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Abstract The blood-spinal cord barrier (BSCB) is a special-
ized protective barrier that regulates the movement of mole-
cules between blood vessels and the spinal cord parenchyma.
Analogous to the blood-brain barrier (BBB), the BSCB plays
a crucial role in maintaining the homeostasis and internal en-
vironmental stability of the central nervous system (CNS).
After spinal cord injury (SCI), BSCB disruption leads to in-
flammatory cell invasion such as neutrophils and macro-
phages, contributing to permanent neurological disability. In
this review, we focus on the major proteins mediating the
BSCB disruption or BSCB repair after SCI. This review is
composed of three parts. Section 1. SCI and the BSCB of
the review describes critical events involved in the pathophys-
iology of SCI and their correlation with BSCB integrity/dis-
ruption. Section 2. Major proteins involved in BSCB disrup-
tion in SCI focuses on the actions ofmatrix metalloproteinases
(MMPs), tumor necrosis factor alpha (TNF-α), heme
oxygenase-1 (HO-1), angiopoietins (Angs), bradykinin, nitric
oxide (NO), and endothelins (ETs) in BSCB disruption and
repair. Section 3. Therapeutic approaches discusses the major
therapeutic compounds utilized to date for the prevention of

BSCB disruption in animal model of SCI through modulation
of several proteins.
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Introduction

The blood-spinal cord barrier (BSCB) is analogous to the
blood-brain barrier (BBB) in that both systems are selectively
permeable and limit the entry of pathogens, blood-derived
products, and cells into the central nervous system (CNS)
[1]. The BSCB directs molecular exchanges between the
blood and spinal cord to maintain normal functioning and
information processing. The BSCB arises from specialized
barrier-forming cells and cellular processes, namely, endothe-
lial cells, pericytes, and astrocytic end feet [1]. The orchestrat-
ed arrangement of these cellular building blocks provides a
specialized capillary microenvironment that controls the entry
of molecules into the spinal cord. The morphology and clini-
cal implications of the BSCB are widely discussed in the
literature [1].

The regulatory and protective functions of the BSCB stem
from a highly evolved, complex network of tight junction (TJ)
proteins, including zonula occludens 1 (ZO-1), occludin, and
claudin-5 [2, 3] (Fig. 1). Here, we focus on the major target
proteins that participate in BSCB disruption/repair following
damage to the spinal cord. After spinal cord injury (SCI), the
degradation of TJ proteins causes BSCB disruption by in-
creasing BSCB permeability [4], culminating in the develop-
ment or progression of several CNS diseases, including mul-
tiple sclerosis [5], neuromyelitis optica [6], amyotrophic later-
al sclerosis [7], post-traumatic syringomyelia [8], neuropathic
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pain [9], spinal cord ischemia [10], and radiation injury to the
spinal cord and the most studied SCI [11–13].

Section 1. SCI and the BSCB

SCI is a clinically devastating condition. From a pathophysi-
ological viewpoint, SCI induces primary and secondary tissue
damage, including spinal cord edema and cell death in the
injured areas [14]. Initial mechanical damage generates the
primary injury, whereas secondary injuries result from pro-
gressive cell damage spreading from the gray matter to the
white matter. The primary injury leads to axonal and vascular
damage and has been considered irreversible. The primary
injury is accompanied by a series of strong immune responses
characterized by inflammation, synthesis of cytokines and
chemokines, and coordinated infiltration of peripheral leuko-
cytes to the site of damage [15–17]. Secondary injuries are
characterized by slow and delayed cell death as a consequence
of primary injury-induced biochemical changes [18–21]. Scar
tissue formed during the process of reactive astrogliosis is a
type of secondary injury that is generally regarded as a major
obstacle to axonal regeneration [22–25].

