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Abstract 17-estradiol (E2) is a neuroprotective hormonewith
a high anti-inflammatory potential in different neurological
disorders. The inflammatory response initiated by spinal cord
injury (SCI) involves the processing of interleukin-1beta (IL-
1b) and IL-18 mediated by caspase-1 which is under the con-
trol of an intracellular multiprotein complex called
inflammasome. We recently described in a SCI model that
between 24 and 72 h post-injury, most of inflammasome com-
ponents including IL-18, IL-1b, NLRP3, ASC, and caspase-1
are upregulated. In this study, we investigated the influence of
E2 treatment after spinal cord contusion on inflammasome
regulation. After contusion of T9 spinal segment, 12-week-
old male Wistar rats were treated subcutaneously with E2
immediately after injury and every 12 h for the next 3 days.
Behavioral scores were significantly improved in E2-treated
animals compared to vehicle-treated groups. Functional im-
provement in E2-treated animals was paralleled by the

attenuated expression of certain inflammasome components
such as ASC, NLRP1b, and NLRP3 together with IL1b, IL-
18, and caspase-1. On the histopathological level, microgliosis
and oligodendrocyte injury was ameliorated. These findings
support and extend the knowledge of the E2-mediated neuro-
protective function during SCI. The control of the
inflammasome machinery by E2 might be a missing piece of
the puzzle to understand the anti-inflammatory potency of E2.
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Introduction

Spinal cord injury (SCI) leads to complex cellular and molec-
ular changes within the lesioned site of the central nervous
system (CNS) which at the end results in a loss of neural
connectivity and, in consequence, functional-behavioral defi-
cits. While significant advances have been made in the early
spinal surgery and supportive treatment of SCI [1], the thera-
peutic control of local cell degeneration and nerve fiber loss
either occurring during the acute or chronic stage of the dis-
ease are still in its infancy. Local inflammatory processes (i.e.,
neuroinflammation) presumably have an important impact on
the secondary phase of SCI, and it was demonstrated that
targeting of the neuroinflammatory responses can improve
functional nerve recovery in SCI rats [2, 3]. Such
neuroinflammatory cascades can be either beneficial (i.e., sup-
port regenerative events) or deleterious (i.e., amplification of
local destructive pathways), thus confidentiality being a
double-edged sword in the context of SCI outcome. Indeed,
it is believed that the balance between pro-inflammatory and
intrinsic repair mechanisms may determine the outcome after
SC I [ 4 ] . A be t t e r unde r s t a nd i ng o f t h e f o c a l
neuroinflammatory machinery is therefore urgently needed.
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Neuroinflammatory responses include maturation and
secretion of the pro-inflammatory cytokines interleukin
(IL)-1b and IL-18 which initiate a cascade of physiologi-
cal events including triggering cell death. The processing
of pro-IL-1b and pro-IL-18 requires the activation of the
proteolytic enzyme caspase-1 which is mediated by the
regulation of nucleotide-binding domain-like receptor
proteins (NLRP) termed inflammasomes. The NLRP
inflammasomes consist of the NLRP domain, apoptosis-
associated speck-like protein containing a caspase activa-
tion and recruitment domain (CARD) (ASC), and cas-
pase-1. The formation of inflammasomes activates
caspase-1 and subsequently leads to plasma-membrane
pore formation and cleavage of chromosomal DNA [5].
In addition, caspase-1 plays a decisive role during cleav-
age of pro-IL-1b and pro-IL-18 into their mature forms
[6]. IL-1b can be produced and released by neurons and
glia cells following distinct stimulation, suggesting that
different neural cells take part in the brain-intrinsic in-
flammatory scenario [7]. Inflammasome activation also
occurs in the spinal cord after CNS injury [7].

