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Abstract Inflammation is decisive in zinc (Zn)-induced
nigrostriatal dopaminergic neurodegeneration; however, the
contribution of cyclooxygenase-2 (COX-2) is not yet known.
The present study aimed to explore the role of COX-2 in Zn-
induced Parkinsonism and its association with the microglial
activation. Male Wistar rats were treated intraperitoneally
(i.p.) with Zn as zinc sulphate (20 mg/kg) along with respec-
tive controls for 2–12 weeks. In a few sets, animals were also
treated with/without celecoxcib (CXB, 20 mg/kg, i.p.), a se-
lective COX-2 inhibitor. Indexes of the nigrostriatal neurode-
generation, oxidative stress, inflammation and apoptosis were
measured in the animals/nigrostriatal tissue. Zn induced time-
dependent increase in the expression of COX-2 while COX-1
expression was unaltered. Zn reduced the neurobehavioral
activities, striatal dopamine content, tyrosine hydroxylase
(TH) expression and number of dopaminergic neurons.
While oxidative stress; microglial activation; expression of
microglial cell surface marker-CD11b; cytochrome c release;
caspase-9/3 activation; level of pro-inflammatory cytokines,
such as TNF-α, IL-1β and IL-6 and Bcl-2-associated protein

x (Bax) translocation from the cytosol to mitochondria were
induced in the Zn-treated group, expression of B-cell lympho-
ma-2 (Bcl-2) was found to be reduced. CXB significantly
attenuated Zn-induced increase in COX-2 expression and re-
stored TH-expression, dopamine content, level of inflamma-
tory cytokines and neurobehavioral indexes towards normal-
cy. Moreover, CXB also attenuated Zn-induced increase in
microglial activation, oxidative stress and apoptotic markers
towards normal levels. Results of the study thus demonstrate
that COX-2 induces microglial activation that provokes the
release of inflammatory mediators, which in turn augments
oxidative stress and intrinsic apoptosis leading to dopaminer-
gic neurodegeneration in Zn-induced Parkinsonism.
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Introduction

Parkinson’s disease (PD) is a mysterious, chronic and progres-
sive neurodegenerative disorder of the nigrostriatal dopami-
nergic pathway leading to motor disability and characterized
by anatomical hallmarks like striatal dopamine depletion and
Lewy body formation [1–3]. Despite extensive strategies
adopted to explore the molecular explanations of the disease,
aetiology remains elusive and ageing, genetic predisposition
and environmental factors have been projected as the major
perils [4]. Exposure to pesticides and heavy metals has been
found to exhibit considerable correlation with high disease
risk [5–7]. Presence of elevated zinc (Zn) content in the
substantia nigra of PD patients [8] and occurrence of selective
nigrostriatal dopaminergic neurodegeneration leading to PD
phenotype in the experimental rodents following systemic Zn
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exposure have shown the magnitude of excessive Zn exposure
as a probable risk factor [9–13].

The dynamic contribution of inflammation is recognized
owing to the ability of non-steroidal anti-inflammatory drugs
(NSAIDs) to halt/protect disease progression [14–18].
Appearance of activated microglial cells in close proximity
to the selectively dying dopaminergic neurons in the
nigrostriatal pathway of patients reveals the key roles of in-
flammation and microgliosis in PD pathogenesis [19, 20].
Moreover, microglial activation consequently augments the
expression of pro-inflammatory cytokines, such as tumour
necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), in the
cerebrospinal fluid and substantia nigra of patients substanti-
ating the role of inflammation in PD pathogenesis [21–23].
Pro-inflammatory cytokines in turn activate the expression of
other inflammation markers, such as nuclear factor-kappa B
(NF-κB) and cyclooxygenase (COX)-2, which could facilitate
neurodegeneration in a straight line or indirectly [24, 25].
Besides, anti-inflammatory agents are not only found to pro-
tect from inflammation but also from the microglial activation
in sporadic and toxin-induced PD validating the role of in-
flammation in PD pathogenesis [12–14, 26].