BSCB disruption following SCI allows neutrophils and
leukocytes to infiltrate the injured parenchyma and contribute
to secondary injury [26–28] (Fig. 2). The time course of
BSCB disruption and re-establishment of normal BSCB func-
tion post-SCI has been studied by a number of investigators.
BSCB disruption occurs within 5 min after spinal cord trauma
[11], lasts for up to 28 days after the initial injury, and spreads
along the entire length of the cord [12, 13, 29]. The BSCB can
remain compromised even at 56 days after SCI [30]. The
extended time course of barrier breakdown has been

confirmed by magnetic resonance imaging analyses [30, 31],
but the time course for re-establishment of BSCB function is
less clear, with results varying widely among studies [11, 12,
29]. Some reports suggest that SCI generates a biphasic open-
ing of the barrier. The first peak of abnormal leakage occurs
within several hours after injury, whereas the second peak is
evident between 3 and 7 days post-injury [13].

Significant vascular changes including BSCB disruption
occur after SCI and participate in its progressive pathophysi-
ology [32]. Early microvascular reactions and BSCB disrup-
tion are instrumental in SCI progression, because, as noted
above, the compromised barrier permits neutrophils, lympho-
cytes, and other immune cells to enter damaged tissue.
Lymphocytic infiltration of the injury site [33] increases in-
flammation, reactive astrogliosis, and the production of scar
tissue [34, 35]. Neutrophils mediate the initial events associ-
ated with demyelinating neuroinflammatory diseases and are
intimately linked with the status of BBB/BSCB integrity [36].
Following the mechanical disruption of capillaries at the mo-
ment of primary injury, blood-borne molecules and cells read-
ily cross into the injured parenchyma [29, 37].

Pathophysiological cascades involving various regulatory
proteins (discussed in detail in Section 2. Major proteins in-
volved in BSCB disruption in SCI) are initiated after primary
SCI and further contribute to spinal cord damage and BSCB
dy s f u n c t i o n [ 3 8 ] . T h e s e c omp l e x s e c o n d a r y
pathomechanisms are responsible for extension of damage
into the previously uncompromised segments of the spinal
cord [12, 29, 39]. BSCB disruption after SCI gives rise to
immune cell infiltration and inflammatory injury, eventually
triggering various neurological deficits [40–42]. BSCB dis-
ruption is associated with increased mortality, whereas im-
provements in BSCB function can significantly reduce

Fig. 1 The blood-spinal cord barrier (BSCB) exists due to the presence
of tight junctions (TJs) between endothelial cells and the paucity of
transcellular transport mediated by membrane-bound vesicles.
Endothelial cells, pericytes, and astrocytic end feet perform the barrier

function of the BSCB (a). Zonula occludens (ZO) proteins are important
for the clustering of claudins and occludin, leading to the formation of TJ
strands. ZOs and cingulin provide a direct link to the actin cytoskeleton
(b)
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secondary nerve injury [43, 44]. This suggests that early
BSCB repair is critical for the successful clinical treatment
of SCI.

Section 2. Major Proteins Involved in BSCB
Disruption in SCI

Matrix Metalloproteinases

Matrix metalloproteinases (MMPs) are a family of extracellu-
lar zinc and calcium-dependent endopeptidases that degrade
extracellular matrix (ECM) and other extracellular proteins
[45]. MMPs are essential for ECM remodeling, which is clin-
ically relevant in wound healing [46]. However, the excessive
proteolytic activity of MMPs can be detrimental and provoke
numerous pathological conditions, including BBB/BSCB dis-
ruption after injury [40, 47–49]. Experimental models of SCI
indicate that leukocytes (mainly neutrophils) are the first cells
to migrate across the vascular wall and arrive at the site of
parenchymal injury [36, 50, 51]. Next, neutrophils infiltrate
the spinal cord within the first hours after injury, peaking at
24 h [50, 51] and remaining at the injury site for up to 10 days

[50]. As leukocytes transmigrate, they release MMPs, which
degrade TJ proteins (ZO-1 and occludin), ECM components
(fibronectin, laminin, heparin sulfate, and others), and the sur-
rounding basal lamina [47, 52, 53].

