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Abstract A matricellular protein tenascin-C (TNC) has been
suggested to play a role in the pathogenesis of cerebral vaso-
spasm after subarachnoid hemorrhage (SAH), but the direct
evidence remains lacking. In this study, we examined effects
of TNC knockout (TNKO) on cerebral vasospasm after ex-
perimental SAH in mice. C57BL/6 wild-type (WT) or TNKO
mice were subjected to SAH by endovascular puncture. Ten
WT and ten TNKO mice were randomized to WT sham
(n = 4), TNKO sham (n = 4), WT SAH (n = 6), and TNKO
SAH (n = 6) groups. In addition to neurobehavioral impair-
ments and severity of SAH, cerebral vasospasm was assessed
by morphometric measurements of the left internal carotid
artery (ICA). Infiltration of inflammatory cells in the sub-
arachnoid periarterial space was also assessed, and expres-
sions of TNC and mitogen-activated protein kinases
(MAPKs) in the ICAwere immunohistochemically evaluated
at 24 h post-surgery. TNC was induced in the smooth muscle
cell layers and the adventitia in the spastic ICAs as well as the
periarterial inflammatory cells in WT SAH mice. Compared
with WT SAH mice, TNKO SAH mice showed better neuro-
logical scores and less severe cerebral vasospasm, as well as
fewer inflammatory cell infiltration in the periarterial space.
Post-SAH activation of MAPKs in the smooth muscle cell
layers of the ICAs was also prevented in TNKO SAH mice.

The findings in the present study suggest that TNC causes the
development of cerebral vasospasm via pro-inflammatory ef-
fects and activation of MAPKs.
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Introduction

Cerebral vasospasm is one of the important treatable causes of
delayed cerebral ischemia and poor outcome after aneurysmal
subarachnoid hemorrhage (SAH) [1, 2]. Despite numerous
preclinical and clinical studies, however, the pathogenesis of
cerebral vasospasm remains poorly understood.

Recently, we reported that tenascin-C (TNC), a matricellular
protein, was induced in cerebrospinal fluid and serum after
aneurysmal SAH associated with cerebral vasospasm [3, 4].
Furthermore, our experimental studies showed that TNC was
induced in the spastic cerebral arteries [3, 5] and that imatinib
mesylate, a tyrosine kinase inhibitor of platelet-derived growth
factor receptor, prevented cerebral vasospasm in rat SAH
models associated with downregulation of TNC and inactiva-
tion of mitogen-activated protein kinases (MAPKs) [5]. In oth-
er experimental studies, an intracisternal injection of TNC ac-
tivatedMAPKs and caused prolonged cerebral arterial constric-
tion via Toll-like receptor 4 and epidermal growth factor recep-
tor in healthy rats [6–8]. TNC is thus considered to play an
important role in the pathogenesis of cerebral vasospasm after
SAH, but the direct evidence has not been provided thus far. In
the present study, in order to obtain the direct evidence linking
TNC with cerebral vasospasm, we evaluated effects of TNC
knockout (TNKO) on cerebral vasospasm in an established
endovascular perforation model of SAH in mice.
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Materials and Methods

Animals

All procedures were approved by the Animal Ethics Review
Committee of Mie University and were carried out in accor-
dance with the institution’s Guidelines for Animal
Experiments. The original TNKO mouse was backcrossed
with C57BL/6 inbred mice for more than ten generations
[9]. C57BL/6 wild-type (WT) littermates were used as con-
trols. Mice were maintained on a constant 12-h light/12-h dark
cycle in a temperature- and humidity-controlled room and
were given ad libitum access to food and water.

