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Abstract Multiple sclerosis (MS) is a chronic, autoimmune,
inflammatory, and demyelinating disorder of the central ner-
vous system (CNS), which ultimately leads to axonal loss and
permanent neurological disability. Current treatments for MS
are largely comprised of medications that are either immuno-
modulatory or immunosuppressive and are aimed at reducing
the frequency and intensity of relapses. Neural stem cells
(NSCs) in the adult brain can differentiate into oligodendro-
cytes in a context-specific manner and are shown to be in-
volved in the remyelination in these patients. NSCs may exert
their beneficial effects not only through oligodendrocyte
replacement but also by providing trophic support and
immunomodulation, a phenomenon now known as ““therapeutic
plasticity.” In this review, we first provided an update on
the current knowledge regarding MS pathogenesis and the
role of immune cells, microglia, and oligodendrocytes in MS
disease progression. Next, we reviewed the current progress
on research aimed toward stimulating endogenous NSC
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proliferation and differentiation to oligodendrocytes in vivo
and in animal models of demyelination. In addition, we explored
the neuroprotective and immunomodulatory effects of
transplanted exogenous NSCs on T cell activation, microglial
activation, and endogenous remyelination and their effects on
the pathological process and prognosis in animal models of
MS. Finally, we examined various protocols to generate genet-
ically engineered NSCs as a potential therapy for MS.
Overall, this review highlights the studies involving the immu-
nomodulatory, neurotrophic, and regenerative effects of
NSCs and novel methods aiming at stimulating the potential
of NSCs for the treatment of MS.

Keywords Neural stem cell - Neural progenitor cell -
Microglia - Oligodendrocyte - Multiple sclerosis

Introduction

Multiple sclerosis (MS) is one of the most common neu-
rological disorders of the central nervous system (CNS) in
young adults. The pathological hallmarks of the disease
are the appearance of multifocal inflammatory lesions in
the CNS separated in time and space, demyelination, and
axonal transaction [1, 2]. Relapsing-remitting multiple
sclerosis (RRMS) is the most common form of MS and
has a biphasic disease course marked by alternating epi-
sodes of acute neurological deficits and/or worsening of a
given neurological function (i.c., relapse), followed by a
complete or partial recovery (i.e., remission). Generally
after 15-25 years, ~70% of the RRMS patients develop
secondary progressive MS (SPMS) which is characterized
by progressive neurological decline independent of re-
lapses (inflammation) [3]. Around 10-15% of the MS
patients present primary progressive disease (PPMS)
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characterized by the steady progressive deterioration in
neurological function from the onset of symptoms, with-
out preceding or concomitant relapses [4].

Etiology and Pathology of MS

MS is an immune-mediated disease in which the body’s im-
mune system mistakenly attacks myelin in the CNS. Apart from
the major histocompatibility complex (MHC) loci, many other
non-MHC genetic variants involved in MS pathogenesis have
been recently identified [5]. Notably, broad complex-
tramtrack-bric-a-brac (BTB) and Cap’n’collar (CNC)
Homology 1 basic leucine zipper transcription factor 2
(BACH2), which is required for efficient formation of regula-
tory T (Treg) cells, are found to be downregulated in blood
cells of MS patients compared to healthy subjects, which may
be responsible for the impaired Treg functions in MS patients
[6]. Treg cells have been recognized as the critical immuno-
modulators of the adaptive immune system in MS. Deletion of
Treg cells causes spontaneous autoimmune disease in mice,
whereas augmentation of Treg cell function can prevent the
development of or attenuate the signs in the experimental au-
toimmune encephalomyelitis (EAE), the animal model of MS
[7]. MS is also associated with impaired maturation of Treg
cells [8]. Remission in RRMS has been shown to correspond
with increased proportions of FoxP3+ Treg cells in the blood
[9]. Thus, Treg cells are being considered as potential thera-
peutic targets in MS [10, 11].

Several environmental candidates such as nicotine smoking,
low serum vitamin D levels [12, 13], and viral infection were
found to increase the risk of developing MS, by inhibition of
mitochondrial respiratory chain in the CNS and contributing to
demyelination [ 14], activation of potentially encephalitogenic T
cells and their trafficking to the CNS [15], and increased pro-
duction of proinflammatory cytokine interleukin-6 (IL-6) [16].
Loss of self-tolerance may be triggered by an environmental
antigen, virus, or other factors discussed above [17]. Epstein-
Barr virus (EBV) [18] and human herpes virus (HHV)-6 [19]
have been consistently linked with MS pathogenesis, and 99%
of MS patients are EBV seropositive [20]. The adoptive transfer
of in vitro-expanded autologous EBV-specific CD8+ T cells
into patients with severe SPMS could reduce disease activity
and decrease intrathecal immunoglobulin production of EBV-
infected autoreactive B cells [21].

Immunopathology of MS

Two model theories of lesion development in MS have pro-
posed: the outside-in model and the inside-out model [22]. In
the outside-in model, MS lesions develop from the outside
(myelin) to the inside (axons); in the inside-out model, the

lesions develop from the inside (axons) to the outside (mye-
lin). The outside-in model refers to a primary CNS demyelin-
ation, usually induced by anti-myelin autoimmune cells gen-
erated in the periphery, while the inside-out model refers to a
primary CNS axonal degeneration and subsequent recruitment
of systemic/adaptive immune cells [23, 24].

Denuded axons are vulnerable and start degenerating as the
disease progresses [25, 26]. Despite the extensive axonal loss
in acute MS lesions, relapses are reversible by the potent com-
pensatory mechanisms in the brain [27, 28]. The conversion of
RRMS to SPMS is thought to occur when the brain exhausts
its capacity to compensate for further axonal loss [29, 30].
Chronically demyelinated axons have an increased energy
requirement to maintain conduction velocity in the absence
of myelin [31, 32]. Mitochondrial density and activity were
increased within demyelinated axons in MS lesions which
coincided with increased oxidative stress [33, 34].

Remyelination Failure in MS

Remyelination is the regenerative process by which
demyelinated axons are reinvested with new myelin sheaths.
Spontaneous and robust remyelination occurs at the early
stages of MS [35], occurring within a month or two after
active demyelination [36]. Experimental animal models of
CNS demyelination indicate remyelination is not performed
by pre-existing mature oligodendrocytes [37], but involves
new remyelinating oligodendrocytes derived from the matu-
ration of quiescent oligodendrocyte progenitor cells (OPCs)
distributed throughout the adult CNS [38, 39]. In the corpus
callosum, remyelinating oligodendrocytes can also be derived
from neural stem and precursor cells of the adult
subventricular zone as shown in animal models [40, 41].
Moreover, it has also been observed that both the numbers
and the differentiation stages of OPCs and mature oligoden-
drocytes are highly variable within lesions of different patients
and in different lesion stages [42].

The eventual failure of remyelination that occurs as MS
progresses results from multiple factors such as the generation
of a nonpermissive environment which prevents OPC differ-
entiation, and also from a slowly progressive loss of the OPC
pool from established lesions [43, 44].

Parenchymal OPCs are mostly responsible for
oligodendrogenesis and remyelination in MS [45]. These
OPCs are present in robust densities inside the lesions during
early phases of MS pathology [46], although in chronic MS
lesions, their number becomes significantly lower [47, 48].