Both constitutive and inducible forms of COX are known
to catalyse prostanoid biosynthesis from the arachidonic acid.
While constitutive form of COX (COX-1) is expressed virtu-
ally in all cell types and plays an imperative role in typical
physiological processes, the inducible form of COX (COX-2)
largely contributes to acute and chronic inflammation that
makes it a key target in inflammation-mediated neurodegen-
eration [27]. Several studies performed employing rodent
models and PD patients have suggested a vital role of COX-
2 in PD pathogenesis. An increased expression of COX-2 is
observed during disease progression while reduced expression
and lesser neurodegeneration are detected when selective
COX-2 inhibitors are administered in the patients or rodent
models [25, 27–31]. Additionally, COX-2-deficient mice are
also shown to be resistant against MPTP-induced dopaminer-
gic neuronal death [25, 32]. While oxidative stress, microglial
activation and inflammatory cytokines are found to participate
[11, 12], the role of COX-2 in Zn-induced nigrostriatal dopa-
minergic neurodegeneration is not yet investigated. Therefore,
the present study aimed to explore the role of COX-2 and its
subsequent link with microglial activation in Zn-induced
nigrostriatal dopaminergic neurodegeneration.

Materials and Methods

Materials

Ethanol, Folin Ciocalteau reagent, nitric acid, hydrogen perox-
ide, methanol, n-butanol, potassium dichromate, sodium chlo-
ride, sodium hydroxide and sucrose were supplied by Merck

(Darmstadt, Germany). Agarose, acrylamide, bisacrylamide,
mouse monoclonal anti-TNF-α antibody, biotinylated anti-
mouse secondary antibody, bovine serum albumin (BSA),
bromophenol blue, β-mercaptoethanol, magnesium chloride,
dithiothreitol, ethylene diamine tetraacetic acid, ethylene glycol
tetraacetic acid, ethidium bromide (EtBr), 2-hydroxyethyl-1-
piperazine ethane sulfonic acid (HEPES), paraformaldehyde,
phenyl methyl sulfonyl fluoride, protease inhibitor cocktail, po-
tassium hydroxide, sodium deoxycholate, sodium dodecyl sul-
phate, 3,3′-diaminobenzidine tetrahydrochloride (DAB) sys-
tem, sodium orthovanadate, sodium pyrophosphate, thiobarbi-
turic acid (TBA), Tris-base, triton X-100, Tween-20, xylene
cyanol and zinc sulphate (ZnSO4) were obtained from Sigma-
Aldrich (St. Louis, MO, USA). Acetic acid, cytochrome c (cyt
c; oxidized), disodium hydrogen phosphate, dibutyl phthalate
xylene, heptane sulfonic acid, nicotinamide adenine dinucleo-
tide reduced form (NADH), nitroblue tetrazolium (NBT), phen-
azine methosulfate, potassium chloride, potassium dihydrogen
phosphate, sodium dihydrogen phosphate, sodium fluoride and
xylene were purchased from Sisco Research Laboratories
(SRL, Mumbai, India). cDNA synthesis kit, dNTPs, Taq buffer
and Taq DNA polymerase were procured fromMBI Fermentas
(Amherst, NY, USA). Gene-specific primers were obtained
from Integrated DNA Technologies Ltd., Singapore. While
Neg-50 was purchased from Richard Allen Scientific
(Kalamazoo, MI), perchloric acid was supplied by Ranbaxy
Private Limited (New Delhi , India) . Santa Cruz
Biotechnology (Santa Cruz, CA, USA) supplied the mouse
monoclonal anti-β-actin, anti-Bax, anti-Bcl-2, anti-caspase 3,
anti-COX-2, anti-TH, anti-CD11b, anti-cyt c, goat polyclonal
anti-IL-1β, anti-IL-6 and anti-Tim 44 and rabbit polyclonal
anti-caspase 9 primary antibodies along with goat anti-mouse,
rabbit anti-goat and bovine anti-rabbit alkaline phosphatase
(AP)-conjugated secondary antibodies. 5-Bromo-4-chloro-3′-
indolylphosphate/nitroblue tetrazolium salt (BCIP/NBT), nor-
mal goat serum and streptavidin peroxidase were procured from
Bangalore Genei India Pvt. Ltd. (Bangalore, India). While
polyvinylidene difluoride (PVDF) membrane and mouse
monoclonal anti-NeuN primary antibody were purchased from
Millipore Corporation (MA, USA), the remaining required
chemicals were procured locally.

Animal Treatment

The study was performed in male Wistar rats and was initiated
after clearance from the Institutional Animal Ethics
Committee. Rats (150–180 g) were kept under the standard
conditions (temperature 22 ± 2 °C; humidity 45–55%; light
intensity 300–400 lx; light/dark cycle 12 h/12 h) in the animal
house of the institute and provided the food and water ad
libitum. Zinc sulphate (ZnSO4/Zn) was administered to ani-
mals through intraperitoneal (20 mg/kg) route, twice a week
for 2–12 weeks along with respective vehicles/controls [13].
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In a few subsets, a COX-2 inhibitor, celecoxib (CXB,
20 mg/kg)/respective vehicle was also administered daily
through the same route 1 h prior to vehicle/Zn-treatment [33].

