, (2)
construct validity, and (3) predictive validity [22, 25, 26].
Face validity refers to the similarity of symptoms between
the animal model and the human condition. In the case of
ADHD, an ideal animal model must recapitulate the key
symptoms of hyperactivity, impulsivity, and inattention.
However, animal models that demonstrate some or specific
symptoms of the disorder (e.g., inattention) can also be used
to represent specific clinical forms of the disorder (predomi-
nantly inattentive ADHD) [16, 22]. There are various tech-
niques in modeling hyperactivity, impulsivity, and inattention
in animals, and the validity of these techniques has been
discussed in a previous review (see [22]). Predictive validity
involves similarity in response to pharmacological, psycho-
logical, and/or surgical treatments. In animal models of
ADHD, predictive validity can be displayed as attenuation
of symptoms by drugs that are effective in humans (e.g., meth-
ylphenidate, amphetamine, and atomoxetine). Construct
validity concerns the similarity in etiology or underlying path-
ophysiological mechanism that induces the symptoms of the
disorder. As the exact etiology of ADHD is still unknown, the
construct validity of putative animal models of the disorder
would always be limited [16, 22, 24]. However, it is important
to note that ADHD is commonly associated with dysfunction
in the monoaminergic system. Therefore, construct validity in
animal models of ADHD can be established, in somemeasure,
by demonstrating alterations of the monoaminergic system
[16, 24]. In summary, animal models of ADHD must display
hyperactive-, impulsive-, and/or inattentive-like behavior
(face validity); respond to methylphenidate, amphetamine,
and/or atomoxetine treatment (predictive validity); and dis-
play some alterations in the monoaminergic system (construct
validity).

Transgenic animal models included in this review were
further classified into two categories. Those with face, predic-
tive, and construct validity that was confirmed by at least two
independent researchers were classified as highly validated
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transgenic animal models of ADHD (Table 1). Those that did
not meet this criterion were classified as potential animal
models of ADHD that warrant further validation (Table 2).

Proposed Transgenic Animal Models of ADHD

Highly Validated Transgenic Animal Models of ADHD

The DAT-KO Mouse

The dopamine transporter knockout (DAT-KO) mouse is
perhaps the most characterized transgenic animal model of
ADHD and has been extensively discussed in previous stud-
ies [16, 27, 28]. It lacks the dopamine transporter (Slc6a3)
gene that encodes the DAT protein, which is responsible for

the reuptake or clearance of dopamine from the synaptic
cleft into presynaptic nerve terminals. The development of
the DAT-KO as an animal model of ADHD was based partly
on the therapeutic utility of methylphenidate and amphet-
amine [16]. As aforementioned, these psychostimulant drugs
inhibit and/or reverse the function of DAT, thereby decreas-
ing dopamine clearance and increasing extracellular dopa-
mine levels [29]. Likewise, dopamine clearance is very slow
in DAT-KO mice (approximately 300 times slower than
wild-type or normal counterparts), causing a 5-fold increase
in extracellular dopamine levels in the brain [16, 28]. The
apparent disconnection between the rate of dopamine clear-
ance and dopamine level (300-fold decrease in dopamine
clearance vs. 5-fold increase in dopamine levels) in this
mouse model is probably due to various compensatory
mechanisms [16].

Fig. 1 Trend of publications in
PubMed (Medline) that conform
to the phrase Btransgenic animal
model of ADHD^ from 2000 to
2016. Data were obtained from
http://dan.corlan.net/medline-
trend.html. Accessed May 3,
2017

Table 1 Highly validated transgenic animal models of ADHD

Name Description Face validity Predictive validity Construct validitya

DAT-KO mouse Mouse that lacks the dopamine
transporter gene (Slc6a3)

Hyperactivity
Impulsivity
Inattention

Hyperactivity ameliorated by
MPH and AMPH

Dopaminergic alterations

Coloboma mutant or
Snap25-mutant mouse

Mouse with mutation on
chromosome 2 and disruptions
in approximately 20 genes,
including Snap25

Hyperactivity
Impulsivity
Inattention

Hyperactivity ameliorated by
AMPH, but not by MPH

Dopaminergic and
norepinephrinergic alterations

NK1R-KO mouse Mouse functional ablation of the
neurokinin 1 receptor (NK1R)
or Tacr1 gene

Hyperactivity
Impulsivity
Inattention

Hyperactivity reduced by AMPH
andMPH, impulsivity by ATO

Dopaminergic,
norepinephrinergic, and
serotonergic alterations

TRβPV-KI mouse Mouse that carries a mutant
human thyroid hormone
receptor beta gene

Hyperactivity
Impulsivity
Inattention

Hyperactivity ameliorated by
MPH

Dopaminergic alterations

P35-KO mouse Mouse lacking the
Cdk5-activating cofactor p35

Hyperactivity Hyperactivity ameliorated by
MPH and AMPH

Dopaminergic alterations

MPH methylphenidate, AMPH amphetamine, ATO atomoxetine
a Construct validity is always limited and, in this paper, was based on alterations in the monoaminergic system
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Face Validity As an animal model of ADHD, the DAT-KO
mouse shows spontaneous hyperactivity in both home cage
and novel environments [12, 16]. It also exhibits impaired
attention and/or learning and memory deficits in various be-
havioral tests, such as the Y-maze, 8-arm maze, prepulse in-
hibition, and novel-object recognition [16, 30–32]. Yamashita
et al. [33] have also demonstrated that this mouse model dis-
plays impulsive-like behavior in the cliff-avoidance test, a test
based on the natural tendency of animals to avoid a potential
fall from a height. These findings show that the DAT-KO
mouse displays ADHD-like behaviors (hyperactivity, inatten-
tion, impulsivity) and therefore has face validity as an animal
model of ADHD.