Within a demyelinating lesion, activated CD4+ and CD8+
T cells, as well as macrophages, are thought to act in concert
with reactive microglia to release a milieu of proinflammatory
factors that lead to oligodendrocyte dysregulation and apopto-
sis [49]. Oligodendrocytes are particularly vulnerable to
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antigen recognition and cytotoxicity by CD8+ cytotoxic T
lymphocytes since they express MHC class I antigens under
certain inflammatory conditions [50, 51]. Postmortem study
of the brain tissue from some RRMS patients revealed that
very early MS lesions exhibit extensive oligodendrocyte apo-
ptosis in myelinated tissue containing few or no lymphocytes
[52], which raises the possibility of nonimmune-related toxic
effects directly against the oligodendrocytes. Oxidative dam-
age is another common contributor to oligodendrocyte loss
under many pathological conditions like MS [53, 54].

Current Limitations of the Disease-Modifying
Treatments for MS

Currently available treatments for MS primarily target the un-
derlying immunologic etiology of the disease [55]. While sig-
nificantly effective in preventing the frequency of relapses,
these treatment options have little benefit for SPMS patients
since they do not prevent the continuous axon loss and progres-
sion and irreversible disability. Secondly, a shift from adaptive
to innate immunity characterized by abnormalities of dendritic
cells’ (DCs) activation or maturation may underlie the transition
to the progressive phase of the disease [56]. Current immuno-
modulatory drugs are directed primarily against the cells and
mediators of the adaptive immune system [57]. Thus,
preventing this transition, perhaps by acting at the level of the
innate immune system, is an important therapeutic strategy.

Development of therapies to benefit progressive MS pa-
tients will require a more comprehensive understanding of
the pathogenesis of progressive MS. It is suggested that during
the late stages of the disease, the inflammation is relatively
less, but the susceptibility of the target tissue to neurodegen-
eration and axonal degeneration increases [1]. Therefore, we
argue that an essential strategy for MS therapy is to target the
axonal pathology aiming for neuroprotective as well as
neuroregenerative outcomes.

Models to Study MS Pathology

Various animal models such as T cell-mediated (EAE), toxin-
or virus-induced demyelination, and genetic models of demy-
elination are now used to understand the pathological and
etiological aspects of MS.

EAE offers a practical strategy for reproducing certain dis-
tinct adaptive immune-mediated pathologic features of demy-
elination. EAE shares many pathological features with MS
including chronic neuroinflammation, multifocal autoimmune
demyelination, and axonal loss and is triggered by an autoim-
mune attack on the CNS [58].

Theiler’s murine encephalomyelitis virus (TMEV)-induced
demyelinating disease (TMEV-IDD) is the most widely
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studied virally induced demyelinating disease (in mice) which
can be explained by the inside-out model [59]. Following
TMEYV infection, axonal degeneration precedes demyelination
[60]. In this model, mice develop chronic progressive demy-
elinating disease without remission, similar to the disease
course of PPMS. Epidemiological studies suggest that viral
models are useful in understanding the possible viral etiology
[61], the process of the axonal injury/repair in MS [62], and
the interplay between genetic predisposition and environmen-
tal insults [26]. It is also important to evaluate the therapeutic
potential of engrafted neural stem cells (NSCs) in the presence
of a persistent viral infection that is associated with chronic
neuroinflammation and demyelination [63].

Cuprizone-induced demyelination model is a useful model
of noninflammatory demyelination which acts as a preclinical
tool for screening candidate drugs for remyelination-
promoting effects. Also, focal injection of lysolecithin into
the spinal cord white matter of mice produces a discrete de-
myelinating lesion followed by spontaneous and complete
remyelination [64].

Animal models that enable the study of remyelination in
the presence of ongoing inflammation are needed to examine
whether current or new therapies can promote remyelination
in the face of the inhibitory cues present in the MS plaque
microenvironment. An innovative animal model combines
cuprizone-induced demyelination with the transfer of
myelin-reactive T helper 17 (Th17) cells which delays the
endogenous repair process. The IFN-/IL-17-secreting T cells
in the corpus callosum extend the period of demyelination and
open the window to test the beneficial effects of available
putative remyelinating therapies [65]. Recently, it has been
shown that cerebrospinal fluid from SPMS patients injected
in mice could induce inflammatory demyelination, axonal
loss, and astrogliosis [66].

All the models mentioned above mimic only a part of MS
pathology, and they act in a complementary way. Treatments
should be assessed in multiple models to reflect their various
aspects on adaptive and innate immune systems, demyelin-
ation and remyelination, short-term effect, and long-term
prognosis. For example, interferon-f3 (IFN-[3) could alleviate
inflammation and reduce demyelination in EAE models.
However, in cuprizone-treated mice, IFN-{3 exerts side effects
regarding remyelination in the absence of an immune-
mediated demyelination, which questions their long-term use
as a possible MS treatment [32].

Participation of Endogenous NSCs
in Remyelination: Studies in Animal Models of MS

In the last decade, growing interest has focused on utilizing
NSCs to promote remyelination. In the adult CNS,
tissue-specific germinal niches, such as the subventricular
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zone (SVZ) of the lateral ventricles and the subgranular zone
of the dentate gyrus (DG) of the hippocampus, contain
multipotent NSCs with the capacity to self-renew and differ-
entiate into functional neurons and glia [57, 67]. Multipotent
NSCs have also been isolated from a subcortical white matter
of the adult human brain [68]. A recent study revealed the
existence of dormant ependymal CD133+ NSCs lining the
surface of the fourth ventricle in mice which could be mitot-
ically activated and differentiated into neurons and glia upon
stimulation [69, 70].

NSCs in the adult mammalian brain have been shown to
give rise to rapidly dividing neural progenitor cells (NPCs) to
produce neurons, astrocytes, and oligodendrocytes, and func-
tionally contribute to (although modest) cognition and repair
processes after injury [69, 71]. For example, neuroblasts in
the adult mice SVZ can be primarily directed to an oligoden-
drocyte fate upon lysolecithin-induced demyelination of the
corpus callosum [72, 73]. In EAE, NSCs can become activated,
migrate to the lesions, and differentiate into oligodendrocytes,
providing another source of myelinating oligodendrocytes [68,
74]. Retroviral-mediated Mash1/Ascll misexpression redirects
neurogenic intermediate progenitors to an exclusive oligoden-
drocyte lineage in the adult subgranular zone (SGZ) [71, 75]. It
is now believed that radial glia cells not only serve as progen-
itors for many neurons and glial cells soon after birth, but also
give rise to adult SVZ stem cells that continue to produce as-
trocytes, neurons [71, 76], and, to a lesser extent, oligodendro-
cytes [77]. Neurogenic capacity is disrupted during aging,
while the ability to produce new oligodendrocytes is not com-
promised in the human brain [78]. In the aged SVZ, prolifera-
tion is reduced due to loss of stem cell numbers, inability to
self-renew, or increases in cell cycle length [79]. The remaining
actively proliferating NSCs in SVZ and DG decrease over time
in the aged brain, transforming into astrocytes [80, 81].

The participation of SVZ-derived progenitors in
remyelination has been demonstrated in several experimental
mouse models of demyelination [82, 83]. Acute EAE results
in enhanced migration of SVZ-derived NPCs to the olfactory
bulb and triggers their mobilization in the periventricular
white matter. The mobilized cells give rise to oligodendro-
cytes in the inflammatory demyelinating lesioned white matter
to replace the dysfunctional or dying oligodendrocytes [74]. In
contrast, during the chronic/nonremitting phase of EAE (anal-
ogous to the progressive form of MS), NSC and NPC prolif-
eration is attenuated in the SVZ and hippocampus [84].