Neurobehavioral Tests

Spontaneous locomotor activity (SLA) (OptoVarimax-Mini
A; Columbus Instruments, Columbus, OH) and rotarod per-
formance (Omnitech Electronics Inc., Columbus, OH, USA)
tests were done in control and Zn-treated animals in the pres-
ence or absence of CXB to assess the effect on motor activity
and coordination as described previously [9]. The results are
expressed in terms of percent change from control.

Isolation of the Brain Tissues

Animals were sacrificed by the cervical dislocation and de-
capitated to collect the brains. Brain was dissected in ice-cold

conditions to isolate the striatum and substantia nigra as de-
scribed previously [10]. The nigrostriatal tissue (striatum and
substantia nigra) was used for all experiments except for
monoamine estimation and immunohistochemical (IHC) ob-
servations in which striatum and frozen brain sections, respec-
tively, were used. A minimum of 4 animals per group was
used for biochemical, expression and IHC studies.

Estimation of Monoamine Neurotransmitters

Monoamines viz., dopamine and its metabolites (3,4-dihy-
droxy phenyl acetic acid/DOPAC and homovanillic
acid/HVA) and serotonin, were measured in the striatal tissue
homogenate using high-performance liquid chromatography
employing electrochemical detector as described previously
[10]. The values were calculated using respective standards
and results are expressed as percent of control.
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Fig. 1 Effect of Zn on mRNA
expression of COX-2 (a) and
COX-1 (b) in rats following 2, 4,
8 and 12 weeks of exposure. The
upper panel of each figure shows
the representative gel image, and
the lower panel shows the
densitometric analysis of the
same. Data are expressed as
mean ± SEM (n = 4).
[***p < 0.001 and *p < 0.05 as
compared with controls]
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IHC Studies

IHC staining of TH/NeuN-positive neurons was performed to
analyse the number of dopaminergic neurons in controls and
treated groups as described previously [13]. Similarly, the IHC
staining for microglial cells was also conducted in frozen brain
sections using anti-integrin α-M primary antibody as de-
scribed earlier [3]. Results are expressed as the percent change
from the controls.

Protein Estimation

Protein content was determined in mg/ml in all fractions by
Lowry’s method using BSA as a standard [34].

LPO, SOD and Catalase

Lipid peroxidation (LPO) was determined by TBA-based
method as described previously [9]. The absorbance was re-
corded at 532 nm and results are expressed in percent change
from the controls.

Superoxide dismutase (SOD) activity was estimated by
NBT-based procedure [11]. The absorbance of chromogen
was recorded at 560 nm against butanol blank. The values
are expressed in terms of % change of controls.

Catalase activity was determined by estimating the conver-
sion of hydrogen peroxide to water [11]. The absorbance was
read at 570 nm against the control, and results are expressed as
percent change from the controls.

Gene Expression

Total RNA was isolated from the nigrostriatal tissue using
Trizol reagent [10]. The c-DNA was synthesized using total
RNA by RT-Mul M reverse transcriptase kit as per the man-
ufacturer’s protocol. Amplification of COX-1, COX-2 and
β-actin was carried out using gene-specific primers designed
through DNA star software. The sequences of primers used
were as follows: COX-1: forward 5′-TGCTCCCGGGTCTG
ATGCTCTT-3′ and reverse 5′-ATGGCGATGCGGTT
GCGATAC-3′; COX-2: forward 5′-CCGGATCCCCAAGG
CACAA-3 ′ and reverse 5 ′-CCCGGCACCAGACC
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Fig. 2 a Effect of Zn on SLA and
rotarod performance in rats
following 12 weeks of exposure
in the presence and absence of
CXB. b Effect of CXB on Zn-
induced alterations in the level of
striatal dopamine and its
metabolites, i.e. DOPAC and
HVA along with serotonin in rats
following 12 weeks of exposure.
Data are expressed as
mean ± SEM (n = 4)
(***p < 0.001 as compared with
control; ##p < 0.01 and
###p < 0.001 as compared to Zn-
treated groups)
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AAAGACT-3 ′ and β - a c t i n : fo rwa rd 5 ′ -CTGG
GACGATATGGAGAAGATTTG-3′ and reverse 5′-CAT
GGCTGGGGTGTTGAAGG-3′. Amplicons were visualized
by agarose gel electrophoresis using EtBr. Densitometry was
performed employing computerized software (Alpha Imager,
Alpha Innotech Corporation, South Africa). β-Actin was
used as a reference in data analysis and presentation.