Predictive Validity Similar to ADHD patients, treatment with
amphetamine and methylphenidate reduced the hyperactivity
in DAT-KO mice [12, 16]. Methylphenidate also ameliorated
the inattentive- and impulsive-like behaviors in these mice
[33, 34]. The effectiveness of these drugs on mice lacking
the DAT protein seems paradoxical given that their mecha-
nisms of action are thought to be dependent on DAT. This
finding, however, suggests that the therapeutic effects of these
drugs are not solely based on the dopaminergic system and
most likely involve other neurotransmitter systems. Indeed,
dopamine concentration in the striatum of DAT-KO mice is
not affected by treatment with amphetamine and methylphe-
nidate [12, 16]. Administration of drugs acting on the seroto-
nergic system also reduced the hyperactivity of DAT-KOmice
[16]. Moreover, the norepinephrine reuptake inhibitor,
atomoxetine, rescued cognitive deficits in DAT-KO mice
without affecting hyperactivity [35]. Taken together, these
studies support the predictive validity of the DAT-KO mouse
as an animal model of ADHD, as its ADHD-like behaviors
were attenuated by treatment with methylphenidate, amphet-
amine, and/or atomoxetine.

Construct Validity Aside from dopaminergic alterations, the
validity of the DAT-KO mouse as an animal model of ADHD
is supported by numerous lines of evidence associating aber-
rations in theDAT gene and DAT-mediated processes with the
pathogenesis of ADHD [16, 20, 21, 36, 37]. Brain imaging
studies have also found decreased DAT levels in patients with
ADHD [38, 39]. However, other studies have found conflict-
ing results, such as increased DAT levels in the striatum of
children and adults with ADHD [40–42]. Therefore, the def-
inite role of DAT in the etiology of ADHD remains unclear,
and thus, the construct validity of the DAT-KOmouse remains
partial. Nevertheless, the DAT-KO mice is currently the most
validated transgenic animal model of ADHD and has provid-
ed valuable information concerning the neurobiological con-
sequences of impaired DAT function whether in relation to
ADHD or not.

The Coloboma Mutant or Snap25-Mutant Mouse

The coloboma mutant mouse is a mouse strain developed
from neutron irradiation bearing a mutation on chromo-
some 2 and disruptions in approximately 20 genes, includ-
ing phospholipase C beta-1 (Plcb1), jagged 1 (Jag1), and
synaptosomal-associated protein 25 kDa (Snap25)
[43–46].

Face Validity The coloboma mutant mouse was proposed
as an animal model of ADHD because it displays
neurodevelopmental and behavioral deficits suggestive of
ADHD [45]. In particular, this mutant mouse showed sponta-
neous locomotor hyperactivity in the open-field test [44, 47].
It also demonstrated impaired latent inhibition, indicating in-
attention, and was incapable of waiting as long as control mice
to obtain a greater reinforcer on the delayed reinforcement
task, indicating impulsivity [43]. These behaviors (hyperac-
tivity, inattention, and impulsivity) give the coloboma mutant
mouse face validity as an animal model of ADHD.

Predictive Validity Hyperactivity in the coloboma mutant
mouse was reduced by treatment with amphetamine [44,
47]. However, methylphenidate failed to attenuate the hyper-
activity, but rather increased the locomotor activity of this
mutant [47]. Thus, the predictive validity of this animal model
is limited due to the contradicting behavioral effects of am-
phetamine and methylphenidate.

Construct Validity Among the disrupted genes in the
coloboma mutant mouse, the Snap25 gene has attracted
much interest since SNAP25 polymorphisms have been as-
sociated with ADHD [48–50]. SNAP25 is an integral part of
SNARE (soluble N-ethylmaleimide-sensitive factor attach-
ment protein receptor), a protein complex essential for the
docking and fusion of synaptic vesicles with the presynaptic
membrane for the release of neurotransmitters [48, 50]. The
functionality of SNAP25 is deficient in the coloboma mutant
mouse, and transgenic rescue of SNAP25 expression re-
duced the hyperactivity in this mutant [51]. This result indi-
cates that behavioral alterations in this mutant mouse are
indeed due to SNAP25 dysfunction [44]. SNAP25 dysfunc-
tion is also thought to underlie the profound reduction of
dopamine release in the dorsal striatum of this mutant [52].
In addition, dopamine D2 receptor expression is increased in
the ventral tegmental area and substantia nigra, a pattern
consistent with inhibition of dopamine neuron activity [24,
53]. Alterations in the noradrenergic system such as an in-
creased norepinephrine concentration in the striatum, locus
coeruleus, and nucleus accumbens were also observed [54].
Experimental depletion of norepinephrine reduced hyperac-
tivity and restored latent inhibition but not impulsivity, sug-
gesting that the noradrenergic system is also involved in the
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hyperactive phenotype of this animal model [16, 43, 55].
These alterations in the monoaminergic system (hypoactive
dopamine, hyperactive norepinephrine systems) support the

construct validity of this animal model. The coloboma mu-
tant or Snap25-mutant mouse has the potential to become a
useful animal model of ADHD.