Gonadal steroids have been shown to transmit beneficial
effects to the brain in a variety of acute and chronic degen-
erative CNS processes including multiple sclerosis, ische-
mic stroke, and a variety of diseases with mitochondrial
failure [8–11]. Preclinical studies have clearly demonstrat-
ed that gender and sex steroids, i.e., estrogen and proges-
terone or its metabolites, affect the outcome after SCI and
other traumatic brain injuries [12]. This is supported by
clinical evidence and the use of progesterone derivatives
and glucocorticoids [13, 14]. Mechanistically, sex steroids
affect a wide variety of cell and physiological functions
which many of them contributing to protect neurons from
death [15]. A set of studies have also presented evidence
that the anti-inflammatory potency of these steroids is im-
plicated in neuroprotection [16, 17]. In support of this, sex
steroids influence the devastating function of microglia in
the brain [18–20, 11]. 17b-estradiol (E2) administered to
male rats immediately after SCI caused a significant de-
crease in the number of infiltrating cells and activity of
macrophages/microglia in the injured spinal cord [21, 22]
and improve locomotor function [23]. Further, E2 reduced
the number of TUNEL-positive cells and secondary dam-
age at the epicenter of SCI [24]. In male rats, E2 reduced
oligodendrocyte apoptosis [25].

Only recently, sex steroids were shown also to act at
the level of the inflammasome platform and to regulate
their assembly and function. In a stroke model, both
female sexual hormones reduced the inflammasome ac-
tivity [26–28]. These findings spurred our interest to an-
alyze in detail the efficacy of E2 in the control of
inflammasome activation after traumatic spinal cord con-
tusion in adult male rats.

Material and Methods

Animals and Surgery

Research and animal care procedures were approved by the
Review Board for the Care of Animal Subjects of the district
government (Tehran, Iran). In vivo experimentswere performed
with 14-week-old male Wistar rats (350–400 g, Pasteur, Iran).
Animalsweremaintained in a pathogen-free and climate control
environmentwithaccess towaterand foodandalternate lightand
dark cycles, 12 h each. SCI was performed as previously de-
scribed [29, 30].Briefly, after shaving the surgical area, ratswere
deeply anesthetized with 2.0% isoflurane in O2 (Abbott,
Germany) and placed in a modified stereotactic frame. Skin in-
cision and blunt dissection of the muscle layers over the area of
the vertebral T10 level (spinal T9) were performed. Afterwards,
an adjustable forcepswas applied to the spinous processes of the
second vertebra rostral the Th8 vertebra to stabilize the spinal
cord. In addition, transverse processes of Th7 and Th9 were se-
cured by transverse process clamps of the spinal cord adaptor
(Stoelting Co, USA). Under a surgical microscope, dorsal
laminectomyofT8vertebrawas performedusing a fine rongeur.
After laminectomy, the spinal cordwas compressed by placing a
50 gweight on the exposed spinal cord column for 5min using a
rectangular platewhich is longitudinally oriented over the spinal
cord. The plate had an area of 11.0 mm2 (2.2 × 5.0 mm) and a
concave shape that ensured equal distribution of the pressure on
the spinal cord.During the surgery, toavoid local hypothermiaof
the exposed tissue, a warm plate was used. Postoperative after-
care included saline rehydration (2 mL) and Baytril (0.3 mL,
subcutaneously, twice daily) to prevent urinary tract infection.
Additionally, surgery-inducedbladderdysfunctionwascompen-
sated by manual emptying twice a day. The animals were
sacrificed at different time points, 12, 24, and 72 h post SCI,
and after intracardial perfusion, the spinal cords were harvested
and proceeded for molecular and biochemical analysis. Sham-
operated animals underwent the same anesthesia and surgical
procedures with the exception of contusion. For immunohisto-
chemistry staining,12animalswereassigned randomly toexper-
imental groupswith a size of four animals per group. Formolec-
ular and biochemical studies, the numbers of animals in the ex-
perimentalgroupswereas follows: sham(n=5),SCI12h(n=5),
SCI 24 h (n = 6), SCI 72 h (n = 7), and SCI 72 h plus E2 (n = 7).

Hormone Treatment

17β-estradiol (E2) was purchased from Sigma–Aldrich
(Munich, Germany). Rats subjected to SCI were randomly
assigned to receive E2 or vehicle (sesame oil plus ethanol as
solvent) treatment. E2 was initially dissolved in ethanol and
further diluted in sesame oil to obtain final steroid concentra-
tions in the experiment (25 μg/kg body weight) [31]. E2 or
vehicle was administrated subcutaneously as neck depots
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(500 μL) immediately after the SCI and every 12 h thereafter
up to 72 h after injury.