Western Blotting

Cytosolic, mitochondrial and microsomal fractions were sep-
arated using standard procedures [13]. The level of COX-2,
TH, TNF-α, IL-1β, IL-6, pro-caspase-9 and pro-caspase-3
proteins was measured in the cytosolic fraction, Bcl-2 in the
mitochondrial fraction and CD11b in the microsomal fraction
of the nigrostriatal tissue homogenate. Translocation of Bax
and cyt c release was measured in the cytosolic and mitochon-
drial fractions. Denatured proteins were resolved on SDS-

polyacrylamide gel and electroblotted onto PVDF membrane.
Blots were blocked for non-specific binding with Tris-
buffered saline [0.05% Tween-20 (TBS-T) and 5% non fat
dry milk] and incubated with primary antibody against TH,
COX-2, CD11b, pro-caspase-9, pro-caspase-3, TNF-α, IL-
1β, IL-6, Bax, Bcl-2, cyt c,β-actin or Tim-44 for 3 h followed
by incubation with the respective secondary antibody. Blots
were visualized by a combination of NBTand BCIP substrate.
Relative band density was calculated using β-actin as a refer-
ence for the cytosolic and microsomal fractions while Tim-44
was used as a reference for the mitochondrial fraction. The
band density ratio is expressed in mean ± standard error of
mean (SEM).

Statistical Analysis

Statistical analysis was performed by using one/two-way anal-
ysis of variance (ANOVA). Newman-Keuls post-test was used
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Fig. 3 a The
immunohistochemical analysis of
the number of TH-positive
dopaminergic neurons in the
SNpc region of rat brain
following 12 weeks of exposure
in presence and absence of CXB.
bWestern blot analysis of TH and
COX-2 protein expression in the
nigrostriatal tissues of control and
treated rats with β-actin as the
reference. The upper panel shows
the representative western blot,
and the lower panel shows the
densitometric analysis of the
same. Data are expressed as
mean ± SEM (n = 4) (**p < 0.01
and ***p < 0.001 as compared
with control; ###p < 0.001 as
compared to Zn-treated group)
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in case of one-way ANOVA while the Bonferroni post-test
was used in case of two-way ANOVA for comparison be-
tween the groups. Results are expressed as mean ± SEM.
The differences were considered statistically significant when
p value was less than 0.05.

Results

Expression of COX-1 and COX-2

While Zn augmented COX-2 expression in a time of
exposure-dependent manner (Fig. 1a), COX-1 expression
remained unchanged (Fig. 1b).

CXB Alleviated Zn-Induced Neurobehavioral Anomalies

Zn is found to attenuate SLA and rotarod performance in the
animals. Pre-treatment with CXB significantly prevented Zn-
induced changes. CXB per se did not alter the motor activities
(Fig. 2a).

CXB Prevented Zn-Mediated Alterations in Monoamine
Neurotransmitters

Zn depleted the striatal dopamine, DOPAC and HVA after
12 weeks of exposure. CXB noticeably protected from Zn-
induced reductions in monoamines (Fig. 2b). No significant
change was observed in the dopamine or its metabolites in
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Fig. 4 a Effect of CXB on Zn-
induced alterations in the number
of integrin-αM-positive
microglial cells in the SNpc
region of rat brain. b The figure
shows protein expression of
microglial cell surface marker
CD11b in the nigrostriatal tissues
of rats following 12 weeks of Zn
exposure in the presence and
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shows representative western blot
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of the same. Data are expressed as
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compared to Zn-treated group)
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CXB alone-treated groups. Striatal serotonin was not consid-
erably changed in any of the groups (Fig. 2b).

CXB Protected Against Zn-Induced Dopaminergic
Neuronal Loss

IHC analysis exhibited a significant decrease in the number of
TH-positive cells in Zn-exposed groups, which was discern-
ibly prevented by CXB pre-treatment. CXB alone did not
produce any marked change in the number of TH-positive
neurons (Fig. 3a).

CXBMitigated Zn-Induced Alterations in COX-2 and TH
Protein Expression

Zn elevated COX-2 protein while CXB attenuated Zn-induced
alteration in COX-2 expression. CXB alone did not alter the
expression of COX-2 protein (Fig. 3b).