Several MMPs, including MMP-2, MMP-3, MMP-9, and
MMP-12, contribute to SCI pathogenesis [54–58]. The pres-
ence of these proteinases has been reported as both beneficial
and detrimental. For example, MMP-2 facilitates wound
healing events that promote functional recovery after SCI
[54], whereas MMP-3, MMP-9, and MMP-12 trigger BSCB
disruption after SCI, promote inflammation, and contribute to
early development of secondary pathogenesis [40, 55, 57].
The role ofMMP-3, also known as stromelysin-1, has recently
been established in BSCB permeability and blood-borne in-
flammatory cell infiltration after SCI. BSCB permeability and
cell infiltration are significantly lower in MMP-3 knockout
(KO) than in wild-type (WT) mice, and the expression levels
of certain TJ proteins (e.g., occludin and ZO-1) are higher in
MMP-3 KO mice than in WT mice. Furthermore, exogenous
MMP-3 injection into the normal spinal cord induces BSCB
permeability [57].

MMP-9, also termed type IV collagenase, is a gelatinase/
gelatinase B secreted by infiltrating neutrophils [59] and a key

Fig. 2 Spinal cord injury (SCI) causes disruption of the blood-spinal
cord barrier (BSCB) and increases BSCB permeability followed by
transvascular transport of cytokines, chemokines, leukocytes, and
neutrophils. The primary injury phase is characterized by intense
inflammation leading to activation of the glial network. The extent of
microgliosis and astrogliosis depends on the severity of the injury. In
severe injury cases, reactive astrocytes invade neighboring domains,
recruit reactive microglia, and increase secretion of extracellular matrix
(ECM) molecules. This cascade of events results in the formation of a
persistent glial scar that can be impenetrable to regenerating axons. The

secondary injury phase includes several mechanisms characterized by
numerous cellular, molecular, and biochemical events that significantly
contribute to loss of functional recovery (a). Assorted active factors (e.g.,
matrix metalloproteinase (MMP)-3, MMP-9, MMP-12, tumor necrosis
factor alpha (TNF-α), bradykinin, nitric oxide (NO), and endothelins
(ETs)) participate either directly or indirectly in BSCB disruption to
increase barrier permeability. Conversely, heme oxygenase-1 (HO-1),
angiopoietin-1 (Ang-1), and vascular endothelial growth factor (VEGF)
stabilize the BSCB

3580 Mol Neurobiol (2017) 54:3578–3590



mediator of early pathogenesis in SCI [58]. MMP-9 contrib-
utes to abnormal vascular permeability and inflammation
within the first 3 days after SCI, while MMP blockade during
the initial injury period mitigates deleterious vascular events
and improves locomotor recovery. MMP-9 KO mice exhibit
significantly less BSCB disruption after SCI than WT mice.
Similar findings were observed in mice treated with an MMP
inhibitor from 3 h to 3 days after injury relative to vehicle
control animals [40]. On the other hand, oxidative stress
post-SCI promotes MMP-9 upregulation, BSCB disruption,
and apoptosis, whereas overexpression of superoxide dismut-
ase1 in transgenic rats decreases oxidative stress and offsets
MMP-9-mediated BSCB disruption [58].

MMP-12, or macrophage metalloelastase, is critical for the
migration of blood-borne macrophages across the endothelial
basement membrane into inflammatory sites [60]. Spinal
cord-injured MMP-12 null mice show attenuated BSCB dis-
ruption and a lower density of microglia and macrophages
than WT controls [55]. Clearly, spinal cord-injured mice with
a genetic null mutation in MMP-3, MMP-9, or MMP-12 ex-
hibit stabilization of the BSCB, reduced infiltration of neutro-
phils, microglia, and macrophages, and significant improve-
ments in locomotor recovery relative to spinal cord-injured
WT mice [40, 55, 57].

Tumor Necrosis Factor Alpha

Tumor necrosis factor alpha (TNF-α) is an inflammatory cy-
tokine involved in systemic inflammation and is a major com-
ponent of the acute phase injury reaction. Serum levels of
TNF-α and other proinflammatory cytokines are higher in
patients with SCI than in uninjured individuals [61]. TNF-α
is produced both in the spinal cord and in the periphery as a
consequence of tissue damage, and its transport after SCI is
time-, region-, and lesion type-specific [62, 63]. TNF-α can be
detected at 1 h post-injury in resident neurons and glial cells,
as well as in infiltrating monocytes and macrophages, and its
expression can persist for upto 1 week after SCI [64, 65]. Once
BSCB permeability returns to normal, TNF-α levels secreted
from the initially infiltrating inflammatory cells generally
decrease.