Study Protocol

To study effects of TNKO on cerebral vasospasm after SAH,
ten WT and ten TNKO mice (female; weight, 20–25 g) were
randomly divided intoWTsham (n = 4), TNKO sham (n = 4),
WT SAH (n = 6), and TNKO SAH (n = 6) groups. Mice
underwent endovascular perforation SAH or sham operation.
After evaluating neuroscore at 24 h post-surgery, mice were
sacrificed, and high-resolution pictures of the base of the brain

depicting the circle ofWillis and basilar arteries were taken for
assessing the severity of SAH. Then, cerebral vasospasm and
immunohistochemical findings were evaluated at 24 h post-
surgery (Fig. 1a).

Mouse SAH Model

The endovascular perforation model of SAHwas produced by
a modification of the method previously described [10–12].
Each animal was anesthetized with an intraperitoneal injection
of tribromoethanol (250 μg/g body weight). A sharpened 5-0
monofilament nylon suture was advanced rostrally into the left
internal carotid artery (ICA) from the external carotid artery
stump to perforate the bifurcation of the left anterior and mid-
dle cerebral arteries. In the sham surgery, the filament was
advanced 5 mm through the ICA without perforating the ar-
tery. Blood pressure and heart rate were measured noninva-
sively from the tail.

Neurobehavioral Test

Neurological impairments were blindly evaluated using two
methods as previously described [10–12]. Neurological scores

Fig. 1 Experimental designs (a). Effects of tenascin-C knockout (TNKO)
on the severity of subarachnoid hemorrhage (SAH) (b), neurological
score (c), and beam balance test (d) at 24 h after SAH. Experiment is

designed to examine effects of TNKO on cerebral vasospasm following
SAH. Data are expressed as median ± 25th–75th percentiles. Kruskal-
Wallis tests. WTwild type
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(3–18) were assessed by summing six test scores (spontaneous
activity, spontaneous movement of four limbs, forepaw
outstretching, climbing, body proprioception, and response
to whisker stimulation). A beam balance test investigated the
animal’s ability to walk on a narrow wooden beam for 60 s:
four points, walking ≥20 cm; three points, walking ≥10 cm but
<20 cm; two points, walking ≥10 cm but falling; one point,
walking <10 cm; and zero points, falling with walking
<10 cm. The mean score of three consecutive trials in a 5-
min interval was calculated.

Severity of SAH

The grading system for evaluating SAH severity in
endovascular perforation rodent models showed a strong cor-
relation with neurological status and degree of cerebral vaso-
spasm [13]. The severity of SAH was blindly assessed using
the high-resolution photographs as previously described
[10–12]. The basal cistern was divided into six segments,
and each segment was allotted a grade from 0 to 3 depending
on the amount of subarachnoid blood clot in the segment:
grade 0, no subarachnoid blood; grade 1, minimal subarach-
noid blood; grade 2, moderate blood clot with recognizable
arteries; and grade 3, blood clot obliterating all arteries within
the segment. The animals received a total score ranging from 0
to 18 after adding the scores from all six segments.

Histological Preparation

At 24 h post-surgery, mice were anesthetized with an intraper-
itoneal injection of tribromoethanol (250 μg/g body weight)
and euthanized in preparation for perfusion and fixation. The
ascending aorta was cannulated with a blunted 18-gauge nee-
dle attached to flexible plastic tubing, which was connected to
a pressure transducer (Nihon Kohden Co., Tokyo, Japan) and
a syringe on an automatic infusion pump (KD Scientific Inc.,
Holliston,MA). After an incision was made in the right atrium
to allow for the outflow of perfusion solutions, 50 mL of
phosphate-buffered saline (PBS) and 15 min of 10% neutral
buffered formalin were infused through the closed circuit at
60–80 mmHg. The brain was harvested and high-resolution
pictures of the base of the brain depicting the circle of Willis
and basilar arteries were taken for assessing the severity of
SAH. Then, the brain was stored in 10% neutral buffered
formalin for approximately 12 h at 4 °C for fixation.
Cerebrum with the ICA was removed and then embedded in
paraffin. The tissue was coronally cut at 1 mm dorsal from
bifurcation of the left anterior and middle cerebral arteries, and
transverse sections (4 μm thick) of the left intracranial ICA
were obtained with a microtome. Tissue slices were mounted
on glass slides for hematoxylin and eosin (HE) or immuno-
histochemical stainings [6–8].