In the TMEV-IDD model in mice, progenitors in the SVZ
are mobilized to undergo oligodendrogenesis and migrate to-
ward demyelinated areas close to the lateral ventricles in the
corpus callosum to participate in remyelination [40].

In the cuprizone-induced demyelination model, large num-
bers of NPCs were shown to migrate into the corpus callosum
where the majority of these cells differentiated into oligoden-
drocytes and exhibited robust capacity to remyelinate,

especially in the rostral regions adjacent to the SVZ. These
NPC-derived oligodendrocytes reestablished the nodes of
Ranvier and g-ratios, and newly formed myelin was equiva-
lent to those of healthy control mice [41]. However, in a
chronic model when demyelination is sustained over a period
of time (after long-term cuprizone administration), SVZ-
derived NPCs minimally contribute to myelin repair [84].
This is associated with an exhaustion of the pool of SVZ
progenitors which have a limited self-renewal potential [85],
a drastic drop of their proliferation and mitochondrial dys-
function in NPCs [86].

The NPCs and OPCs play a key role in augmenting the
endogenous myelin/neuronal repair capacity in MS-like dis-
ease, likely via CXCL12/CXCR4 autocrine signaling post in-
flammation [87]. Generally, CNS inflammation in MS pa-
tients is associated with upregulation of the chemokine ligand
CXCL12 expression. In EAE mice, CXCL12 expression in
the DG and corpus callosum was persistently increased fol-
lowing spontaneous recovery even though CNS inflammation
had subsided, and the numbers of NPCs in both regions in-
creased correspondingly. A significant portion of the NPCs
and OPCs express the CXCL12 and CXCL12 receptor
CXCRA4. Thus, the increased levels of CXCLI12 expression
in the DG and corpus callosum of EAE-recovering mice
may be associated with the promotion of neuro/
oligodendrogenesis generating CXCR4+ CXCL12+ NPCs
and OPCs endowed with intrinsic neuro/oligondendroglial
differentiation potential.

Therapeutic strategies utilizing endogenous NSCs have
great potential since it avoids the intricate procedure of gen-
erating exogenous generation of NSCs which involves
lengthy differentiation protocols [88]. Currently, available
drugs and recombinant cytokines or soluble factors need an
intensive study to exploit their potential in booting endoge-
nous remyelination.

Vitamin D; may directly enhance proliferation of NSCs
and their differentiation into neurons and oligodendrocytes
in EAE mice. NSCs constitutively expressing the vitamin D
receptor (VDR) exhibited increased expression of neurotroph-
ic factors neurotrophin-3 (NT-3) and brain-derived neuro-
trophic factor (BDNF) after exposure to vitamin Dj [89].
Increased remyelination in the hippocampus by endogenous
progenitor cells was observed in rats receiving vitamin Dy
following ethidium bromide (EB)-induced demyelination
[90]. 1,25-Dihydroxyvitamin D5 (1,25(OH)2D3) has an im-
munomodulatory effect and has been implicated in the patho-
genesis of MS. There are several additional benefits to admin-
istering vitamin D. Vitamin D3 induces human DCs to adopt a
tolerogenic phenotype, characterized by decreased expression
of CD40, CD80, and CD86; low interleukin-12 (IL-12)
release; and enhanced anti-inflammatory interleukin-10
(IL-10) secretion [91]. It also reduces the serum levels of
pathogenic IL-17 in RRMS patients [92].
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Limitation of Endogenous NSC
Toward Remyelination

In general, the microenvironment at and around the lesion site
during demyelination appears to favor astrogliogenesis rather
than oligodendrogenesis from SVZ-derived cells. This has been
evidenced in several studies. For example, epidermal growth
factor (EGF) plays a dual role in MS and EAE. In the
lysolecithin-induced demyelination model, intravenous (i.v.) in-
fusion of EGF dramatically promoted the proliferation and mi-
gration of SVZ NSCs as well as their differentiation into oligo-
dendrocytes in the corpus callosum [93]. However, in chronic
MS lesions, EGF signaling is associated with astrogliosis and
glial scar formation. In fact, EGF was shown to play a pivotal
role in astrogliogenesis at the expense of oligodendrogenesis
[94]. Interestingly, EAE mice injected (i.v.) with anti-EGF neu-
tralizing antibody at day 9 after the initial proliferation phase of
SVZ-derived NSCs had significantly ameliorated EAE symp-
toms via induction of neurogenesis and oligodendrogenesis in
the SVZ [95]. Similarly, an upregulation of bone morphogenetic
protein 4 (BMP4) protein levels is usually detected during active
demyelination, and NSCs treated with BMP4 produced more
astrocytes in vitro. Intraventricular infusion of Noggin, an endog-
enous antagonist of BMP4, increased the number of
Olig2-positive oligodendrocytes and decreased astrocyte num-
bers in the SVZ after cuprizone-induced demyelination in mice
[96].

Fingolimod (FTY720) is a sphingosine-1-phosphate (S1P)
receptor modulator, and the first oral treatment option avail-
able for RRMS [97]. However, FTY720 did not promote
remyelination in lysolecithin-induced demyelination animal
models [98]. Administration of FTY720 to JHM strain of
mouse hepatitis virus (JHMV)-infected mice resulted in en-
hanced migration and increased proliferation of transplanted
NPCs after spinal cord engraftment, yet failed to improve
disease or increase remyelination [99].

Treatment with IL-4 and IL-10 upregulated the surface ad-
hesion molecule lymphocyte function-associated antigen 1
(LFA-1) and chemokine receptors CXCR4 on NSCs, thus
facilitating migration of NSCs toward the CNS inflammatory
foci [100]. Overall, it is apparent that stimulation of endoge-
nous NSCs with beneficial factors is a promising approach for
the treatment of MS and requires further research to reveal its
therapeutic potential and the timing, dose, and safety of each
candidate. However, NSC-derived oligodendrogenesis is lim-
ited compared to astrogliogenesis.

NSCs-Microglia Cross Talk: Effect on NSC Survival
and Differentiation, and Immunomodulation

Microglia, the resident macrophages in the CNS parenchyma,
are a heterogeneous group of monocyte-derived cells serving
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multiple roles within the brain [101]. They have been actively
involved in MS pathogenesis both in early as well as in late
stages of MS lesions formation [102]. Intrinsic triggers such as
subtle pathological changes in the CNS induce the formation
of clusters of activated microglia [103], which adopt a cyto-
toxic phenotype when exposed to proinflammatory molecules
by releasing reactive oxygen species (ROS) and nitric oxide
(NO) [104]. This further aggravates the imbalance between
increased energy demand and decreased energy supply in
chronically demyelinated axons [105].

Phagocytosis and removal of damaged myelin seem to be
the major roles of microglia in MS, and removal of myelin
debris is a prerequisite of successful remyelination [106]. In
response to inflammation and infection in the CNS, oligoden-
drocytes release cytokines that recruit microglia to phagocytosis
inhibitory molecules present in the lesion microenvironment
[107], thereby aiding repair and regeneration [108]. Inactive
lesions in SPMS comprised an external border of activated
microglia. Impaired phagocytosis of myelin fragments on the
surface of microglia was in part responsible for the failure of
remyelination [109] (Fig. 1).