Locomotion Testing

Locomotion deficits of rats was evaluated using the Basso,
Beattie, and Bresnahan (BBB) scale which is one of the most
commonly used assessment methods for rating the motor
function of rats after SCI. This score is categorized into 21
levels (0 complete paralysis to 21 normal) as published previ-
ously by our group [29]. The scale assesses hind limb move-
ments, body weight support, forelimb to hind limb coordina-
tion, and whole body movements. All evaluations were per-
formed by an investigator blinded for the treatment groups.
This score was performed before surgery (0), 12, 24, and 72 h
after injury in all groups.

RNA Isolation and Real-Time PCR

Gene expression studies were performed with tissues corre-
sponding to the epicenter of injury. Total RNAwas extracted
using peqGold RNATriFast (PeqLab, Germany) as previously
described [32]. RNA concentration was measured using a
Nan oD r o p 1 0 0 0 d e v i c e ( P e qL a b , G e rm any ) .
Complementary DNA of 1 μg of total RNAwas synthesized
using the M-MLV reverse transcription (RT)-kit and random
hexanucleotide primers (Invitrogen, Germany). Quantitative
real-time PCR (qrtPCR) analysis was performed using the
MyIQ detection system (Biorad, Germany). Relative quanti-
ficationwas calculated by theΔΔCt-method using the qbase +
software (Biogazelle, Belgium). Data were expressed as rela-
tive amount of the target gene to the amount of a reference
gene (CycloA). Previous studies verified CycloA to be stably
expressed under all given experimental conditions. Values of
sham animals were set to one. Data of interest are given as
relative expression. A list of used primers and analyzed genes
is given in Table 1. The inflammasome complexes which were
evaluated in this study are as follows: IL-1b, IL-18, ASC,
NLRP3, NLRP1b, and NLRC4.

Immunohistochemistry

For immunohistochemistry, rats were transcardially per-
fused with 4% formaldehyde (Sigma, Germany) and were
embedded in paraffin (Merck, Germany). Paraffin-
embedded sections (5 μm) were rehydrated, unmasked
by Tris/EDTA pH 9.0 buffer, and processed for immuno-
histochemistry using a Vectastain-DAB Kit (Vector
Laboratories, Burlingame, CA). After heat-induced anti-
gen retrieval (HIER), sections were incubated with 10%
goat serum (Sigma, Germany) for 30 min. Then, slices
were incubated overnight at 4 °C with the respective pri-
mary antibodies (for details see Table 2). For blocking

endogenous peroxidase, sections were incubated with
H2O2/PBS (0.3%) (Roth, Germany). Afterwards, sections
were incubated with the appropriate secondary antibodies
followed by the ABC complex. diaminobenzidine (DAB)
was used as chromogen substrate. Finally, sections were
counterstained with hematoxylin, dehydrated in graded
alcohols, and mounted.

For cell parameter quantification, the whole spinal cord re-
gion of interest (complete white and gray matter) was digitally
recorded using a Nikon Eclipse 55i (Nikon, Germany) and a
×20objective for imageacquisition.Quantificationofcellnum-
berswas performed bymanual counting the number of positive
cellsusing the ImageJ3software.Cellnumbersareexpressedas
cells/mm2, and only those cells with a clearly visible nucleus
(hematoxylin staining) were counted. For each animal, four
slices were analyzed with a distance of 50 μm in between.

Table 1 List of primers used in this study

Primer Sequence bp AT

ERα 156 59 °C

s CATCGATAAGAACCGGAGGA

as GGCGGGGCTATTCTTCTTAG

CycloA 196 65 °C

s GGCAAATGCTGGACCAAACAC

as TTAGAGTTGTCCACAGTCGGAGATG

Gapdh 196 60 °C

s AACCCATCACCATCTTCCAG

as GTGGTTCACACCCATCACAA

IL1b 170 62 °C

s TGGCAACTGTCCCTGAACTC

as GTCGAGATGCTGCTGTGAGA

IL18 152 61 °C

s GGACTGGCTGTGACCCTATC

as TGTCCTGGCACACGTTTCTG

Nlrc4 98 60 °C

s GGCTGAGGCCCACGTATAAA

as CTCCTCTGGCTCTCTGGACT

Nlrp1b 102 60 °C

s GGGGCAGCCAAATCAAGTTC

as TGAGCGGTCATTGCAACTCT

Nlrp3 314 65 °C

s TCTGTTCATTGGCTGCGGAT

as GCCTTTTTCGAACTTGCCGT

Pycard (ASC) 80 64 °C

s GCTGCAGATGGACCCCATAG

as ACATTGTGAGCTCCAAGCCA

ER 161 6! °C

s CTGTCTCCTTTAGCGACCCATT

as GAGCATCCCTCTTTGCGTTT

AT annealing temperature, bp base pair length
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Immunofluorescence Double-Labeling