HE Staining: Vasospasm Measurement and Counting
of Inflammatory Cells in the Subarachnoid Periarterial
Space

The sections for HE staining were stained with hematoxylin for
10 min and eosin for 10 min. Cross sections of the left intracra-
nial ICAwere digitized using a video-assistedmicroscope (×400;
Olympus Co., Tokyo, Japan). The circumferences and the thick-
ness of the left ICA were measured using ImageJ software
(National Institutes of Health, Bethesda, MD). The circumfer-
ence of the left ICA (C = 2πr) was used to calculate the cross-
sectional area (area =C2/4π) of the artery [14]. Artery wall thick-
ness was measured at four equally spaced points along the artery
circumference and averaged to obtain artery thickness [15].

Inflammatory cells in the subarachnoid periarterial space
per high-powered field were detected and the number was
counted. All measurements were performed by an experi-
enced researcher who was unaware of the treatment groups.

Immunohistochemical Staining

Immunohistochemical staining on formalin-fixed paraffin-
embedded sections was performed as described previously
[6–8]. After dewaxing and rehydration, the sections were
treated with 3% hydrogen peroxide for 10 min to block en-
dogenous peroxidase activity, placed in 1 mmol ethylenedi-
aminetetraacetic acid (pH 8.0), and heated in an autoclave at
80 °C for 20 min. The sections were then blocked with 5%
goat or horse serum and incubated overnight at 4 °C with the
rabbit polyclonal anti-TNC antibody (1 μg/mL), rabbit poly-
clonal anti-phosphorylated extracellular signal-regulated ki-
nase (ERK) 1/2, mouse monoclonal anti-phosphorylated c-
Jun N-terminal kinase (JNK), and mouse monoclonal anti-
phosphorylated p38 (1:200, Santa Cruz Biotechnology,
Santa Cruz, CA) antibodies. They were subsequently incubat-
ed with biotinylated anti-rabbit or anti-mouse immunoglobu-
lin (Vector Laboratories, Burlingame, CA) for 30min and then
with an avidin-biotin complex for 30 min at room tempera-
ture. Color reactions were developed in diaminobenzidine/
hydrogen peroxide solution, and the sections were counter-
stained with hematoxylin solution for light microscopic exam-
ination. Negative controls consisted of serial sections incubat-
ed with buffer alone instead of the primary antibodies.

Statistics

Neurological, beam balance scores, and SAH grade were
expressed as median ± 25th–75th percentiles and were ana-
lyzed with Mann-Whitney U tests or Kruskal-Wallis tests,
followed by Steel-Dwass multiple comparisons. Other values
were expressed as mean ± standard deviation, and one-way
analysis of variance (ANOVA) with Tukey-Kramer post hoc
tests were used. P < 0.05 was considered significant.
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Results

TNKO Prevents Cerebral Vasospasm After SAH

Comparisons of physiological parameters revealed no signif-
icant differences among the groups (data not shown). The
severity of SAH grading score was similar between the WT
and TNKO groups at 24 h post-surgery (Fig. 1b). All mice
exhibited no neurological deficits before surgery. In the sham

group, neurological findings, and the lumen cross-sectional
area and the wall thickness of the left intracranial ICA showed
no difference between the WT and TNKO mice. In the WT
mice, SAH caused significant neurological impairments, sig-
nificantly reduced the lumen cross-sectional area, and in-
creased the wall thickness of the left ICA associated with an
increase in inflammatory cells in the subarachnoid periarterial
space (Figs. 1c, d, 2, and 3). On the other hand, TNKO SAH
mice showed significantly better neurological findings and

Fig. 2 Effects of tenascin-C
knockout (TNKO) on vasospasm
of the left internal carotid artery at
24 h after subarachnoid
hemorrhage (SAH).
Representative hematoxylin-
eosin staining (a), % lumen cross-
sectional area (b) and wall thick-
ness (c) of the left internal carotid
artery versus that of the wild-type
(WT) sham mice. Scale
bar = 50 μm. Data are expressed
as mean ± standard deviation.
ANOVA
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less severe cerebral vasospasm associated with fewer inflam-
matory cells in the periarterial space compared to the WT
SAH mice (Figs. 1c, d, 2, and 3).