Microglia are also important modulators of the inflammatory
milieu in the CNS in MS [110]. During the active phase of the
MS, activated microglia produce proinflammatory mediators
[111], chemokines, and oxidizing radicals which are potentially
detrimental to oligodendrocytes, suggesting a correlation be-
tween microglial activity and oligodendrocyte damage in MS
[105]. Resident microglia can establish a cross talk with infil-
trated immune cells, including IL-17+ y8 T cells, regulating
their recruitment, activation, and function within the CNS
[112, 113]. 183-glycyrrhetinic acid (GRA) effectively reduced
CNS inflammation and myelin damage in EAE in C57BL/6
mice through inhibition of microglia activation via the suppres-
sion of mitogen-activated protein kinase (MAPK) signal path-
way which plays an important role in the interferon gamma
(IFN-y)-induced expression of proinflammatory genes in acti-
vated microglia. GRA-modulated microglia downregulated the
production of proinflammatory cytokines and chemokines,
which reduced the recruitment of encephalitogenic T cells into
the CNS [114], and promoted remyelination [115].

NSC Survival and Differentiation

Microglia are thought to play a role in the migration of NSCs,
as well as in effecting their survival and differentiation. In both
acute and chronic EAE, microglia number was significantly
higher in CNS regions containing transplanted NPCs [116].
Soluble factors released from mouse microglial cells direct the
migration of NPCs in vitro and in vivo [117]. In the EAE
brain, microglia produce stromal cell-derived factor-1
(SDF-1), monocyte chemoattractant protein-1 (MCP-1), and
hepatocyte growth factor (HGF), accounting for the
inflammation-induced attraction of transplanted NPCs (which
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Fig. 1 NSC survival, differentiation, and immunomodulation are shaped
by NSC-microglia cross talk. Microglial-derived signals determine NSC
survival and differentiation in EAE. Conversely, NSC-derived signals
cause immunomodulation in microglia via paracrine factors and signaling
pathways. Resting microglia, stimulated by IL-4 in vitro, promotes insulin-
like growth factor-1 (IGF-1)-mediated oligodendrogenesis from adult
NPCs in mice [120]. On the other hand, microglia-derived tumor necrosis
factor-alpha (TNF-«) induced the expression of the BH3 (Bcl-2 homology
domain-3) in NPCs by an NF-kB (nuclear factor-kB)-dependent
mechanism and increased NPC apoptosis by a mitochondrial pathway
[121]. Soluble factors released from mouse microglial cells direct the

constitutively expressed cognate receptors for these
chemokines) into white matter tracts [118]. In an allogeneic
co-culture model, both human NPCs and microglia showed
increased survival and proliferation, and the release of
transforming growth factor-f3 (TGF-3) was also upregulated.
However, differentiations of NPCs were hindered by microg-
lia [119]. Depleting microglia from hippocampal cultures
reduce NSC survival and proliferation. Microglia, stimulated
by IL-4 in vitro, encouraged insulin-like growth factor-1
(IGF-1)-mediated oligodendrogenesis from adult NPCs in
mice [120]. On the other hand, microglia-derived tumor ne-
crosis factor-alpha (TNF-«) induced the expression of the
BH3 (Bcl-2 homology domain-3) only family member
Puma in NPCs by an NF-kB (nuclear factor-kB)-dependent
mechanism and increases NPC apoptosis by a mitochondrial
pathway [121].

NSC-Induced Modulation of Microglial Function

Novel treatment strategies should utilize NSCs to modulate
host microglial phenotypes and functions to benefit neuropro-
tection and repair. NSCs or NPCs may not only be shaped by
microglia but also they, in turn, are capable of manipulating
microglia functions and activity. NSCs can transform microg-
lia from a harmful to a neuroprotective phenotype by
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migration of NPCs in vitro and in vivo [117]. In the EAE brain, microglia
produce stromal cell-derived factor-1 (SDF-1), monocyte chemoattractant
protein-1 (MCP-1), and hepatocyte growth factor (HGF), responsible for
the inflammation-induced attraction of transplanted NPCs into white matter
lesions [118]. In an allogeneic co-culture model, both human NPCs and
microglia showed increased survival and proliferation, and the release of
transforming growth factor-3 (TGF-3) was also upregulated. NSCs can
induce a significant upregulation of the surface molecules CX3CR1 on
microglia which is associated with a neuroprotective phenotype, and
triggering receptor expressed on myeloid cells-2 (TREM2) [119, 122—-124]

significantly increasing the expression of molecules associat-
ed with a neuroprotective phenotype in adult mouse brain
[122]. For example, NSCs can induce a significant upregula-
tion of the surface molecules CX3CR1 on microglia which is
associated with a neuroprotective phenotype [123] and trig-
gering receptor expressed on myeloid cells-2 (TREM2) [124].
Injection of primary mouse NPCs into the striatum of C57BL/
6 mice causes a significant increase in an absolute number of
Iba-1+ microglia with activated morphology, and those effects
were mainly exerted through vascular endothelial growth fac-
tor (VEGF), which is secreted by grafted NPCs in significant
amounts [125].

NSCs have been shown to improve host neuronal viability
in mouse organotypic brain slice cultures by switching mi-
croglia from a detrimental to a neuroprotective phenotype,
through the microglial Toll-like receptor 9 (TLR9)-extracellu-
lar-regulated protein kinases 1/2 (ERK1/2) pathway. These
beneficial modulatory effects of NSCs were abrogated by
the microglial inhibitor minocycline [122]. NSCs that were
preconditioned with minocycline in vitro before transplanta-
tion had upregulated expression of Nrf2-regulated antioxidant
genes, and enhanced the survival of grafted cells and release
of paracrine mediators, such as BDNF and VEGF [126].
Conversely, microglial activation improved regenerative po-
tential in the SVZ in the chronic phase of EAE. In vivo
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treatment with minocycline increased NSC proliferation and
their differentiation into mature oligodendrocytes in the SVZ
by inhibiting the activation of microglia [127].

Tissue and Cellular Sources for NSCs: Utility
and Limitations

Various cell types may serve as a source of NSCs or NPCs, for
example, human embryonic stem (ES) cells (hESCs) [128],
fetal and adult brain SVZ cells, and postmortem human CNS
tissue [129]. Autologous mesenchymal stem cells (MSCs) are
another source of neural stem cells for MS because they are
readily obtained from adult bone marrow (BM) [130].
Experiments showed that the therapeutic effects of bone
marrow-derived NSCs (BM-NSCs) and SVZ-NSCs were al-
most identical in EAE models, and BM-NSCs also exhibited
comparable morphological properties and possess a similar
ability to differentiate into neurons, astrocytes, and oligoden-
drocytes both in vitro and in vivo [131].

The generation of induced pluripotent stem cells (iPSCs) from
adult skin fibroblasts has heralded the possibility of autologous
transplants that would circumvent histocompatibility barriers and
ethical problems [132]. iPSCs can differentiate efficiently into
NSCs and, subsequently, into specific neural lineages [133].
The gene expression profiles of iPSCs derived NSCs are com-
parable to those of human fetal-derived NSCs and these iPSCs-
NSCs could be differentiated into neurons, astrocytes, and oligo-
dendrocytes [134]. A research group used Sendai virus con-
structs encoding four iPSC transcriptional factors (Sox2, Oct4,
Klf4, and c-Myc) to derive neural stem cells from CD34+ cells
from both cord blood cells and adult peripheral blood [135].
Experiments demonstrated that mouse iPSCs-derived NPCs
(miPSCs-NPCs) differentiated into mature oligodendrocytes in
demyelinated Shiverer mice and generated compact myelin
around host axons and restored nodes of Ranvier and conduction
velocity as efficiently as CNS-derived NPCs [136].