Table 2 Potential transgenic animal models of ADHD that warrant further validation

Name Description Face validity Predictive validity Construct validitya

GC-C-KO mouse Mouse in which guanylyl cyclase-C
gene has been knocked out

Hyperactivity
Inattention
Impulsivity

Hyperactivity ameliorated by
AMPH

Dopaminergic alterations

per1b-KO zebrafish
and Per1-KO mouse

Zebrafish and mouse with targeted
mutation (inactivation) of the
per1b and Per1 gene, respectively

Hyperactivity
Impulsivity
Inattention (evaluated

in zebrafish only)

Hyperactivity and impulsivity in
zebrafish was ameliorated by
MPH

Dopaminergic and
norepinephrinergic
alterations

PI3Kγ-KO mouse Mouse lacking class IB
phosphoinositide 3-kinases
(PI3Kγ)

Hyperactivity
Inattention

Hyperactivity and inattention
ameliorated by MPH

Dopaminergic and
norepinephrinergic
alterations

CK1δ-OE mouse Mouse overexpressing the δ subunit
of the casein kinase 1 (CK1δ) in
the forebrain

Hyperactivity Hyperactivity ameliorated by
AMPH and MPH

Dopaminergic alterations

Sts-deficient or
39XY*O mouse

Mouse with deletion of the steroid
sulfatase (Sts) gene due to
end-to-end fusion of the X and Y
chromosome

Hyperactivity
Inattention

– Serotonergic alterations

GAT1-KO mouse Mouse lacking the
gamma-aminobutyric acid
transporter 1 (GAT1) gene

Hyperactivity
Inattention
Impulsivity

Hyperactivity ameliorated by
MPH and AMPH

–

nAChR β2-KO mouse Mouse with deletion of the gene that
encodes for the β2-subunit of the
nicotinic acetylcholine receptor

Hyperactivity
Impulsivity
Inattention

– Dopaminergic alterations

ADF/n-cofilin-KO
mouse

Double mutant mouse lacking both
actin depolymerizing factor
(ADF) and n-cofilin

Hyperactivity
Impulsivity

Hyperactivity and impulsivity
ameliorated by MPH

–

GIT1-KO mouse Mouse with deletion of the
G-protein-coupled receptor kinase
interacting protein 1 (GIT1) gene

Hyperactivity Hyperactivity reduced by AMPH
and MPH

–

DGKβ-KO mouse Mouse with deletion of the DGKβ
(Dgkb) gene

Hyperactivity
Inattention

Hyperactivity, but not inattention,
ameliorated by MPH

No alteration in
dopaminergic neurons
and receptors

Gβ5-KO mouse Mouse lacking the type 5G protein
beta subunit (Gβ5) gene

Hyperactivity Hyperactivity not ameliorated by
AMPH and ATO

Dopaminergic alterations

Fmr1-KO mouse Mouse with deletion of the fragile X
mental retardation 1 (Fmr1) gene

Hyperactivity
Inattention
Impulsivity

Hyperactivity not ameliorated by
MPH

–

Ptchd1-KO mouse Mouse with inactivation of the
Ptchd1 gene

Hyperactivity
Inattention

Hyperactivity not ameliorated by
AMPH

–

NOS1-KO mouse Mouse with ablation of the neuronal
nitric oxide synthase (Nos1) gene

Hyperactivity
Impulsivity

– –

mAChR M1-KO
mouse

Mouse with deletion of the gene that
encodes for the M1 subtype of the
muscarinic acetylcholine receptor

Hyperactivity Hyperactivity not ameliorated by
AMPH

Dopaminergic alterations

Brinp1-KO mouse Mouse lacking the bone
morphogenetic protein
(BMP)/retinoic acid
(RA)-inducible neural-specific
protein 1 (BRINP1)

Hyperactivity Hyperactivity not ameliorated by
MPH

–

Cdh13-KO mouse Mouse with genetic ablation of the
cadherin-13 (Cdh13) gene

Hyperactivity – –

(–) not determined or no information; italicized data indicates negative or opposite findings

MPH methylphenidate, AMPH amphetamine, ATO atomoxetine
a Construct validity is always limited and, in this paper, was based on alterations in the monoaminergic system
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The NK1R-KO Mouse

Mice with functional ablation of the neurokinin 1 receptor
(NK1R) or Tacr1 (tachykinin receptor 1) gene (NK1R-KO)
have been proposed as an animal model of ADHD [56, 57].
NK1Rs are G-protein-coupled receptors that are expressed in
the brain and are activated by the binding of substance P [57].
Substance P is a tachykinin neuropeptide that is concentrated
in brain regions involved in motor control, mood, and cogni-
tive performance. The NK1R-KO mouse was originally de-
signed to investigate the mechanism of action of
antidepressants.

Face Validity It was serendipitously discovered that the
NK1R-KO mouse shows locomotor hyperactivity in various
experimental settings [58–61]. Further studies revealed that
this mouse also exhibits inattentive- (increased rate of omis-
sions) and impulsive-like (increased premature responses) be-
haviors in the 5-Choice Serial Reaction-Time Task (5-
CSRTT), a task which emulates procedures used to study at-
tention and response control in patients with ADHD [62–65].
These results indicate that the NK1R-KO mouse has good
face validity as an animal model of ADHD, as it displays the
core behavioral symptoms (hyperactivity, inattention, and im-
pulsivity) of the disorder.

Predictive Validity The behavioral abnormalities of the
NK1R-KO mouse were ameliorated by treatment with
ADHD drugs, namely methylphenidate (hyperactivity), am-
phetamine (hyperactivity but not impulsivity), and
atomoxetine (impulsivity) [57, 61, 65, 66]. These results fur-
ther strengthened the proposal that the NK1R-KO mouse can
be used as an animal model of ADHD.