A marked reduction in TH protein in Zn-exposed groups
was seen. Pre-treatment with CXB mitigated Zn-induced
change in TH protein. TH expression was unaltered in CXB
alone-treated animals (Fig. 3b).

Effect of CXB on Zn-Induced Microglial Activation
and CD11b Protein Expression

Zn-induced microglial activation was averted by CXB pre-treat-
ment. CXB alone did not affect the integrin α-M immunoreac-
tivity (Fig. 4a). Zn treatment elevated CD11b protein, which
was abated by CXB. No change in the expression of CD11b
protein was observed in CXB alone-treated animals (Fig. 4b).

CXB Ameliorated Zn-Induced Changes in Oxidative
Stress Indexes

Zn elevated SOD activity and LPO content while reduction
was observed in catalase activity. CXB pre-treatment

attenuated Zn-induced changes in the aforementioned indices.
No alterations were seen in the oxidative stress indexes in
CXB alone-treated animals (Fig. 5).

Effect of CXB onZn-MediatedModulations in Expression
of TNF-α, IL-1β and IL-6

Elevated level of pro-inflammatory mediators, i.e. TNF-α, IL-
1β and IL-6, was observed in the nigrostriatal tissues of Zn-
exposed animals. CXB exhibited significant amelioration in
Zn-induced increase in pro-inflammatory cytokines. No
change was observed in CXB per se treated animals (Fig. 6a).

Protein Expression of Bcl-2

Western blot analysis of Bcl-2 revealed a marked decline in
Bcl-2 expression in the nigrostriatal tissues of Zn-treated ani-
mals. CXB pre-exposure mitigated Zn-induced reduction in
Bcl-2 expression. Bcl-2 was unaffected in animals exposed to
CXB alone as compared with controls (Fig. 6b).

Translocation of Bax

Increased translocation of Bax from the cytosol to the mito-
chondria was observed in Zn-exposed animals, which was
evident by the reduced level of Bax in the cytosolic fraction
with a concomitant increase in the mitochondrial fraction. Pre-
treatment with CXB reduced the Zn-induced Bax transloca-
tion. CXB per se did not affect Bax translocation (Fig. 6c).

Cyt c Release and Caspase Cascade Activation

Zn induced cyt c release while CXB pre-treatment prevented
Zn-induced cyt c release. CXB per se did not affect the cyt c
level (Fig. 7a). Reduced expression of pro-caspase 3 and pro-
caspase 9 was observed in Zn-treated animals. Pre-treatment
with CXB significantly mitigated Zn-induced activation of
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pro-caspase 3 and pro-caspase 9. No change was observed in
pro-caspase 3 and pro-caspase 9 expressions in CXB alone-
treated animals (Figs. 7b).

Discussion

Systemic Zn exposure is found to induce the progressive and
selective degeneration of the nigrostriatal dopaminergic

neurons [10–12]. Increased COX-2 and unaltered COX-1
contents in Zn-exposed animals suggested the role of
COX-2 in Zn-mediated neurotoxicity. It is also supported
by the previous reports illustrating an increased COX-2
expression in the brain of PD patients and toxin-induced
models [14, 25, 27]. Moreover, increased level of inflam-
matory markers in PD and rodents models showed the role
of inflammation in PD pathogenesis [14, 16, 18, 35, 36].
Elevated COX-2 content in the brain of patients and pro-
tection offered by COX-2 inhibitors also strengthen the
notion [25, 28, 37, 38].

In order to establish the involvement of COX-2 in Zn-
induced Parkinsonism, effect of COX-2 inhibitor-
celecoxib (CXB) was measured. Reduced motor activity
and coordination observed in Zn-exposed animals are in
concurrence with the earlier reports demonstrating that