The effects of TNF-α after SCI are somewhat controver-
sial. Accumulating experimental evidence now supports a du-
al role for the cytokine [66, 67]. On the one hand, axonal
regeneration after compressive SCI in the rat is facilitated by
transplantation of macrophages, which secrete TNF-α [68].
On the other hand, TNF-α overproduction after SCI may be
directly toxic and lead to cellular apoptosis [69]; the cytokine
also augments inflammatory/immune responses [70, 71].
Furthermore, TNF-α increases BBB/BSCB permeability
while decreasing the expression of TJ proteins through acti-
vation of nuclear factor-kappa B (NF-κB) signaling [72, 73].
TNF-α can additionally modulate barrier permeability via

other mechanisms [74–76]. For example, increased transport
of TNF-α across the BSCB (rather than cellular leakage) is
primarily responsible for the increased entry of TNF-α into
the spinal cord [65]. TNF-α receptors (p55 and p75) critically
facilitate TNF-α transport and thus, p55 and p75 TNF-α re-
ceptor double-KO mice do not transport the cytokine [77].

Elevated p55 receptor expression is observed during early
SCI (between 12 h and 1 week), whereas p75 expression is
upregulated at later time points [78]. Transport systems for
TNF-α at the BSCB are upregulated between 3 and 5 days
after SCI in WT CD1/ICR mice with functional p55 and p75
receptors [79], whereas transcytosis of 125I-TNF-α across an
endothelial cell monolayer composing the BBB/BSCB is sig-
nificantly reduced in the absence of functional p55 and p75
receptors. Interestingly, p75 receptor single-KO mice showed
a reduced increase in 125I-TNF-α uptake after SCI relative to
WT controls, while p55 receptor KO mice showed no signif-
icant increase in 125I-TNF-α uptake [78]. Furthermore, histo-
logical and behavioral studies showed that deletion of the p55
receptor yielded enhanced rates of cell apoptosis, larger lesion
sizes, and delayed functional recovery compared with deletion
of the p75 receptor. These findings indicate that the p55 re-
ceptor plays a greater role in mediating the increased uptake of
TNF-α into the spinal cord after SCI than the p75 receptor
[80].

Heme Oxygenase-1

The heme oxygenase (HO) system efficiently degrades heme
into equimolar quantities of biliverdin, carbon monoxide, and
free iron (Fe3+) [81]. To date, three HO isoenzymes (HO-1,
HO-2, and HO-3) have been reported. HO-1 and HO-2 are
fully characterized, catalytically active forms, whereas HO-3
possesses marginal activity [82–84]. HO-1 and HO-2 function
differently in the defense mechanism of the injured CNS. HO-
1 protects against further damage by contributing to controlled
death of injured cells through an intrinsic suicide program,
while HO-2 suppresses inflammatory responses mediated by
nitric oxide (NO)-derived radicals after SCI [85].

HO-1 is an inducible enzyme found at low levels in the
uninjured spinal cord [86] but is upregulated post-injury
[86–88]. Administration of an HO-1 inhibitor in vivo delayed
motor function recovery in the damaged spinal cord, suggest-
ing a protective effect of the enzyme in SCI [87]. After SCI,
activated neutrophils in the damaged tissue express HO-1
[87], stabilize the BSCB, and limit infiltration of additional
neutrophils. Barrier permeability and neutrophil infiltration
are significantly higher in spinal cord-injured HO-1+/– mice
than inWTmice [89], whereas vascular induction of HO-1 by
systemic administration of hemin modulates neutrophil infil-
tration and lessens barrier disruption in the acutely injured
spinal cord [90]. Experiments conducted in HO-1 KO mice,
as well as studies of HO-1 deficiency in humans, support the
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hypothesis that HO-1 modulates early inflammatory re-
sponses and exerts potent anti-inflammatory actions [91, 92].