Construct Validity The construct validity of the NK1R-KO
mouse is based on the findings that this mouse has alterations
in dopaminergic, norepinephrinergic, and serotonergic neuro-
transmissions [57–59, 67, 68]. Moreover, evidence for an as-
sociation between a polymorphism of the human TACR1 gene
and ADHD has been established [56, 61]. Thus, the NK1R-
KOmouse is a promising transgenic animal model of ADHD.

The TRβPV-KI Mouse

The TRβPV knockin (TRβPV-KI) mouse carries a mutant
human thyroid hormone receptor beta gene (TRβPV), which
was obtained from a patient diagnosed with resistance to thy-
roid hormone (RTH) [16, 69, 70]. RTH is a heritable disease
characterized by elevated serum thyroid hormone [triiodothy-
ronine (T3) and thyroxine (T4)] levels and reduced respon-
siveness of the pituitary gland and peripheral tissues to the
actions of thyroid hormone [70, 71]. Thyroid hormones are
important in the development of several brain areas regulating

attention, locomotion, impulsive behavior, and neurotransmit-
ter dynamics [70, 72]. Moreover, maternal thyroid hormone
dysfunction can cause severe defects in brain development
which might lead to ADHD [73].

Face Validity The proposition that the TRβPV-KI mutant
mouse can be utilized as an animal model of ADHD was
based on the observation that this mouse demonstrates in-
creased locomotor activity in a familiar, but not in a novel
environment [69, 70, 74]. In addition, this mutant mouse also
exhibited inattentive- (slow reaction times and inaccuracy in
an operant task) and impulsive-like (inability to inhibit re-
sponse in an operant task) behaviors [69, 70, 74]. In addition,
similar to human ADHD, behavioral deficits in the TRβPV-
KI mouse persist into adulthood even after normalization of
thyroid hormone levels [70].

Predictive Validity Treatment with methylphenidate alleviat-
ed the hyperactivity in the TRβPV-KI mutant mouse, but the
effect was only transient as values returned to baseline levels
within an hour [70]. This result suggests that this mouse has a
degree of predictive validity as an animal model of ADHD.

Construct Validity The TRβPV-KI mouse showed elevated
dopamine turnover in the striatum [70]. This alteration in do-
pamine availability and the response to methylphenidate treat-
ment suggest that behavioral changes in this mouse are related
to the dopaminergic system. Adding support to the construct
validity of the TRβPV-KI mouse is the observation that 50–
70% of children with RTH also show symptoms of ADHD
[71, 75], suggesting a correlation or a common mechanism
between abnormalities of the thyroid system and ADHD.
Further studies with the TRβPV-KI mouse might contribute
to elucidating the role of the thyroid system in the pathophys-
iology of ADHD.

The P35-KO Mouse

Cyclin-dependent kinase 5 (Cdk5) is a neuronal serine/
threonine protein kinase that plays an important role in normal
brain development, neuronal migration and differentiation,
membrane transport, and corticogenesis [76–78]. Moreover,
Cdk5 influences dopamine neurotransmission by regulating
synthesis, vesicle release, and postsynaptic responses [76,
77]. The activity of Cdk5 is dependent upon its association
with either the p35 or p39 cofactors [79–81]. Given its role in
neuronal development and dopamine signaling, there is pos-
sibility that Cdk5 dysregulation may contribute to the etiology
of ADHD. Mice with targeted disruption of Cdk5 display
severe brain abnormalities and are nonviable [82]. On the
other hand, mice lacking the Cdk5-activating p35 cofactor
(P35-KO) are viable but with defects in cortical lamination.
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Face Validity The P35-KO mouse manifests locomotor hy-
peractivity reminiscent of ADHD [76, 77]. Interestingly, this
hyperactivity was observed only in juvenile and not in adult
P35-KO mice [77]. Currently, however, there is no informa-
tion regarding the inattention- and impulsivity-related behav-
iors of this mutant mouse.

Predictive Validity

The validity of the P35-KO mouse as an animal model of
ADHD is supported by the findings that hyperactivity in this
mouse is ameliorated by treatment with methylphenidate and
amphetamine [76, 77].

Construct Validity Dopaminergic activity is altered in the
brain of P35-KO mice; increased tyrosine hydroxylase (TH)
protein levels, increased dopamine synthesis and content, de-
creased dopamine degradation, increased prefrontal cortex
(PFC) innervation by TH-positive fibers, and increased pro-
tein kinase A activity were observed in the PFC and/or stria-
tum [76, 77]. Furthermore, the P35-KO mice exhibited glu-
cose uptake in their cerebral cortex, which is indicative of
hypermetabolic brain activity [76]. These findings support
the predictive validity of the P35-KO mouse as an animal
model of ADHD.

Potential Transgenic Animal Models of ADHD That
Warrant Further Validation

The GC-C-KO Mouse

Guanylyl cyclase-C (GC-C), also known as guanylate cyclase
2c, is a membrane receptor for the gastrointestinal peptide
hormones guanylin and uroguanylin and was thought to be
mainly expressed on intestinal mucosal cells [83, 84].
However, Gong et al. [84] discovered that GC-C is also
strongly and selectively expressed in dopaminergic neurons
in the ventral tegmental area and substantia nigra compacta of
mice. It was also found that GC-C can affect the firing of
midbrain dopaminergic neurons by potentiating the responses
mediated by acetylcholine and glutamate receptors via the
activity of protein kinase G (PKG) [84]. Knockout of the
GC-C gene in mice (GC-C-KO) significantly reduced extra-
cellular dopamine levels in the striatum, further indicating that
GC-C plays a role in dopaminergic neurotransmission.
Behavioral phenotypes of GC-C-KO mice mimic the core
symptoms of ADHD, displaying behaviors of locomotor hy-
peractivity in a familiar environment, and impaired behavioral
inhibition (impulsivity) and lower ratio of correct responses
(inattention) in a go/no-go task [84]. Treatment with amphet-
amine and 8-Br-cGMP (a PKG activator) reduced the hyper-
active behavior of GC-C-KO mice [84]. Thus, the GC-C-KO
mouse has face, predictive, and construct validity. With

further validation and confirmation by other researchers, the
GC-C-KO is a promising animal model of ADHD.