In brief, after rehydration, the 5-μm formalin-fixed sections
were unmasked with Citrate/EDTA (pH 9.0) buffer and
blocked in PBS containing 2% FCS and 1% BSA.
Afterwards, the slices were incubated overnight with the pri-
mary antibodies at the given concentrations diluted in
blocking solution (see Table 2). The following antibodies
were used: anti-olig2 antibody (pan-oligodendrocytes) and
anti-APC antigen (mature oligodendrocytes) were combined
either with anti-ASC or anti-NLRP3. Fluorescent anti-rabbit
antibody (1:500, Alexa Fluor 488, Invitrogen, Germany) and
anti-mouse/anti-goat antibodies (1:500, Alexa Fluor 598,
Invitrogen, Germany) were used as secondary antibodies.

Biochemical Analysis

Protein levels of active IL-1b and IL-18 were determined
using enzyme-linked immunoabsorbent assay (ELISA) kits
(900-K91, Peprotech, Rocky Hill, USA, for IL-1b and
ABIN416245, antibodies-online.com for IL-18). Briefly, spi-
nal cord samples were harvested at 72 h after SCI and homog-
enized in PBS (0.02 mol/L, pH 7.0–7.2). Afterwards, super-
natants were analyzed by ELISA. According to the manufac-
turer’s instructions, samples were assayed in duplicate at ab-
sorbance rates for IL-1b at 405 nm and IL-18 at 450 nm.
Concentrations were calculated from the respective standard
curves and expressed as pg per mg total protein.

Measurement of Plasma Sex Hormone Levels

Two milliliters of blood were collected in EDTA-coated tubes
via the right external jugular vein catheter in various groups
before operation and at 12, 24, and 72 h post-injury. Plasma
was separated immediately by centrifugation for 5 min at
8000 rmp. Samples were then stored at −80 °C until assayed
for sex hormone levels. Plasma levels of E2 were determined
by an EIA kit (Cayman Chemical, Ann Arbor, MI) according
to the manufacturer’s instructions.

SDS PAGE and Western Blot

Spinal cord tissue was lysed in ice-cold RIPA buffer
consisting of 50 mM Tris-HCl, pH 8.0, 1% (v/v) Nonidet P-
40 (Sigma, Igepal, CA), 0.1% SDS (sodium dodecyl sulfate),
0.5% sodium deoxycholate and protease inhibitor cocktail
(Complete Mini, Roche, Mannheim, Germany). Protein con-
centrations were determined using the BCA™ Protein Assay
Kit (Pierce, Bonn, Germany) according to the manufacturer’s
protocol. Same amounts of protein samples (approx. 30μg per
lane) were loaded, separated by 8–12% (v/v) discontinuous
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE), and transferred onto a PVDF membranes
(Roche, Manheim, Germany). After blocking with 5%
skimmed milk in Tris-buffered saline containing 0.05%
Tween 20 (TBS-T) for 1 h at room temperature, PVDF mem-
branes were incubated with primary antibodies (Table 2) over
night at 4 °C. After washing with TBS-T, membranes were
incubated with a peroxidase-conjugated goat anti-rabbit (Bio-
Rad, USA) secondary antibody for 2 h at room temperature.
Visualization was achieved using the enhanced chemilumi-
nescence method (ECL plus, Pierce Scientific, Waltham,
MA, USA) according to the manufacturer’s protocol. For den-
sitometric quantification, intensities of the specific bands were
normalized to GAPDH in the same blot using ImageJ software
(free Java software provided by the National Institute of
Health, Bethesda, MD, USA).

Data Analysis

All data are given as means ± SEM. Statistical differences
between various groups were analyzed by one-way analysis
of variance (ANOVA) followed by Tukey’s post hoc test using
GraphPad Prism 5 (GraphPad Software Inc., USA). The BBB
test was evaluated using two-way ANOVA.