Indirect observations also demonstrate the beneficial im-
pact of HO-1 in SCI. For instance, HO-1 decreases the expres-
sion of intracellular adhesion molecule 1, which arbitrates
neutrophil adhesion to the endothelial surface and is required
for the transmigration of neutrophils into the parenchyma [93,
94]. Additionally, HO-1 may stabilize the BSCB by modulat-
ing interleukin-10 and TNF-α expression levels [95]. Notably,
hypoxia, oxidative stress, and exposure to endothelin 1 (ET-1)
all result in the induction of the enzyme [50, 88, 96]. Recently,
numerous studies have shown that HO-1 induction is an im-
portant cellular protective mechanism against oxidative injury
[97].

Angiopoietins

Angiopoietins (Angs) are vascular growth factors involved in
blood vessel formation/maturation and endothelial cell surviv-
al through interactions with the endothelial tyrosine kinase
(Tie-2) receptor [98, 99]. Angs are essential for normal vas-
cular functions in the brain [100, 101] and spinal cord
[102–104]. The Ang family has four members: Ang1 through
Ang4. Ang-1, Ang-2, and Ang-4 are found in humans, while
Ang-3 is a mouse ortholog of human Ang-4 [99, 105].

Ang-1 and Ang-2 exert opposite actions on blood vessels
by competing with similar affinity for the same receptor, Tie-
2. Ang-2 exerts autocrine and paracrine effects on the Tie-2
receptor, thereby antagonizing the effects of Ang-1. SCI pro-
duces a lasting decrease in Ang-1 levels, which further con-
tributes to pronounced vascular dysfunction and functional
impairment [103, 104]. Contrarily, SCI promotes a marked
and persistent increase in Ang-2 levels [106]. Ang-1 reduces
vascular leakage in uninjured tissue by strengthening platelet
endothelial cell adhesion molecule- and vascular endothelial
cadherin-regulated inter-endothelial adhesions [100, 107],
whereas Ang-2 contributes to beneficial pro-angiogenic and/
or gliogenic processes underlying recovery processes after
SCI [106].

Downregulated Ang-1 and upregulated Ang-2 expression
coincide with marked BBB breakdown after brain injury
[108]. Ang-1 combats vascular endothelial growth factor
(VEGF)-induced BBB permeability, which is linked with a
decrease in MMP-9 activity [109]. In a similar manner, Ang-
1 can prevent VEGF-induced retinal vascular permeability
[110]. Of note, transplantation of bone marrow stromal cells
reduced BBB permeability by increasing the expression of
Ang1/Tie2 [100]. Along the same lines, Ang-1 treatment re-
duced BSCB permeability in an animal model of SCI [102].
Administration of an αvβ3 integrin-binding peptide (C16) or
an Ang-1-mimetic agent following SCI rescued blood vessels
at the injury epicenter, prevented white matter degeneration,
improved locomotor function, and reduced inflammation

[102]. Meanwhile, combined treatment with adenoma-
associated virus (AAV)-VEGF and AAV-Ang-1 improved
BSCB integrity and functional recovery after SCI [104].

Bradykinin

Bradykinin is an endogenous nonapeptide produced by enzy-
matic cleavage of precursor kininogens and acts on B1 and B2

receptors [111]. Bradykinin is a potent endothelium-
dependent vasodilator that increases vascular permeability,
participates in inflammatory reactions, and contributes to
BSCB disruption in SCI. The bradykinin B1 receptor is in-
duced by chronic infection or tissue injury, while the B2 re-
ceptor is constitutively present at the BSCB [112, 113].
Bradykinin can promote nerve damage and potentiate distur-
bances in BBB/BSCB function through activation of B2 re-
ceptors [114].