�Fig. 6 Effect of CXB on Zn-induced alterations in the expression of
TNF-α, IL-1β and IL-6 (a), Bcl-2 (b) and translocation of Bax (c) in
the nigrostriatal tissues of rats after 12 weeks of exposure. The upper
panel of each figure shows representative western blot picture, and the
lower panel of each figure depicts the densitometric analysis of the same.
Data are expressed as mean ± SEM (n = 4) (***p < 0.001 as compared
with control and ###p < 0.001 as compared to Zn-treated group)
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the systemic Zn exposure causes motor dysfunction in
rodents [10, 11]. Alleviation in Zn-induced neurobehav-
ioral anomalies in CXB pre-exposed animals suggested
the protective effect of CXB against Zn-mediated neuro-
toxicity [27, 37, 39]. Motor dysfunction was supported
by decline in the striatal dopamine and its metabolites in
Zn-exposed rats [12, 13]. Mitigation of Zn-induced de-
crease in neurotransmitters by CXB pre-exposure showed
a key role of COX-2 in Zn-mediated neurodegenerative
changes [25, 40]. It is further supported by the histo-
chemical analysis exhibiting selective loss of TH-
positive dopaminergic neurons along with reduced ex-
pression of TH in the substantia nigra of Zn-exposed
animals [11, 13]. Protection afforded against Zn-induced
dopaminergic neuronal cell loss and alleviation of Zn-
induced reduction in TH-protein by CXB reaffirmed the
contribution of COX-2 in Zn-induced neurotoxicity [37,
41, 42].

COX-2 contributes to neurodegeneration through the
PGE2-mediated inflammatory pathway or microglial acti-
vation [27, 43, 44]. The amelioration of Zn-induced
microglial activation and elevated protein level of CD11b
in the animals pre-exposed to CXB implied that COX-2
contributes to Zn-induced microglial activation. Besides,
simultaneous amelioration by CXB in Zn-induced increase
in pro-inflammatory cytokines, such as TNF-α, IL-1β and
IL-6, suggested that COX-2-mediated microglial activation
could be responsible for inflammation-mediated dopami-
nergic neuronal death. Results are in accordance with the
earlier studies, which have reported that selective inhibi-
tion of COX-2 protects from dopaminergic neuronal death
by the inhibition of microglial cell-mediated inflammation
[37, 39, 45].

Augmented LPO and SOD activity and reduced catalase
activity have beenwell-known indicators of oxidative stress in
Zn-induced neurodegeneration [10–12]. Significant mitiga-
tion of Zn-induced oxidative stress byCXBwith simultaneous
prevention of Zn-induced microglial activation suggested that
COX-2-mediated microglial activation resulted in increased
oxidative stress leading to neurodegeneration. It is in concur-
rence with the reports, which have shown the role of
microglial activation in oxidative stress-mediated neuronal
damage [12, 46]. This is substantiated by the studies, which
have shown that selective inhibition of COX-2 diminishes
oxidative stress and provides neuroprotection against cadmi-
um-, lipopolysaccharide- and MPTP-induced neurodegenera-
tion [37, 47, 48].

Involvement of intrinsic apoptosis is documented in
Zn-induced neurodegeneration [12, 13] that is reflected
even in this study from the attenuated level of Bcl-2
protein, increased translocation of Bax from the cytosol
to the mitochondria, cyt c release in the cytosol to cas-
pase cascade activation. Mitigation of Zn-induced

mitochondria-mediated apoptosis by CXB further af-
firmed the role of COX-2 in Zn-induced dopaminergic
neurodegeneration.

Although CXB provided protection against Zn-
mediated dopaminergic neurodegeneration, it was not
able to completely abolish Zn-induced neurotoxicity im-
plicating that COX-2 is not the sole factor responsible
for the microglia-mediated oxidative stress and inflam-
mation, which is in concurrence with available literature
documenting that NADPH oxidase, nitric oxide synthase,
depleted glutathione levels, etc. contribute in the oxida-
tive stress and inflammation [10, 11]. Additionally, PD is
progressive in nature and therapy delays the progression
rather than cure the disease. It could be a reason for
higher level of neurodegenerative indexes in Zn +
CXB-treated animals as compared with controls.
Conclusively, the protection provided by CXB against
Zn-induced neuronal cell death implied that COX-2-
guided dopaminergic neuronal cell death could be an
outcome of the microglia-mediated oxidative stress and
inflammation [37, 42, 47, 48] as depicted by the sche-
matic representation (Fig. 8).

Conclusion

The results of the study demonstrated that Zn induces COX-2
that causes microglial-activation leading to increased pro-
inflammatory cytokines and oxidative stress, which subse-
quently results in the demise of dopaminergic neurons through
Bax-mediated apoptosis.

Cyclooxygenase-2

Microglial ac�va�on

Oxida�ve stress and inflamma�on

Bax transloca�on to mitochondria
Bcl-2

Caspase cascade ac�va�on

Mitochondrial cyt c release

Zinc

Neuronal cell apoptosis

CXB

Fig. 8 A schematic representation showing the protective mechanism of
CXB against COX-2-directed microglia-mediated dopaminergic neuro-
degeneration in Zn-induced Parkinsonism
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