Results

Behavioral Assessment

We used the BBB scoring criteria to evaluate the lower limb
motor function at timepoint 0 (beforeSCI), 12, 24, and72h after
SCI. Our results show that locomotion of all SCI-induced rats
(including the vehicle group) exhibited partial recovery after
72 h. Rats treated with E2 displayed a significantly better loco-
motor activity compared to vehicle rats after 72 h (Fig. 1a).
Notably, differences in functional recovery between vehicle-
andE2-treatedanimalsbecameevidentbetween24and72hpost
SCI, indicating that not the initial tissue injury but rather
neuroinflammation-mediated secondary tissue damage was un-
der the control of sex steroid treatment.

Table 2 List of antibodies

Antibody Company WB IHC IF

ASC Santa Cruz, USA 1:1000 – 1:300

Olig2 Santa Cruz, USA – 1:1000 1:500

IBA1 Abcam plc, UK – 1:2500 –

APC Millipore, Germany – 1:2500 1:1000

Caspase-1 Santa Cruz, USA 1:1000 – –

NLRP3 Bioss, USA 1:1000 – 1:300

GAPDH Sigma Aldrich 1:4000 – –

WBWestern blot, IHC immunohistochemistry, IF immunofluorescence
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E2 Ameliorates SCI-Induced Inflammatory Parameters

Both IL-1b and IL-18 are synthesized as inactive cyto-
plasmic precursors that are processed as biologically ac-
tive forms in response to pro-inflammatory stimuli by
caspase-1 [33]. One possibility of processing these two
cytokines involves the activation of inflammasomes
[34]. PCR studies showed a massive (>10 fold) induc-
tion of IL-1b and IL-18 messenger RNAs (mRNAs) in
the SCI vehicle groups (Fig. 1b, c). In both cases, E2
reduced the IL-induction by more than 50%. Similarly,
protein values of both active ILs determined by ELISA
rose after SCI and revealed significant lower levels in
the E2 group compared to SCI vehicle (Fig. 1d, e).
Figure 1f shows the corresponding Western blots for
active caspase-1. As can be seen, SCI significantly in-
creased caspase-1 enzyme which was blocked by E2
treatment.

Effect of Steroids on Inflammasome Expression

In a previous study, we have shown that NLRP3
inflammasome complexes were significantly upregulated in
the epicenter 72 h after SCI [29]. Therefore, we analyzed the
effect of E2 on inflammasome expression at this time point.
As shown in Fig. 2, SCI induced the expression of ASC
(Fig. 2a), NLRP3 (Fig. 2b), and NLRP1b (Fig. 2c) but not
NLRC4 mRNA (Fig. 2d). The application of E2 significantly
diminished the SCI effect with respect to ASC, NLRP3, and
NLRP1b. Analysis of the corresponding protein values by
Western blotting showed an increase in ASC (Fig. 2e, f) and
NLRP3 (Fig. 2 e, g) protein after SCI which ameliorate with
E2 treatment. Interestingly, NLRP1b levels seemed to de-
crease (although not significantly) and E2 to restore the levels
to basic values (Fig. 2 e, h). At the transcriptional level,
NLRC4 was not affected by E2 by SCI or E2 substitution
(data not shown).

0

10

20

30
40
50
60
70
80

0

5

10

15§§§

*** *

Sham SCI 
placebo

SCI 
+ E2

Sham SCI 
placebo

SCI 
+ E2

0

50

100

150

§§

**

Sham SCI
placebo

SCI
+ E2

0

20

40

60

80

Sham SCI
placebo

SCI
+ E2

IL
-1

ß 
(p

g/
m

L )

IL
-1

8 
(p

g/
m

L)

*

x-
fo

ld
ex

pr
es

sio
n

of
sh

am

x-
fo

ld
ex

pr
es

sio
n

of
sh

am

ED

CB IL-1b IL-18PCR

ELISA

§§§

§§

BB
B 

sc
or

e

0

1

2

3

15

20

0 12 24

*

SCI placebo
SCI + E2
Sham

0                        12                       24                                                   72

*

A

0

2

4

6

8

pr
ot

ei
n 

ex
pr

es
sio

n 
(fo

ld
 o

f S
ha

m
)