Following SCI, bradykinin increases TNF-α production at
the site of injury and induces other inflammatory mediators,
raises intracellular calcium levels, and provokes glutamate
release [111, 114]. Bradykinin antagonists attenuate BSCB
permeability following SCI [115, 116]; clinically, these agents
also reduce neurological impairment after closed head injury,
suggesting that bradykinin inhibition is a key mechanism for
neuroprotection [112, 113]. An interesting clinical use of the
nonapeptide concerns pharmacological preconditioning to in-
duce bradykinin tolerance in nerve tissue. Bradykinin precon-
ditioning 15 min before ischemia decreases BSCB permeabil-
ity and protects the rat spinal cord against ischemic injury; this
therapeutic action is reversed by the bradykinin B2 receptor
antagonist, B9430 [117]. Similarly, bradykinin precondition-
ing can provide mitochondrial preconditioning, increase anti-
oxidant enzyme levels, and promote neuronal survival in rab-
bits with spinal cord ischemia [118].

Nitric Oxide

Nitric oxide (NO) is a gaseous biomolecule involved in a
variety of physiological processes in the CNS. NO can have
both beneficial [119] and detrimental [120] effects in neuro-
logical disease states. NO is produced by nearly all tissues;
however, the highest content of NO is reported in the CNS
[121]. NO synthase (NOS) is responsible for the production of
NO and exists in three isoforms: neuronal NOS (nNOS), en-
dothelial NOS (eNOS), and inducible NOS (iNOS). The first
two isoforms are constitutively expressed, while iNOS is
expressed under pathological conditions [122]. Uncontrolled
NO production can lead to tissue injury and cellular damage in
the spinal cord through the generation of assorted reactive
oxygen species (ROS), including peroxynitrite [123, 124].
Increased NOS expression is found in the dorsal horn follow-
ing spinal cord ischemia or peripheral nerve injury [125, 126],
whereas NOS-positive interneurons are upregulated following
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more severe spinal cord hemisection or impact injury, espe-
cially rostral to a lesion [127].

NO concentrations and NOS activity in the injured spinal
cord have been measured in animal models during the imme-
diate post-injury period. Direct measurement of peroxynitrite
via microdialysis in the spinal cord revealed increased NO
levels within the injured tissue [128]. Another study reported
that NO levels in injured spinal cord were approximately three
times higher than those in the uninjured cord at 30 min after
SCI, as determined by an electron spin resonance spin-
trapping technique [129]. Some investigators have suggested
that the initial maximal increase in NO production in SCI is
caused by nNOS and that the second wave of increased NO
generation is mainly due to iNOS [130]. Notably, immunohis-
tochemical findings showed a marked upsurge in the number
of nNOS-expressing cells immediately after an injury; how-
ever, the cell count returned to control levels by 24 h post-SCI
[129].

Brain-derived neurotrophic factor and insulin-like growth
factor-1 can defend against upregulation of nNOS, thereby
reducing BSCB damage, spinal cord edema, and cell injury
[131]. Likewise, topical application of TNF-α antiserum for
10 min after SCI followed by NOS antiserum for 20 min sig-
nificantly improved functional recovery and BSCB integrity,
inhibited edema formation, and diminished spinal cord pathol-
ogy, suggesting that early blockade of both TNF-α and nNOS
is beneficial [132]. Furthermore, acute inhibition of iNOS by
antisense and pharmacological agents mitigated several path-
ological processes in SCI, including BSCB disruption [133];
acute molecular perturbation of iNOS via the antisense ap-
proach also enhanced neuronal preservation and functional
recovery after SCI [134].

Endothelins

The endothelins (ETs) are a family of peptides consisting of
three isoforms: ET-1, ET-2, and ET-3. ETs exert their biolog-
ical effects by activating three receptor subtypes: ETA, ETB1,
and ETB2 [50, 135]. ETs are the most potent known vasocon-
strictors and have essential functions in embryonic develop-
ment, vascular remodeling, and wound healing [136, 137].
Conversely, several reports suggest that BSCB disruption by
traumatic SCI can generate ETs [138, 139]. Excessive activa-
tion of the ET system can be detrimental, leading to multidi-
mensional pathological conditions, including prolonged vaso-
spasm, ischemic damage, and BBB or BSCB disruption fol-
lowing brain injury or SCI [50, 136, 140, 141].