However, several aspects of human iPSCs may be impact-
ed by epigenetic mechanisms. A recent study demonstrated
that human iPSC-derived NPCs from patients with schizo-
phrenia (SZ) had perturbations in canonical WNT signaling,
which may be caused in part by increased oxidative stress
within the nervous systems commonly observed in MS pa-
tients [137]. NPCs differentiated from iPSCs that collected
from blood samples of PPMS patients provided no neuropro-
tection against active CNS demyelination compared to NPCs
from control iPSC lines [138].

Several recent reports indicate that NSCs and NPCs can be
directly generated from skin fibroblasts by direct reprogramming
[139]. Plasmid vectors containing the EBV-derived oriP/EBNA1
defined expression factors and a small hairpin directed against
p53 could reprogram adult human fibroblasts to induced NSCs
(iNSCs) without the addition of small molecules [140]. Direct
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conversion of somatic cells into stably expandable iNSCs and
induced NPCs (iNPCs) may prove to be highly efficient, safe,
and labor-saving, compared with the circuitous two-step strategy
used during the conversion of somatic cells to iPSCs and subse-
quent differentiation into neural stem cells [141]. iNPCs could be
induced directly from human fibroblasts by overexpression of
SRY-box 2 (SOX2) protein in combination with a chemical
cocktail under 3D sphere culture conditions [142]. Highly ex-
pandable human NSCs with multipotent neural differentiation
potential can also be directly generated from human fibroblasts
by lentiviral transduction with four to five reprogramming genes
[143].

Mouse fibroblast-derived tripotent iNSCs could be differ-
entiated not only into neurons and astrocytes but also into
oligodendrocytes capable of integration into dysmyelinated
Shiverer brain [144]. Future experiments will be necessary
to help define the potential of these cells in the context of
inflammation and their tissue tropism in MS. The therapeutic
potential of human NPCs may differ greatly depending on the
method of derivation and expansion [145]. The expression of
neurotrophic factors in NPCs usually decreases with time in
culture [146], and long-term cultured NPCs lose their capacity
to restrain the proliferation of pathogenic immune cells
in vitro [147]. Therefore, it is imperative to obtain enough
quantity of stem or progenitor cells within a short time before
the quality of individual cell decreases. This presents a signif-
icant challenge for the technologies concerning iPSC-derived
NSCs and directly induced NSCs.

Route of Administration

The mostly preferred routes for the delivery of MSCs or NSCs
are the intravenous (i.v.) and intrathecal delivery routes since
they can cross the blood-brain barrier (BBB) [148]. However,
syngeneic naive NPCs injected subcutaneously and intrave-
nously in EAE mice were low invasive in the CNS. Most of
the injected NPCs were found in the liver, gut, spleen, lung,
and kidney, which inevitably reduced the number of NPCs in
secondary lymphoid organs and CNS [149, 150]. Focal injec-
tion of NSCs in the CNS is not practical in MS, where a
multifocal, chronic, and spatially disseminated CNS damage
accumulates over time. This would require multiple local in-
jections to reach the multifocal lesions [151]. Intrathecal ad-
ministration to lesions might be hindered by the limited ca-
pacity of grafted NSCs to migrate over long distances within
the CNS parenchyma [152].

Delivery of NSCs directly into the cerebrospinal fluid
(CSF) circulation by intracerebroventricular (i.c.v.) injec-
tion to specifically target the CNS in mice and rats has
been tested [153]. Newborn rat NPCs, which were
transplanted i.c.v. at the peak of disease in EAE, mi-
grated exclusively into the inflamed white matter (but
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not into adjacent gray matter regions) and subsequently
differentiated into oligodendrocytes [154].

Intranasal (i.n.) delivery of NSCs is another noninvasive
method of delivery. NSCs have shown to migrate into the
CNS directly via the nasal route and result in functional re-
covery, and confer immunomodulation and remyelination in
EAE in mice [155]. In mice, NSCs injected in the carotid
artery promoted cell homing to the area of stroke lesion, and
improved behavioral recovery [156]. Intracarotid delivery of
NSC has not been reported in EAE. It has been shown that
exogenous NSCs interact more closely with the infiltrating
pathogenic immune cells rather than with those in the periph-
ery. Therefore, suppression of inflammation in CNS by NSCs
is likely to be more effective by targeted local delivery rather
than their interaction at the periphery [155].

Therapeutic Mechanisms of Action of Transplanted
NSCs: Studies in Animal Models of Demyelination

NSCs and NPCs have been shown to exert their beneficial
effects through (a) immunomodulation, (b) cell replacement,
(c) providing trophic support, and (d) stimulation of endoge-
nous remyelination (Fig. 2) [157]. For the NSC therapy to be
successful in MS, the cells need to be plastic enough to ac-
commodate and survive in the nonpermissive inflammatory
environment, highly migratory to reach multiple lesion sites
in the CNS, and can differentiate into myelinating oligoden-
drocytes, through multiple mechanisms of action (Table 1).

Effect on T Cell Function

The immunomodulatory effects are mainly exerted by undiffer-
entiated stem cells by releasing a milieu of neuroprotective mol-
ecules at the site of tissue lesion [158]. MSCs-NPCs have been
shown to suppress T cell proliferation and to promote the expan-
sion of FoxP3+ Treg cells in vitro [159]. NPCs induced from a
human iPSC line were intraspinally transplanted into
demyelinated mice due to viral infection and decreased the ac-
cumulation of CD4+ T cells in the CNS along with reduced
demyelination at the site of injection which correlated with a
transient increase in Treg cells in the peripheral lymphatics [145].

A recent study described long-lasting clinical recovery
along with dampened neuroinflammation and
remyelination after transplantation of NPCs derived from
human ESCs, in a viral model of MS [160]. The human
NPCs (hNPCs) used in that study were derived by a novel
direct differentiation method (direct differentiation,
DD-NPCs), and cells were selected for intraspinal trans-
plantation based on a definitive transcriptomic signature.
The same group then wanted to determine whether NPCs
differentiated using conventional methods would be sim-
ilarly effective in improving clinical outcome under
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Fig. 2 Functions of adult NSCs in healthy and EAE (MS) brain. NSCs in
the adult mammalian brain have been shown to give rise to rapidly dividing
neural progenitor cells (NPCs) to produce neurons, astrocytes, and
oligodendrocytes, and functionally contribute to (although modest)
cognition and repair processes after injury. In EAE, NSCs have been shown
to exert their beneficial effects through (a) immunomodulation, (b)
cell replacement [153], (c) providing trophic support, and (d) stimulation
of endogenous remyelination [166—168]. Transplanted NPCs can stimulate
endogenous remyelination by inducing the proliferation and terminal
differentiation of host OPCs, likely via CXCL12/CXCR4 autocrine
signaling post inflammation [87]. NSCs inhibit MOG and MBP-specific
CDA4+ T cell activation, proliferation, and increased number of FOXP3+
Tregs cells [145, 150, 158, 160]. Intraspinally transplanted NPCs in
postnatal mice can differentiate into mature oligodendrocytes and
functionally incorporate throughout the demyelinated white matter tracts
in JHMV-infected demyelination model [97]. NSCs can transform
microglia from a harmful to a neuroprotective phenotype by significantly
increasing the expression of molecules associated with a neuroprotective
phenotype in adult mouse brain [119, 122—124]. Transplanted NSCs can
indirectly suppress astrocyte gliosis in EAE

neuroinflammatory demyelinating conditions. hNPCs
were differentiated from a human iPSC line via the
conventional embryoid body intermediate stage
(EB-NPCs). Intraspinal transplantation of EB-NPCs into
mice infected with the neurotropic JHMV resulted in de-
creased accumulation of CD4+ T cells in the central ner-
vous system that was concomitant with reduced demye-
lination at the site of injection. Dampened neuroinflam-
mation and remyelination was correlated with a transient
increase in Treg cells concentrated within the peripheral
lymphatics. However, compared to their earlier study,
pathological improvements were modest and did not re-
sult in significant clinical recovery. It was concluded that
the genetic signature of NPCs is critical to their effective-
ness in this model. More importantly, there is a need for
rigorous characterization and selection of therapeutically
valuable NSC types derived from human iPSC for the
treatment of MS [161].
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Trophic Support