The per1b-KO Zebrafish and Per1-KO Mouse

Dysfunctions in circadian rhythm have been implicated in
various psychiatric disorders, including ADHD [85, 86].
However, the role of the circadian clock on the pathogenesis
of ADHD is not entirely clear. A recent study by Huang et al.
[85] showed that targeted mutation (knockout) of the circadian
gene period1b (per1b), an ortholog of the human PER1 gene,
resulted in the manifestation of ADHD-like behaviors in
zebrafish (Danio rerio) (per1b-KO zebrafish). Specifically,
per1b-KO zebrafish displayed swimming hyperactivity, learn-
ing deficits, or inattentive-like behavior in the active avoid-
ance conditioning paradigm—a well-established method for
examining learning in fish, and impulsivity (i.e., inability to
wait) in a two-choice serial reaction-time task. Treatment with
methylphenidate or selegiline, a monoamine oxidase inhibitor,
rescued the hyperactivity and impulsivity of this mutant.
Further analysis revealed that per1b-KO zebrafish has low
levels of dopamine, high levels of norepinephrine, and altered
dopaminergic neuron development. Moreover, knockout of
the Per1 gene in mice (Per1-KO mouse) also resulted in hy-
peractive and impulsive-like behaviors, reduced dopamine
levels, and dysregulation of dopamine-related genes [85].
This result indicates that the role of this circadian gene in
ADHD is highly conserved. Taken together, these findings
suggest that disruption of the Per1 or per1b circadian gene
produces ADHD-like behaviors and that per1b-KO zebrafish
and Per1-KO mice have face (hyperactivity, inattention, and
impulsivity), predictive (respond to methylphenidate treat-
ment) , and construct (a l te red dopaminergic and
norepinephrinergic transmission) validity as animal models
of ADHD. The use of mice or zebrafish as animal models of
ADHD has its advantages and disadvantages. For instance,
the mouse, as a mammal, may be more behaviorally similar
to humans, while zebrafish as a diurnal species may be more
useful in studying circadian-related processes and are readily
available for high-throughput drug screens.

The PI3Kγ-KO Mouse

Phosphoinositide 3-kinases (PI3Ks) are a family of intracellu-
lar signaling enzymes that regulate important cellular func-
tions, such as cell growth, proliferation, migration, differenti-
ation, and survival [87, 88]. Studies have found that class IB
PI3Ks (PI3Kγ) are present in neurons and are involved in
synaptic plasticity and behavioral flexibility [89, 90]. A recent
study by D’Andrea et al. [91] found that PI3Kγ-deficient
(PI3Kγ-KO) mice show some symptoms of ADHD, such as
hyperactivity, deficits in attention in an attentional set-shifting
test, impaired spatial memory, and social dysfunction. The
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hyperactivity and attention deficits in this mouse were ame-
liorated by methylphenidate treatment. Brain analysis demon-
strated that dopamine and norepinephrine levels were altered
in the prefrontal cortex and striatum of these mutants.
Moreover, it was found that PI3Kγ is particularly enriched
in the noradrenergic neurons of the locus coeruleus and that
PI3Kγ regulates ADHD-related behaviors through modula-
tion of cAMP-CREB signaling in this brain region [91].
Thus, the PI3Kγ-KO mouse has a degree of face (hyperactiv-
ity and inattention), predictive (response to methylphenidate
treatment) , and construct (al tered dopamine and
norepinephrinergic system) validity as an animal model of
ADHD.

The CK1δ-OE Mouse

Another proposed model of ADHD is mice overexpressing
the δ subunit of the casein kinase 1 (CK1δ) in the forebrain.
CK1δ is a member of the highly conserved protein kinase
family and plays a crucial role in numerous biological func-
tions [92]. In the CNS, CK1δ regulates the phosphorylation of
DARPP-32 (dopamine- and cAMP-regulated phosphoprotein
MWof 32 kDa), a protein that integrates synaptic signals from
dopaminergic and glutamatergic afferents [93]. Zhou et al.
[94] reported that mice overexpressing the CK1δ in the fore-
brain (CK1δ-OE mouse) showed locomotor hyperactivity, re-
duced anxiety, and nesting behavior deficiencies. Treatment of
methylphenidate and amphetamine not only reduced hyperac-
tivity but induced hypoactivity in this mutant mouse. The
dopamine antagonists, SCH23390 and haloperidol, also res-
cued the hyperactivity of CK1δ-OE mouse. Moreover, CK1δ
overexpression led to reduced dopamine D1 and D2 receptor
expression in the brain, indicating that CK1δ dynamics have a
profound effect on the dopaminergic system. Taken together,
the CK1δ overexpressing mice have some face (hyperactivi-
ty), predictive (response to amphetamine andmethylphenidate
treatment), and construct (alteration in the dopaminergic sys-
tem) validity as an animal model of ADHD.