TNKO Blocks Activation of MAPKs in the Left ICA
after SAH

Immunohistochemical stainings showed that TNCwas mainly
induced in the adventitia in the spastic ICA in the WT SAH

mice in addition to the smooth muscle cell layers (Fig. 4).
TNC was also intensively expressed in the periarterial inflam-
matory cells in the WT SAH mice (Fig. 5). Immunostainings
of phosphorylated ERK1/2, JNK, and p38 were very limited
in the sham group. In the WT SAH mice, strong
immunolabeling of phosphorylated ERK1/2, JNK, and p38
was observed in the smooth muscle cells in the spastic ICA,
and these post-SAH immunoreactivities were blocked by
TNKO (Fig. 4).

Discussion

In this study, we investigated the role of TNC in cerebral
vasospasm after SAH using TNKO mice. The findings indi-
cated that deficiency of TNC resulted in better neurological
function, less severe cerebral vasospasm, and less infiltration
of inflammatory cells into the periarterial space after SAH.

TNC is an inducible, nonstructural, and secreted extracel-
lular matrix protein categorized as a matricellular protein
[16–18]. TNC exerts diverse functions through direct binding
to cell surface receptors, other matrix proteins, and soluble
extracellular factors such as growth factors and cytokines
[17]. As with other matricellular protein knockout mice,
TNKO mice were initially reported to undergo normal devel-
opment and have a normal life span and fertility without dis-
tinct phenotypes [9, 19, 20]. However, many studies using
TNKO mice have shown differences in specific cell behavior
and responses in various diseases and reported that TNC may
play an important role in the development of the diseases [10,
21–24].

Our previous studies suggested the possible link between
TNC and cerebral vasospasm [3–5, 25–27]. In clinical re-
searches, TNC levels in serum and cerebrospinal fluid in pa-
tients with cerebral vasospasm were significantly higher than
those without vasospasm after aneurysmal SAH [3, 4, 28]. In
experimental SAH produced by a single blood injection into

Fig. 4 Effects of tenascin-C
(TNC) knockout (TNKO) on
immunohistochemical stainings
of TNC, phosphorylated
extracellular signal-regulated
kinase1/2 (p-ERK), c-Jun N-
terminal kinase (p-JNK), and p38
(p-p38) in the left internal carotid
artery at 24 h after subarachnoid
hemorrhage (SAH). Scale
bar = 10 μm. WTwild type.
Immunoreactive smooth muscle
cell (arrow). Immunoreactive
adventitial cell (arrowhead)

Fig. 3 Effects of tenascin-C knockout (TNKO) on inflammatory cell
infiltration in the subarachnoid space around the left internal carotid
artery at 24 h after subarachnoid hemorrhage (SAH). Representative
hematoxylin-eosin staining (a). Inflammatory cell counting (b). Scale
bar = 20 μm. Data are expressed as mean ± standard deviation.
ANOVA. ND no detection, WTwild type
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the cisterna magna and a filament perforation to the bifurca-
tion of the anterior and middle cerebral arteries in rats, TNC
immunoreactivity was induced in cerebral artery walls with
the development of vasospasm and decreased as vasospasm
improved [3, 5]. Furthermore, imatinib mesylate, a tyrosine
kinase inhibitor of platelet-derived growth factor receptor,
prevented cerebral vasospasm in a rat SAH model associated
with the reduction of TNC and inactivation of MAPKs [5]. In
other experimental studies, an intracisternal injection of TNC
caused prolonged cerebral arterial constriction via Toll-like
receptor 4 and epidermal growth factor receptor, and associ-
ated with activation of MAPKs in healthy rats [6–8].
However, this study first provided the direct evidence show-
ing that TNC causes the development of cerebral vasospasm
via activation of MAPKs as well as inflammatory cell infiltra-
tion into the periarterial space.