MSC-NPCs are known to secrete trophic factors such as IGF-1,
VEGF, HGF, and SDF-1 in vitro [159]. In EAE mice that were
injected subcutaneously with NPCs prior to disease onset, the
NPCs accumulated in the draining lymph nodes which hindered
the activation of myeloid DCs to antigen-presenting cells (APCs)
by a BMP-4-dependent mechanism, that reduced the prolifera-
tion and activation of encephalitogenic T cells [150]. Mac-3-,
CD3-, and CD4-positive cells in the inflamed CNS were also
diminished [162]. In chronic EAE, SVZ-derived syngenic NSCs
promoted neuroprotection through secretion of immunomodula-
tory molecules and neurotrophic factors [163].

Intraventricular injections of newborn rat-derived NPCs into
adult rats with acute EAE were shown to ameliorate the clinical
severity and signs of EAE. Grafted NPCs migrated into the
inflamed white matter and attenuated brain inflammation by
inducing a reduction in perivascular infiltrates [164].
Syngeneic adult NSCs injected in the lateral ventricular were
capable of long-distance migration into demyelinating areas
inside an inflamed CNS in the EAE mice. Within these areas,
OPC:s of donor origin increased significantly and remyelinated
axons actively [153].

Cell Replacement

Intraspinally transplanted NPCs in postnatal mice can differ-
entiate into mature oligodendrocytes and functionally incor-
porate throughout the demyelinated white matter tracts in
JHM V-infected demyelination model [97]. NPC transplanta-
tion did not alter the accumulation of T cells or macrophages
within the CNS nor cytokine/chemokine gene expression in
the CNS. Presumably, the enhanced remyelination was not
dependent on bystander effects of grafted cells [98].
Transplantation of oligodendrocyte transcription factor 1
(Oligl) gene knockout NPCs (Oligl—/—) into JHMV-
infected mice resulted in similar NSC survival, proliferation,
and selective migration to areas of demyelination but exhibit-
ed poor remyelination. The majority of transplanted Olig1—/—
NPCs differentiated into astrocyte lineage. These suggested
that improved clinical symptoms might be associated with
remyelination by the donor NSCs via formation of
myelinating oligodendrocytes [165].

Stimulation of Endogenous Remyelination

Transplanted NPCs can stimulate endogenous remyelination
by inducing the proliferation and terminal differentiation of
host OPCs. NPCs that were transplanted into the lateral ven-
tricles of cuprizone-fed mice were shown to exert a trophic
effect on endogenous OPCs, and remyelination in the corpus
callosum was performed exclusively by resident OPCs which
failed to remyelinate in chronic MS [166]. Intrathecal

injection of MSCs-NPCs at the onset of the chronic phase of
disease increased the number of endogenous OPCs in EAE
mice and accelerated remyelination [167]. These effects were
manly exerted through the secretion of leukemia inhibitory
factor (LIF) that promotes survival, differentiation, and
remyelination capacity of endogenous OPCs and mature oli-
godendrocytes [168].

There are many differences in the inherent mechanisms
between human NSCs and other mammal species-derived
counterparts which should be worth of serious consideration
in the translation of experimental research to the clinical set-
ting. Intraspinal transplantation of human ES-NPCs in a viral
model of MS resulted in dramatic reduction in neuroinflam-
mation and sustained clinical recovery, although human NPCs
were rejected within a relatively short period. Unlike the
mouse NPCs, hNPCs had powerful immunomodulatory ef-
fects and induced an increased number of FOXP3+ Treg cells
within the spinal cords [160]. There are more challenges to be
tackled before NSC therapy in animal models can be safely
and successfully translated to human therapy for MS [169].

The absence of CD95L in human NPCs during inflamma-
tion is unlikely to result in the massive T cell apoptosis report-
ed in the mouse counterparts, whereas human NPCs have a
higher capacity of generating oligodendrocyte cells in inflam-
matory conditions which are compatible with a therapeutic
transplantation of NPCs for the treatment of MS [170].

Current Issues with NSC Transplantation: Effect
of the Inflammatory Environment on NSC Survival
and Differentiation

In MS and EAE, remyelination takes place within an inflam-
matory environment containing signals and chemicals that are
intrinsically hostile to the survival and differentiation of oli-
godendrocyte [171]. In the adult brain, endogenous NSCs that
are within the specialized germinal niches in the CNS are
thought to provide support and maintenance to the endoge-
nous OPCs. Direct physical contact and diffusible signals are
the two major mechanisms that are thought to regulate the
proliferation and differentiation of endogenous NSCs [172].
The in vivo differentiation of NSCs is highly dependent on the
environmental cues within the CNS [173]. Identifying the
mechanisms and signals responsible for blocking NSC differ-
entiation in the CNS in MS warrants further investigation
since manipulating these signals could promote oligodendro-
cyte production and remyelination, ultimately resulting in
more effective CNS repair. Inflammation is permissive for
the recruitment and migration of NSCs [74] while at the same
time inhibitory to their proliferation and differentiation. The
Taiep rat is a myelin mutant that shows many features of
chronic demyelination in MS. The induction of acute inflam-
mation in the nonremyelinating situation owing to a lack of
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the stimuli required to activate OPCs to generate
remyelinating oligodendrocytes results in remyelination
[174]. An anti-inflammatory environment seems to be a pre-
requisite for the differentiation of NSCs into myelinating
oligodendrocytes [175]. For example, the proinflammatory
cytokine TNF- reduces the proliferative ability of NSCs and
NPCs but induces their migration [173], whereas the
anti-inflammatory cytokine IL-10 maintained NSCs in the
adult brain of mice in undifferentiated yet highly proliferative
state [176]. IFN-y, an important cytokine for the clearance of
CNS infections, inhibits the proliferation of NSPCs in inflam-
matory conditions through dephosphorylation of the tumor
suppressor Retinoblastoma protein (pRb), which is dependent
on activation of signal transducers and activators of
transcription-1 (STAT1) signaling pathways [177]. From the
foregoing discussion, it is apparent that inflammation is a
double-edged sword as it could exert both detrimental and
beneficial effects. Therefore, it is of great importance to deter-
mine the correct time of intervention, and design more refined
therapies that aim at micromanipulating the inflammatory mi-
lieu in the CNS, and to offset the negative effects, and maxi-
mize the beneficial outcomes [178].