The Sts-Deficient or 39XY*O Mouse

The 39XY*O mouse possesses an end-to-end fusion of the X
and Y chromosome pseudoautosomal region [95]. As a result
of this genetic manipulation, the 39XY*O mice lack the
ADHD-associated gene, steroid sulfatase (Sts) [95, 96]. Sts
encodes for the steroid sulfatase enzyme that catalyzes the
desulfation of endogenous steroids, notably the neurosteroid
hormone dehydroepiandrosterone (DHEAS) to DHEA [95].
This hormone is involved in various neuronal functions, in-
cluding cognition and attention [95, 97]. Several studies have
shown that 39XY*O mice display behavioral phenotypes as-
sociated with ADHD such as hyperactivity, inattention, and
occasional aggression [95, 98, 99]. Interestingly, however, this

mutant mouse exhibited lower levels of impulsive-like behav-
ior than its wild-type counterpart [97]. This result provides
evidence that attention and impulsivity are dissociable, and
suggests that the 39XY*O mouse can be useful in modeling
ADHD without impulsivity (i.e., the inattentive subtype of
ADHD). Behavioral alterations in this mutant mouse are at-
tributed to increased serotonin levels in the striatum and hip-
pocampus [98, 99]. Thus, the 39XY*O (Sts-deficient) mouse
has a degree of face (hyperactivity and inattention) and con-
struct (altered serotonergic system) validity as an animal mod-
el of ADHD. However, the predictive validity of this promis-
ing animal model still needs to be established.

The GAT1-KO Mouse

It has been hypothesized that ADHD is caused by
Bdisinhibition^ of neuronal activities in the brain. In line with
this view, researchers are examining the role of gamma-
aminobutyric acid (GABA), the major inhibitory neurotrans-
mitter in the central nervous system, in ADHD [100, 101].
Like other neurotransmitters, the action of GABA in the syn-
aptic cleft is terminated by its transporter, the gamma-
aminobutyric acid transporter (GAT). Mice in which the gene
for the GAT subtype 1 (GAT1) (Slc6a1), the major isoform in
the central nervous system, was knocked out (GAT1-KO)
displayed hyperactive-, inattentive-, and impulsive-like behav-
iors [101, 102]. GAT1-KO mice also exhibited impairments in
spatial learning and memory in the Morris water maze [102].
The hyperactivity in these mice was reduced by both methyl-
phenidate and amphetamine [101]. These results indicate that
the GAT1-KO mouse has face and predictive validity as an
animal model of ADHD.However, the construct validity of this
mouse is still limited, as the state of the monoaminergic system
in this mouse and the role of GAT and the GABAergic neuro-
transmission in relation to ADHD are still unclear.

The nAChR β2-KO Mouse

Mice with deletion of the gene that encodes the β2 subunit of
the nicotinic acetylcholine receptor (nAChR β2-KO) have
been proposed as an animal model of ADHD [103]. The utility
of this mouse as a model of ADHD is supported by the find-
ings that patients with ADHD showed polymorphism of nic-
otinic acetylcholine receptor subunits and other ADHD
models showed dysregulation of nicotinic pathways
[104–106]. In addition, nicotinic acetylcholine receptors are
known to affect monoamine dynamics in the brain [104, 105,
107]. The nAChR β2-KO mouse manifests the behavioral
symptoms of ADHD: hyperactivity, inattention, and impulsiv-
ity [103, 108, 109]. It also displayed abnormal mesolimbic
dopamine neuron firing [103]. These behavioral and dopami-
nergic abnormalities can be rescued by nicotine treatment
[103, 108]. However, there are currently no reports regarding
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the effects of ADHD drugs on these mutants. Thus, the
nAChR β2-KO mouse has face (hyperactivity, inattention,
and impulsivity) and construct (alterations in mesolimbic do-
pamine neuron firing) validity, but no studies have yet con-
firmed its predictive validity. Further studies are needed to
establish the suitability of this mouse as an animal model of
ADHD.

The ADF/n-Cofilin-KO Mouse

The actin depolymerizing factor (ADF)/cofilin family mem-
bers are abundant in the brain and play an important role in
neuronal development and synaptic function [110, 111].
Double mutant mice lacking genes that encode for ADF and
n-cofilin (ADF/n-cofilin-KO mouse) exhibited hyperactivity,
impulsivity, and impaired working memory [112]. Treatment
of methylphenidate ameliorated the hyperactivity and impul-
sivity in these mutants [112]. Pharmacological blockade of
dopamine and glutamate transmission also normalized loco-
motor activity [112]. Interestingly, ADHD-like behaviors
were not exhibited by single-mutant mice lacking the gene
for ADF or n-cofilin only [112]. This result indicates that the
ADHD-like behaviors in the ADF/n-cofilin-KO mice are pro-
duced by specific gene-gene interactions. Altogether, the
ADF/n-cofilin-KOmice presented face (hyperactivity and im-
pulsivity) and predictive (response to methylphenidate) valid-
ity as an animal model of ADHD and highlight the involve-
ment of gene-gene interactions in ADHD.