Sham SCI
placebo

SCI
+ E2

caspase-1
§§

IL-1b IL-18

F

**

Western blot

ac�ve
caspase-1

Sham SCI  
placebo

SCI + E2

GAPDH

~20 kDA

~37 kDA

Fig. 1 aBBB locomotion assessment at 12, 24, and 72 h after SCI onset.
a 72 h post SCI, the BBB scores decreased to zero in the SCI vehicle and
SCI + E2 groups and remained until 24 h at this level. Thereafter, BBB in
the SCI + E2 group recovered significantly better compared to SCI
vehicle. b, c Expression of IL-1b and IL-18 mRNAs was significantly
induced after SCI (72 h). These effects were significantly dampened in
the SCI + E2 group. d, e PCR data are supported by ELISA analysis.
Again, SCI induced IL-1b and IL-18 levels and E2 administration

abolished partially these effects at 72 h. f Presents a selective Western
blot for active caspase-1 and the housekeeping marker GAPDH, as well
as the corresponding semi-quantitative densitometric quantification. SCI
increased and E2 inhibited the transformation into the active caspase-1.
§§p ≤ 0.01 sham vs. SCI vehicle, §§§p ≤ 0.001 sham vs. SCI vehicle,
*p ≤ 0.05 SCI vehicle vs. SCI + E2, **p ≤ 0.01 SCI vehicle vs. SCI +
E2, **p ≤ 0.001 SCI vehicle vs. SCI + E2. Data represent means ± SEM

1368 Mol Neurobiol (2018) 55:1364–1375



Regulation of Estrogen Receptor Expression and Serum
E2 Plasma Levels after of SCI

We have further analyzed the effect of SCI and E2 treat-
ment on local expression of nuclear estrogen receptor
(ER)-alpha and ER-beta. In the intact spinal cord, nuclear
ERs are found in neurons and different glial subtypes
[35]. As shown in Fig. 3a, b, mRNA expression of ER-
alpha was reduced (P = 0.056), although not reaching
significant values, during the first 72 h after SCI. E2 sub-
stitution did not affect ER-alpha expression at 72 h. In
contrast, ER-beta expression levels were significantly el-
evated 12 h after SCI but then decreased again to basal
values (Fig. 3c, d).

Endogenous E2 plasma levels were analyzed by ELISA
12, 24, and 72 h post-injury and after E2 substitution at
72 h. E2 values significantly increased 24 and 72 h after
SCI (Fig. 3e). E2 substitution increased plasma E2 levels
by approx. 50-fold (Fig. 3f) compared to vehicle at 72 h.

E2 Effects on Oligodendrocytes and Microgliosis After
SCI

Using Iba-1 staining to identify microglia/macrophages, we
found in sham-operated animals low numbers of Iba-1-
positive cells which appeared equally distributed throughout
the gray matter (Fig. 4a). Seventy-two hours after SCI, Iba-1
cell numbers significantly increased. On the morphological
level, Iba-1-positive cells displayed a resting, ramified mor-
phology in sham-operated animals, whereas after SCI, these
cells clearly showed to be activated (swollen and retracted cell
processes). Notably, E2 application reduced this effect.

Besides microglia, astroglia, and neurons [35], ERs are also
expressed in oligodendrocyte progenitors and mature oligo-
dendrocytes [36]. Further, we therefore analyzed whether
these cell populations are (direct or indirect) E2 targets in
our experimental study. SCI induced a significant loss of
Olig2- and APC-positive cells in the gray and white matter
(Fig. 4b, c), and E2 substitution partially reversed this effect.
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Co-Localization of ASC and NLRP3 with Olig2
(Oligodendrocytes) and APC (Mature Oligodendrocytes)

Inourpreviousstudy,wehaveshownthatneurons,microglia,and
astrocytes co-express NLRP3 and ASC in the spinal cord after
injury model. Since these cells were protected under E2 treating,
weattempted in this study toattribute thedifferent inflammasome
components to oligodendrocyte subtypes in the spinal cord.
Therefore, double-immunofluorescence staining of olig2 and
APC as pan-oligodendrocyte and mature oligodendrocyte
markers respectivelywith anti-NLRP3 andASCantibodieswere
performed. Double-immunofluorescence staining revealed that
ASC and NLRP3 are associated with olig2 (Fig. 5a), whereas
APC+ cells did not obviously express inflammasome markers
(Fig. 5b).