Differentiation arrest of transplanted and endogenous NPCs
is the result of the persistent inflammatory environment prevail-
ing in EAE and MS. Natural killer (NK) cells were in close
proximity to NSCs in SVZ during the chronic phase of MS.
NSCs produced interleukin-15 (IL-15) and sustain functionally
competent NK cells which limited the neurorepair capacity of
NSCs following brain inflammation [179]. At the acute phase
of EAE, only a small fraction of NPCs injected in the lateral
ventricle succeeded to differentiate, whereas at chronic phase,
most of them followed a differentiation process [180].

NPCs display CNS pathotropism upon transplantation
[181]. The clinical value of cell transplantation in a chronic,
multifocal disease like MS will depend on the ability of
transplanted cells to migrate to the multiple disease foci in
the brain. The inflammatory process may attract targeted mi-
gration of transplanted cells into the inflammatory lesions.
NSCs express CXCR4, the cognate receptor for SDF-1, and
this inflammatory chemoattractant SDF-1/CXCR4 signaling
is involved in the mobilization of NSCs toward the injury sites
[182] and their differentiation into OPCs and mature oligo-
dendrocytes upon focal transplantation into JHMV-infected
mice with established demyelination [183].

The cellular densities and proliferative signals are significantly
higher in MS SVZ as seen in postmortem MS brains [184].
Therefore, prolonged exposure of SVZ cells to repetitive inflam-
matory insults may not exhaust their proliferative potential.
However, their migratory capability and oligodendrogenesis re-
main limited, implying that strategies aiming at promoting these
phenomena need to be developed.

The progressive decline in the rate of proliferation of NSCs
with aging raises the questions of whether the precursor cells
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eventually become unresponsive to cellular niche cues, or
whether the cellular niche provides less positive stimuli for
evoking proliferation or provides more negative cues [185].
Persistent CNS inflammation significantly impairs prolifera-
tion of stem/precursor cells in the SVZ of EAE mice by hin-
dering their entry into the cell cycle by upregulation of cell
cycle inhibitors, while these SVZ-resident cells return to nor-
mal kinetics once the inflammation subsides [186].

The continual and dual role of the neuroinflammatory re-
sponse leaves it difficult to decipher upon a single modulatory
strategy. To maximize the therapeutic effect of cell-based ther-
apies, treatments must be specific to the injury and also be
personalized for each patient [187].Therefore, developing a
microenvironment conducive to the survival and proper dif-
ferentiation of NSCs and in vitro induction prior to transplan-
tation are of great importance for the application of NSCs to
treat MS.

Genetically Modified NSCs

Genetic manipulation of NSCs holds great promise for im-
proving the survivability of NSCs in vivo. Using various tools
such as in vitro gene transfer, NSCs can be been manipulated
for cell immortalization as well as control of proliferation.
Genetically modified NSCs that overexpress prosurvival sig-
naling molecules or paracrine factors, or critical glial cell lin-
eage determining transcription factors, may enhance the ther-
apeutic effects of NSC transplantation therapy. Trophic factors
that are responsible for enhancing the survival, proliferation,
and migration of transplanted NSCs provide neuroprotection,
reduce astrogliosis, promote remyelination, and modulate in-
flammation. Specifically, NT-3, glial cell line-derived neuro-
trophic factor (GDNF), BDNF, IL-10, LIF, and Olig2 have
been studied as potential candidates for genetic transduction
to strengthen the efficacy and differentiation potential of
NSCs into oligodendrocytes [188].

OPCs can be efficiently generated from human fetal NSCs
by concurrent or sequential in vitro exposure to combinations
of NT-3 and growth factors [189]. BM-NSCs transduced with
NT-3 attenuated CNS inflammation and neurological deficits
in active EAE significantly more than naive NSCs [190].
BM-NSCs exhibited efficient proliferation and differentiation
into oligodendrocytes and neurons, and nominal differentia-
tion into astrocytes, thus promoting remyelination and neuro-
nal repopulation and reducing the degree of astrogliosis [188].
NT-3-induced BM-NSCs also secrete the anti-inflammatory
cytokine IL-10, thus modulating a hostile host environment
into a microenvironment supportive of remyelination [190].

GDNF gene-modified NSCs transplanted in the lateral ven-
tricle of EAE rats significantly promoted functional recovery,
profoundly suppressed brain inflammation, differentiated into
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more neurons and oligodendrocytes, improved density of my-
elin, and reduced the clinical signs [191].

BDNF has been shown to play a key role in axon protection
and disease attenuation during chronic EAE in mice [192].
BDNF was found to be elevated in the CSF of MS patients
compared to control individuals, and CSF derived from both
SPMS and PPMS patients significantly stimulated human
embryonic-derived NPCs to differentiate into more oligodendro-
cytes in vitro [193]. Transplantation of human BDNF-NSCs
significantly improved neurological motor function following
traumatic brain injury (TBI) [194] and in middle cerebral artery
occlusion model (MCAo0) [195]. Human BM-NSCs and nano-
particle carriers encapsulated with BDNF and integrated into the
biodegradable injectable 3D scaffolds increased secretion of LIF
and chemokines by NSCs in the CNS and showed a sustained
release of bioactive BDNF and enhanced their tissue repair [196].

Recent research demonstrates that adult mice CNS-derived
NSCs engineered to secrete the anti-inflammatory cytokine
IL-10 (IL-10-NSCs) exhibited enhanced peripheral immuno-
suppressive effects in EAE mice compared to naive NSCs
[197]. IL-10-NSCs also promoted apoptosis of infiltrating T
cells in the CNS through a Fas/FasL pathway and converted a
hostile environment to a relatively more supportive of
remyelination. Additionally, transplanted IL-10-NSCs differ-
entiated primarily into oligodendrocytes at the expense of as-
trocyte generation. This was associated with significant atten-
uation of clinical signs and pathology in acute EAE compared
to mice treated with control NSCs [198].

IGF-1 is critical for oligodendrocyte differentiation, survival,
and myelination in neonatal and adult mice brain. IGF-1
produced by microglia and reactive astrocytes display protec-
tive effects on oligodendrocytes following cuprizone-induced
toxic demyelination [199]. Transgenic mice that overexpressed
IGF-1 demonstrated significantly less apoptosis of mature oli-
godendrocytes and exhibited rapid remyelination after
cuprizone-induced demyelination [200, 201]. The
IGF-1-overexpressing neonatal rats spinal cord-derived NSCs
exhibited higher viability and efficiently differentiated into oli-
godendrocytes in a mouse spinal cord injury model [202]. The
effects were shown to be mediated by extracellular
signal-regulated kinase 1 and 2 (ERK1/2) pathway.

NSCs normally express low levels of indoleamine 2,3-
dioxygenase (IDO), a tryptophan-metabolizing enzyme which
has potent immune suppressive activities. In an EAE animal
model, systemic injections of NSCs expressing IDO resulted
in significant local immune suppression in the cervical lymph
nodes and CNS by recruiting regulatory T lymphocytes and
reducing the number of activated T lymphocytes during the
inflammation in the CNS which induced significantly fewer
clinical symptoms and faster recovery [203].

Genetically altered NSCs that expressed the critical ol-
igodendrocyte lineage transcription factor Olig2 promoted
the functional recovery by contributing to remyelination

and completely abrogating relapses when administered
early after onset of EAE [204]. Most intraventricularly
injected mice Olig2-NSCs differentiated into OPCs, in
contrast to the control NSCs which largely remained un-
differentiated [199]. Similarly, overexpression of Olig2 in
mice SVZ progenitor cells increased the generation of
OPCs which migrated and differentiated into mature oli-
godendrocytes after transplantation [205]. NSCs within
the DG do not spontaneously differentiate into oligoden-
drocytes, and endogenous remyelination is limited after
injury [206, 207]. However, retroviral mediated expres-
sion of the transcription factor Ascll- into the DG of adult
mice converted them into mature oligodendrocytes and
enhanced their myelination in the DG in diphtheria-toxin
(DT)-inducible, a genetic model for demyelination [207].