The GIT1-KO Mouse

The G-protein-coupled receptor kinase interacting protein 1
(GIT1) is known to regulate the endocytic traffic of β2-
adrenergic receptors and interact with other G-protein-
coupled receptors, such as dopamine receptors [113, 114]. A
study by Won et al. [115] has implicated the GIT1 gene in the
pathophysiology of ADHD. In a study conducted among
Korean children, they found that polymorphism in the GIT1
gene is strongly associated with susceptibility to ADHD
[115]. Mice with genetic deletion of the Git1 gene (GIT1-
KO) exhibited hyperactive behavior, impaired learning and
memory, and enhanced electroencephalogram theta rhythms.
The hyperactivity of the GIT1-KO mouse was ameliorated by
methylphenidate and amphetamine treatment [115]. In addi-
tion, impaired learning and memory and enhanced theta
rhythms were also normalized by amphetamine treatment
[115]. In contrast, however, another strain of GIT1-KO mice
did not demonstrate hyperactivity [116]. Other studies also
failed to find an association between the GIT1 gene and
ADHD [117, 118]. In summary, the GIT1-KO mouse might
have a degree of face (hyperactivity) and predictive validity
(hyperactivity reduced by methylphenidate and amphet-
amine), but its suitability as an animal model of ADHD is

hampered by conflicting reports. Thus, further study and val-
idation are required to establish the GIT1-KO mouse as an
animal model of ADHD.

The DGKβ-KO Mouse

Diacylglycerol kinase β (DGKβ) is an enzyme that regulates
many intracellular signaling pathways in the central nervous
system, including those that mediate dopaminergic neuro-
transmission [119, 120]. The gene that encodes for DGKβ
(DKGB) has been implicated in neuropsychiatric disorders
(e.g., bipolar disorder) [121]. Deletion of the Dgkb gene in
mice results in hyperactivity, careless behavior, and attentional
deficits [122, 123]. Methylphenidate treatment ameliorated
attentional deficits but not hyperactivity in this mouse. No
difference in dopaminergic neurons and receptors was found
when compared to its wild-type counterpart. Thus, the
DGKβ-KO mouse showed some face (inattention and hyper-
activity) and predictive (responded to MPH) validity as an
animal model of ADHD. Detailed investigations are required
to elucidate the involvement of DGKβ in the pathophysiology
of ADHD.

The Gβ5-KO Mouse

The type 5G protein beta subunit (Gβ5) is a regulator of
downstream signaling from G-protein-coupled receptors. As
polymorphisms in monoaminergic G-protein-coupled recep-
tors have been associated with ADHD, there is a possibility
that regulators of GPCRs, such as Gβ5, may play a role in
ADHD. Mice lacking the Gβ5 gene (Gβ5-KO) display hy-
peractivity, accompanied by motor learning deficits and im-
paired habituation to a novel environment [124]. They also
showed deficits in basal levels, release, and reuptake of dopa-
mine in the dorsal striatum [124]. However, treatment with
amphetamine and atomoxetine failed to reduce hyperactivity
[124]. Interestingly, treatment with an NMDA receptor antag-
onist reversed the hyperactivity in these mice [124].
Altogether, the Gβ5-KO mouse displays some face
(hyperactivity) and construct (alterations in dopaminergic sys-
tem) validity as an animal model of ADHD. However, as
ADHD drugs failed to alleviate ADHD-like behavior, this
animal model is found to have poor predictive validity.
Hence, further studies are necessary to validate its potential
role as a putative animal model of ADHD.

The Fmr1-KO Mouse

Fragile X syndrome is a genetic disorder caused by a mutation
in the fragile X mental retardation 1 (FMR1) gene on the X
chromosome. It is one of the most commonly inherited forms
of intellectual disability [125, 126]. Patients with fragile X
syndrome often display autism- and ADHD-like features
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[125, 127–129]. The Fmr1 knockout (Fmr1-KO) mouse, the
most characterized rodent model of fragile X syndrome,
showed hyperactive-, inattentive-, and impulsive-like behav-
iors in various behavioral tests [130, 131]. However, the op-
posite observation has also been reported: no impairments in
inhibitory control and sustained attention [131]. Moreover, it
was reported that methylphenidate failed to ameliorate the
hyperactivity in this mutant mouse [132]. Thus, the Fmr1-
KO mouse has face validity (hyperactive-, inattentive-, and
impulsive-like behavior), but there is insufficient data to sup-
port its predictive and construct validity as an animal model of
ADHD.

The Ptchd1-KO Mouse

The X-linked Patched-domain containing protein 1
(PTCHD1) gene has been implicated in developmental dis-
abilities such as intellectual disability and autism spectrum
disorder [133, 134]. Individuals with PTCHD1 deletion
displayed sleep abnormality and variable degrees of intellec-
tual disability- and autism-related behaviors [133, 134].
Interestingly, these individuals also exhibit ADHD-like symp-
toms of hyperactivity and attentional deficits [134, 135], sug-
gesting an overlap between these neurodevelopment disor-
ders. Deletion of the Ptchd1 gene in mice (Ptchd1-KO) result-
ed to the development of locomotor hyperactivity and atten-
tional and learning deficits [135]. The behavior abnormalities
in this mutant were attributed to dysfunctions in calcium-
dependent potassium currents in the thalamic reticular nucleus
[135]. Treatment with amphetamine failed to rescue the hy-
peractivity of Ptchd1-KO mouse [135]. Thus, the Ptchd1-KO
has some face validity (hyperactivity and inattention) but very
limited predictive and construct validity. Regardless, further
studies are encouraged to improve our understanding of the
role of this gene in neurodevelopmental disorders.