Discussion

Despite the diversity of SCI paradigms and the dissimilar dos-
age and treatment protocols used in the various experimental

studies, the majority of animal studies reported beneficial ef-
fects of E2 on locomotor recovery [37] and tissue sparing [38].
The absence of a clear protective action of E2 in this CNS
damage model in some studies [16] might result from known
strain differences in the outcome and therapeutic accessibility
after SCI [39, 40]. Irrespective of this controversy, there is
existing considerable support that E2 is neuroprotective and
anti-inflammatory in a variety of CNS injury models either
acute or chronic, including SCI [27].

E2 exerts its genomic or nongenomic actions via two tra-
ditional estrogen receptors ERa and ERb [41]. The genomic
actions of estrogen are initiated upon binding ERa and ERb in
the cytoplasm or nucleus. After ligand binding, ERa or ERb
can directly regulate transcriptional processes in the nucleus,
either by binding specific estrogen response elements (EREs),
which are located within the promoters of target genes, or by
interacting with other DNA-binding transcription factors that
modulate gene expression. The target genes include anti-
apoptotic mediators of the bcl-2 family and pro-
inflammatory cytokines. In the spinal cord, estrogen receptors
are found in both neurons and different glial subtypes [35].
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Fig. 3 PCR analysis of ER-alpha
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effect on these levels (b, d). E2
plasma levels increased at 24 and
72 h after SCI (e), and E2
substitution significantly boosted
this effect (f). §p ≤ 0.05 sham vs.
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Several spinal cord neuronal populations express low to mod-
erate levels of ERa or ERb, whereas spinal cord astrocytes
often express ERa [42] and spinal cord microglia primarily
ERb [43]. All estrogen receptor subtypes are found in oligo-
dendrocyte progenitors and oligodendrocytes in vitro [36].
However, ERb is the main isoform expressed in oligodendro-
cytes of the adult CNS including the spinal cord and is local-
ized to the plasma membrane and myelin [44].

Following SCI, immune system-related cells infiltrate the
injury epicenter. These cells could also be the target of estro-
gen as studies have shown expression of ERs in immune cells
infiltrating the inflamed spinal cord in animal models of mul-
tiple sclerosis [15]. A high E2 dose administered to male rats
immediately after SCI caused a significant decrease in the
number of infiltrating cells like monocytes, macrophages,
and neutrophils which occur after SCI at the center of injury
[21]. Other investigations confirmed the reduction in the
spreading of inflammatory cells and the decrease in the num-
ber or activity of macrophages/microglia in the injured spinal
cord [22]. The attenuation of microglia/macrophage reactivity,

assessed qualitatively, appeared to continue even in chronic
phases [23]. The anti-inflammatory effects of E2 in the exper-
imental SCI studies showed a time dependency with regard to
pro-inflammatory cytokine and chemokine expression. Ritz
and Hausmann found that E2 further increased injury-
elicited and transient upregulation of IL-1a and IL-1b protein
in the spinal cord at 6 h post-injury [45]. On the other hand, E2
treatment decreased SCI-provoked increase in TNF-a, IL-1b
and CCL2/MCP-1 mRNA levels in mice at 24 h post-injury
[24]. In this study, we demonstrated that E2 dampened IL-1b
and IL-18 protein andmRNA levels at 72 h after SCI. Possible
mechanisms of E2 to attenuate the inflammatory responses in
CNS injuries are as follows: (1) E2 prevents transcription of
inflammatory cytokine genes in microglia/macrophages by
interfering with the translocation of NFκB from the cytoplasm
to the nucleus [46, 43] and (2) E2 dampens pro-inflammatory
chemokine gene expression in spinal cord astrocytes, an effect
involving direct interaction of ERα with nuclear NFκB [42].
Additionally, we showed using a classical SCI contusion mod-
el that E2 exerts its protective and anti-inflammatory function
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at the intracellular platform of inflammasomes by a partial
prevention of the inflammasome-caspase-1 activation includ-
ing NLRP3 and ASC.