The chemokine (C-C motif) receptor 5 (CCRS) is a recep-
tor for chemokines CCL3, CCL4, and CCLS5, that are abun-
dantly produced in the CNS-inflamed foci of MS/EAE. CCRS
overexpressing mouse BM-derived NSCs (CCR5-NSCs)
were rapidly attracted toward inflamed foci in active EAE
(in mice) in larger numbers and more effectively suppressed
CNS inflammatory infiltration, thus reducing the extent of
early myelin/neuron damage by creating a less hostile envi-
ronment for host remyelinating cells [205].

NSCs could also be engineered to produce a “cocktail” of
potential therapeutic molecules effectively targeting the major
mechanisms underlying the chronicity of EAE and MS, such
as persistent inflammation, deficiency of trophic support for
differentiation, and accumulation of neuroregeneration inhib-
itors. Soluble LINGO-1 protein (LINGO-1-Fc), an antagonist
of LINGO-1, is a key part of the common receptor complex
which blocks the harmful effect of neuroregeneration inhibi-
tors on OPCs/oligodendrocytes and attenuates myelin inhibi-
tion [208]. At the chronic stage of EAE, NSCs engineered to
produce IL-10 (for immunosuppression), NT-3 (for
neurotrophy), and LINGO-1-Fc (for inhibition of negative
effects) migrated into the inflamed foci and induced M2
macrophages/microglia in CNS, thus reducing astrogliosis
and promoting endogenous oligodendrocyte/neuron differen-
tiation which represents a novel and potentially effective ther-
apy for the chronic stage of MS [209].

Immortalized human NSC cell lines can be generated
by a retroviral vector encoded with a v-myc oncogene.
These immortalized NSCs exhibited potent migration
capability and differentiation potential into neurons and
glial cells in animal models of human neurological dis-
orders. Multipotent neural cell lines can engraft and
participate in the development of mouse cerebellum
[210]. The continuously multiplying cell may exist as
a limitless supply of neurons and oligodendrocytes for
the treatment for MS [211]. Although Fas-deficient
NPCs had significantly higher survival and increased
differentiation capabilities compared to wild-type NPCs
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in vitro, this did not translate to better terminal differ-
entiation and posttransplantation survival in vivo. The
environmental factors in the CNS prevented the differ-
entiation of grafted NPCs, regardless of their inherent
differentiation capacities ex vivo [212].

Genetically engineered NSC can boost and influence
multiple gene networks and interacts with endogenous
neural and immune cells to improve cognitive and mo-
tor behavior. Expression of specific, transcription fac-
tors, or ligands or receptors in NSC can induce relative-
ly more significant changes in synaptic plasticity and
mitochondrial and lysosomal function and affect both
innate and adaptive immunity resulting in better func-
tional recovery. Alternatively, they can be generated as
more fate restrictive, to direct them to generate more
glial cells for remyelination.

Clinical Research on NSC-Based Cell Therapies

Safety is the primary concern of stem cell therapies; clinical
researches on NSCs in MS have not been reported to date. In
an early study, 15 patients with amyotrophic lateral sclerosis
(ALS) receiving an intraspinal transplantation of escalating
doses of NSCs safely tolerated the cells at high doses [213].
A recent pilot study investigated the safety and tolerability of
autologous MSC-NPCs treatment for MS. Six patients with
progressive MS who were refractory to conventional
treatments were treated with intrathecal injections of
MSC-NPCs, and there were no serious adverse events in the
following 7 years and some patients showed a measurable
clinical improvement [214]. The same authors reported a
phase 1 safety trial involving 20 MS patients with established
disability, in which MSC-NPs administered intrathecally in
three doses of up to 10 million cells per injection, spaced three
months apart, resulted in improved Expanded Disability
Status Scale (EDSS), improved 9-Hole Peg Test (9-HPT),
and better bladder function clinically (reported as abstract
and oral presentation at the 68th Annual Meeting of the
American Academy of Neurology). A phase I, open-label,
single-site, safety study of human spinal cord-derived neural
stem cell (supplied by Stem Cell Incorporation) transplanta-
tion for the treatment of chronic spinal cord injury has been
initiated in four spinal cord injury (SCI) patients in 2016,
which was well tolerated. Data is still being collected. A phase
I safety study was conducted by Dr. David Rowitch’s group
for testing human fetal CNS-derived neural stem cell trans-
plantation in four Pelizacus-Merzbacher disease (PMD) sub-
jects. The cells were fairly tolerated with no serious or fatal
outcomes. A fraction of the patients had a modest but clear
gain in motor functions, which are not seen for such a pro-
gressive and severe neurodegenerative disease [215]. Based
on increasing evidence demonstrating the robust regenerative
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potential of human NSCs, this mode of cell therapy could
provide a feasible clinical intervention in stopping neurode-
generation. In theory, a combination therapy with existing
immunomodulatory therapies may be beneficial, i.e., simulta-
neously replacing cells, regulating autoimmunity, and promot-
ing regeneration in MS patients.

Conclusions

The present review delineates several aspects of the MS
pathology, endogenous remyelination, and results of NSC
transplantation in animal models that must be taken into con-
sideration in the development of an NSC-based cell therapy
for MS. We briefly summarized the current understanding of
MS pathogenesis, namely the different types of pathological
lesions in the CNS, immune cell-mediated inflammatory de-
myelination, apoptosis of oligodendrocytes, axonal degenera-
tion, and oxidative stress. The current consensus regarding an
effective therapeutic regimen was that the treatment should
contain a combination of anti-inflammatory, regenerative,
and neuroprotective strategies. The success of NSC transplan-
tation primarily depends on the cell fate precommitment of
transplanted NSCs into OPCs, while at the same time the
endogenous differentiation of OPCs needs to be boosted in
chronic stages of the disease. Preclinical data suggests that
NSCs and NPCs may be competent in simultaneously
exerting an immunomodulatory action as well as activation
of the endogenous NSC pool. Modulation of microglial func-
tion in the CNS is an important target for NSCs. However, the
activity of microglia in a different stage of MS is different;
therefore, optimum timing of interventions needs to be care-
fully explored. The extent of cell replacement is currently not
clear and needs further exploration. However, several com-
plex issues need to be addressed. First, large-scale generation
of NSCs or NPCs from human iPSCs or by direct conversion
of somatic cells into iNSCs must be developed. There is also a
need for rigorous characterization and selection of therapeuti-
cally valuable NSC types derived from human iPSCs. Lastly,
the ideal route and time of NSC injection are of great impor-
tance since the fate of transplanted cells, therapeutic mecha-
nisms, and efficacy in vivo are critically dependent on these
factors. Genetically modified NSCs expressing trophic or sur-
vival factors could improve the microenvironments, enhanc-
ing the survival and appropriate differentiation of NSCs. The
behavior and efficacy of exogenous NSCs in different types of
animal models need comprehensive analysis to deduce the
real features of NSCs before translation into clinical trials.
Assisting the endogenous stem cells to overcome the obstacles
of proliferation, migration, and differentiation in the lesions is
another interesting approach, and humanized mice models are
needed to simulate the scenarios.
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