The NOS1-KO Mouse

Nitric oxide (NO) is an important signaling molecule in the
human body andmodulates a variety of physiological process-
es such as neurotransmission, synaptic plasticity, and
neurodevelopment [136, 137]. NO production in the brain is
catalyzed by the enzyme, neuronal nitric oxide synthase
(NOS), which is encoded by the NOS1 gene. Clinical studies
have linked the NOS1 gene with ADHD [20, 138]. A mouse
model with ablation of the gene coding for neuronal nitric
oxide synthase (Nos1) (NOS1-KO mouse) was explored as a
possible animal model for ADHD [136]. The NOS1-KO
mouse exhibited sustained locomotor hyperactivity in the
open-field test and learning impairments or impulsive-like be-
havior in a two-way active avoidance and passive avoidance
task. These behavioral features (hyperactivity and impulsivi-
ty) support the face validity of the NOS1-KOmouse as animal

model of ADHD. However, the effects of ADHD drugs and
the state of the monoaminergic systems in this mutant mouse
remain to be characterized.

The mAChR M1-KO Mouse

Muscarinic acetylcholine receptors (mAChR) play critical
roles in the regulation of several important functions of the
CNS including cognitive processing, emotional behavior, and
locomotor activity [139]. There are five subtypes of mAChR,
namely M1, M2, M3, M4, and M5. The M1 subtype of the
mAChR is abundantly expressed in higher brain regions, in-
cluding the amygdala, striatum, hippocampus, and cerebral
cortex [140, 141]. Mice with deletion of the gene that encodes
for the M1 subtype (mAChR M1-KO mouse) consistently
displayed hyperactivity under various conditions [142, 143].
No other ADHD-related behavior alterations were found. This
mouse also showed elevated dopaminergic transmission in the
striatum [142]. However, hyperactivity was not ameliorated
by treatment with amphetamine; instead, this mouse showed
an increased response to the stimulatory effects of the drug
[142]. In conclusion, the mAChR M1-KO mouse showed
some face (hyperactivity) and construct (elevated dopaminer-
gic transmission) validity but currently lacks predictive valid-
ity as an animal model of ADHD.

The Brinp1-KO Mouse

Genome-wide association studies have associated BRINP1
(bone morphogenetic protein (BMP)/retinoic acid (RA)-in-
ducible neural-specific protein 1) with various neurological
disorders including Parkinson’s disease, schizophrenia, and
dementia [144–146]. BRINP1 is a member of the Membrane
Attack Complex/Perforin (MACPF) family and is predomi-
nantly expressed in the nervous system [147]. The physiolog-
ical role of this protein is not entirely understood but is sug-
gested to function in cell cycle regulation, neurogenesis, neu-
ronal maturation, and neural plasticity [147–149]. Recent
studies have found that Brinp1-knockout (Brinp1-KO) mice
display reduced sociability, impaired ultrasonic vocalization,
altered short-termmemory, reduced anxiety-like behavior, and
locomotor hyperactivity [148, 149]. These behaviors seem to
show face validity for schizophrenia, the social communica-
tion deficits of autism spectrum disorder, and the hyperactivity
phenotype of ADHD. However, methylphenidate does not
affect hyperactivity in these mice [149], indicating that more
studies are needed before Brinp1-KO mice can be considered
as an animal model of ADHD.

The Cdh13-KO Mouse

Cadherin-13 is a cell adhesionmolecule that plays a major role
in neuronal development and plasticity [150]. Clinical studies

3748 Mol Neurobiol (2018) 55:3739–3754



have identified Cadherin-13 (CDH13) as a risk gene for
ADHD and other comorbid neuropsychiatric conditions, in-
cluding substance abuse or drug addiction [21, 150, 151].
Recent studies have shown that mice with genetic ablation
of theCdh13 gene (Cdh13-KO) show hyperactivity and learn-
ing difficulties, with no inattention and impulsivity [152, 153].
Thus, the Cdh13-KO mouse might be useful in modeling the
hyperactive aspect of ADHD. Currently, however, there is no
information regarding the effect of ADHD drugs and the state
of monoaminergic systems in this mouse model. Further stud-
ies are needed to establish the worth of this transgenic mouse
as an animal model of ADHD.

Conclusion

Animal models are valuable tools in untangling the compli-
cated nature of complex psychiatric disorders such as ADHD.
Although they cannot completely reflect the human condition,
they can provide insights into the disorder that cannot be ob-
tained from human studies due to various constraints. An ideal
animal model of ADHD must have face (similarity in symp-
toms), predictive (similarity in response to treatment or med-
ications), and construct (similarity in etiology or underlying
pathophysiological mechanism) validity. The construct valid-
ity of putative animal models of ADHD would always be
limited as the exact etiology of ADHD remains unclear.

The use of transgenic animals in ADHD research has sub-
stantially increased and diversified over the years, concurrent-
ly with the progress in human ADHD genetic studies and
consistently with the heterogeneous nature of this disorder.
Here, we have accumulated and discussed the validity of these
transgenic animals. Since our understanding of ADHD is still
limited, it is not possible to conclude which transgenic animal
would best represent ADHD. Each of the proposed transgenic
animal models of ADHD has strengths and limitations. Some
fulfill most of the validity criteria of an animal model of
ADHD, while there are others that only show specific behav-
iors, which may be useful in modeling distinct clinical iso-
forms of the disorder. There are also some that carry mutation
on genes implicated by human ADHD genetic studies (e.g.,
DAT, SNAP25, PER1, SLC6A1, GIT1, NOS1, and CDH13)
[17, 20, 21]. Several other ADHD-related behaviors have
not been modeled or characterized yet (see [17, 20, 21]) and
continued efforts in establishing and validating transgenic an-
imal models are encouraged. However, it is most likely that no
single gene or transgenic animal model can represent the
whole spectrum of ADHD, and that complex gene-gene,
gene-environment interactions must also be taken into consid-
eration. Nevertheless, findings obtained from current trans-
genic animal models of ADHD have provided unprecedented
insights into the genetic underpinnings of this complex
disorder.
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