The inflammasomes are cytosolic protein complexes which
act as intracellular sensors of disruption of cell homeostasis.
Their stimulation leads to the proteolytic cleavage of the pro-
inflammatory cytokines pro-IL-1b and pro-IL-18 through the
activation of caspase-1. The active complex consists of a cen-
tral scaffold protein for which it is named (e.g., NLRP1,
NLRP3, NLRC4, and AIM2), an ASC containing caspase
activation and recruitment domain (CARD), which is manda-
tory for most inflammasomes, and the precursor form of
caspase-1 enzyme, pro-caspase-1. How the inflammasomes
are activated is still debated, but in the case of NLRP3, which
is the most studied caspase-1 activator [47], several signals
related to cell damage and stress such as generation of extra-
cellular ATP, production of reactive oxygen species (ROS),
and activators that form crystalline/particulate ligands are like-
ly to be involved [48]. When the inflammasome is activated,
pro-caspase-1 undergoes an autolysis leading to the formation
of caspase-1, which in turn cleaves pro-IL-1b, generating the
mature cytokine that is subsequently released along with
caspase-1 [49] via nonclassical secretory pathways [3, 4].
The NLRP3 inflammasome has been linked to acute disorders
(from infections [50] to acute brain injury [27, 29]) and

chronic diseases exhibiting an inflammatory component such
as experimental autoimmune encephalitis [51], Parkinson’s
disease [52], Alzheimer’s disease [53], and amyotrophic lat-
eral sclerosis [54]. The NLRP3 inflammasome has been stud-
ied in microglia and macrophages but has also been suggested
to have functions in neurons [29, 27, 55]. In previous exper-
iments, we analyzed the time course of inflammasome activa-
tion after SCI and showed that the protein and mRNA levels
of NLRP3 complexes are highly expressed at 72 h after injury
[29]. Further using double-immunofluorescence staining, we
revealed that most of the NLRP3+ cells were neurons. In
addition, microglia and astrocytes also seem to express
NLRP3, whereas the adaptor protein ASC was mainly con-
fined to microglia.

We provide now for the first time data suggesting a mainly
inhibitory role for E2 with respect to inflammasome stimula-
tion and dampening of neuroinflammatory processes after
SCI. In parallel, E2 reduced microglia accumulation and de-
creased the amounts of IL-18 and Il-1b. Since microglia rep-
resents a known source of inflammasomes, E2 effects on
inflammasomes are related to changes in microglia infiltration
and proliferation. After SCI, dying or dead neurons release
distinct compounds which can stimulate the resident microglia
to proliferate and form specific microglial subtype cells with
specific morphology. Activated microglia recruit peripheral
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Fig. 5 Co-localization of NLRP3 and ASC with Olig2 (Pan-oligodendrocyte) (a) after spinal cord contusion. Mature oligodendrocytes which were
stained with APC did not reveal ASC and NLRP3 co-staining in the experimental SCI model (b). Scale bar: 50 μm
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blood-derived immune cells to infiltrate the injured area and to
initiate and perpetuate local inflammation. Macrophages also
are attracted after microglial activation, and their numbers
transiently increase within 24 h after injury [56]. In contrast,
microglial cell numbers increase gradually during the first
week post-injury [57]. Microglia is supposed to be the main
cell type in the brain responsible for IL-1b and IL-18 secretion
[58]. A recent report showed that macrophages also secrete
IL-18 in a NLRP-3/ASC-dependent manner in response to a
stimulation with Staphylococcus aureus [59]. Further, it was
shown that IL-18 production occurs in microglia in response
to the classical activators ATP and is NLRP3- and caspase-1-
dependent [58]. This is of particular interest, since IL-18 is
currently believed to act as an important set screw for neuro-
inflammation [60]. Another important observation in this
study was that E2 protects oligodendrocytes after SCI. It has
been shown before that in male rats sustaining a contusion
injury, repeated administration of E2 reduced oligodendrocyte
apoptosis [25]. Further using double-immunofluorescence
staining, we revealed that NLRP3 and ASC are well-associat-
ed with oligodendrocyte, but only with Olig2 (pan-oligoden-
drocytes) whereas APC+ cells did not express an
inflammasome component in our SCI model. In a cuprizone-
induced demyelination animal model, E2 together with pro-
gesterone prevented partially the demyelination of the corpus
callosum [61]. Thus, it is likely that these protective effects are
partly exerted through direct actions on oligodendrocytes
which is supported by in vitro investigations showing that
the death of cortical oligodendrocytes, elicited by a cytotoxic
agent, is reduced by E2 [62].

In summary, our study presents data that E2 effectively
interferes and reduces the expression of several
inflammasome components after SCI and thereby reduces lo-
cal inflammation in the spinal cord.
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