Recent investigations suggest that other factors such as
early brain injury in addition to cerebral vasospasm also cause
delayed cerebral ischemia [29], although it is well-known that
delayed cerebral ischemia more frequently occurs associated
with severe vasospasm [30]. As with this study, previous stud-
ies showed that blockage of TNC had no effects on SAH
severity in the endovascular puncture model of rats or mice
[5, 10, 12]. However, TNKO [10] as well as pharmacological
blockage of TNC [12] prevented early brain injury in terms of
blood-brain barrier disruption. Thus, neurological improve-
ment in this study may have been brought about by TNKO’s
preventive effects on cerebral vasospasm and/or early brain
injury.

Findings from both clinical and animal studies have indi-
cated that inflammatory reactions may contribute to the devel-
opment of cerebral vasospasm after SAH [31–33]. Human
studies have repeatedly shown elevated inflammatory media-
tors such as endothelin-1 [34], tumor necrosis factor-alpha
[35], and interleukins-1 and -6 [36] in cerebrospinal fluid after
SAH. In experiment studies, several pro-inflammatory agents
such as talc (crystallized hydrous magnesium sulfate) [37],
polystyrene latex beads [38], and lipopolysaccharide [39]
were administered intracisternally to show that prolonged va-
soconstriction resembling cerebral vasospasm occurred in the
absence of blood but associated with inflammation. Under the
state of SAH, blood clots in the subarachnoid space can

activate inflammatory responses through a complex series of
cellular and molecular events as follows: (1) leukocyte recruit-
ment, infiltration, and activation; (2) cytokine production; (3)
immunoglobulin and complement activation; and (4) tran-
scription factor activation [40]. TNC is highly expressed dur-
ing embryonic development, but the distribution of TNC is
typically limited in adult tissues. However, TNC expression is
induced rapidly at sites of inflammation, apparently regardless
of the location or type of causative insult, by various pro- and
anti-inflammatory cytokines, hypoxia, reactive oxygen spe-
cies, and mechanical stress [17]. Depending on the patholog-
ical conditions, TNC modulates activation, adhesion, rolling,
and infiltration of inflammatory cells via various signaling
pathways, resulting in promotion or inhibition of inflammato-
ry reaction [17]. This study first revealed that TNC promoted
inflammation at least in terms of inflammatory cell infiltration
in the periarterial space after SAH, which might contribute to
the development of vasospasm as above. On the other hand,
SAH may induce matrix metalloproteinases and serine prote-
ases, which can cleave TNC [10, 17]. Cleavage of TNC may
release cryptic sites that create adhesive sites for cell surface
receptors, activating different signaling and exerting diverse
cell responses via the receptors [17]. Although the full extent
of the functions is not currently clear, TNC may activate
MAPKs and cause cerebral vasospasm in the text of SAH
[5]. As TNC may have the positive feedback mechanisms on
upregulation of TNC itself in an acute phase of SAH [27], the
vicious cycle may lead to more activation of inflammatory
reactions and MAPKs, both of which cause the development
or aggravation of cerebral vasospasm. Thus, this study
showed that TNC is a promising therapeutic target against
cerebral vasospasm and warrants further studies.

Conclusions

We demonstrated that TNKO prevented post-SAH cerebral
vasospasm development via suppressing inflammation and
inactivating MAPKs. Targeted suppression of TNC expres-
sion may provide a novel therapeutic approach against post-
SAH vasospasm.
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