ET-1 and ET-3 are expressed in vascular endothelial cells
within the intact spinal cord [142]. In the normal, uninjured
spinal cord, the ETA receptor is found mainly in vascular
smooth muscle cells and primary afferent nerve fibers, while
the ETB receptor is abundantly expressed in endothelial cells,
radial glia, a small population of astrocytes, and epithelial

tissues [143]. ETs are injury-dependent peptides, and their
synthesis is initially increased in neuronal and endothelial
cells [140, 144], followed by delayed synthesis in reactive
astrocytes [144, 145], infiltrating leukocytes [146], and acti-
vated microglia and macrophages [144, 147]. ET-1 contrib-
utes to the axial pattern of BSCB breakdown after SCI [140]
and intrathecal ET-1 administration reduces spinal cord blood
flow and results in prolonged BSCB disruption [141].
Moreover, intrathecal administration of ET (48 ng) results in
moderate to severe locomotor deficits, whereas higher ET
doses produce more pronounced locomotor deficits character-
istic of severe SCI [148]. Notably, the ET antagonist,
bosentan, can significantly diminish BSCB disruption [140]
and SB209670, a potent nonselective ET receptor antagonist,
can prevent or delay axonal degeneration after SCI [149].

An additional function of ET-1 is to mediate oxidative
stress by modulating blood flow to the spinal cord [150].
ET-1 employs three routes of entry into the damaged spinal
cord: (i) through the disrupted barrier; (ii) via softening of the
spinal cord, a pathological condition termed myelomalacia;
and (iii) through erythrocytes [50]. After SCI, ETBR expres-
sion is markedly upregulated in glial cells, but vascular ETAR/
ETBR expression remains unaltered [143]. Accordingly, ther-
apeutic strategies that employ ET-1 antagonists to impede ET-
1-mediated vasoconstriction are beneficial in terminating SCI
progression. ET receptor antagonists likewise prevent or delay
axonal degeneration after SCI [149], and blockade of ETAR
and/or ETBR reduces inflammatory responses and oxidative
stress, overturns MMP-9 activation, and enhances long-term
neurological function post-injury [151]. Following spinal cord
trauma, vascular ETAR/ETBR activation plays a critical role in
post-traumatic ischemia, whereas astrocyte-only ETBR activa-
tion is associated with reactive gliosis [143]. These studies
suggest that BSCB disruption facilitated by ET activation is
a crucial event leading to leukocyte infiltration, inflammation,
and ROS-induced damage to the spinal cord.

Section 3. Therapeutic Approaches

Therapeutic approaches to improve BSCB integrity focus on
restoring BSCB function to alleviate spinal cord tissue dam-
age. Numerous drugs have been investigated for their capacity
to target specific proteins that are involved in BSCB disrup-
tion after SCI (Table 1). Many reports suggest that hypoxic
conditions [165] and certain drugs (e.g., methamphetamine)
[166], like traumatic SCI, strongly increase the permeability
of the BSCB. Recently, pretreatment with highly purified rat
growth hormone in an animal model significantly attenuated
edema formation and BSCB permeability following SCI
[167]. Intravenously delivered mesenchymal stem cells also
reduced BSCB leakage and the permeation of Evans blue, a
marker of barrier permeability [168]. Therefore, future
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Table 1 Modulators of blood-spinal cord barrier permeability

Therapeutic approach Class BSCB permeability Ref

Valproic acid Histone deacetylase inhibitor Valproic acid improves functional recovery by
attenuating BSCB disruption via inhibition
of MMP-9 activity after SCI.

[152]

Vascular endothelial growth
factor and Angiopectin-1

Angiogenic response and
vascular stability proteins

Sustained delivery of both VEGF165 and Ang-1
using adeno-associated virus vector immediately
after injury improves BSCB integrity and functional
recovery after SCI.

[104]

B9430 Bradykinin antagonist B9430 decreased the BSCB disruption immediately
after SCI but failed to affect delayed opening
of BSCB observed 72 h after SCI.

[116]

Fluoxetine Selective serotonin reuptake inhibitor Fluoxetine prevented BSCB disruption via inhibition
of MMP activation after SCI.

[4]

Dexmedetomidine α2-adrenergic receptor agonist Dexmedetomidine preconditioning stabilized the BSCB
integrity against spinal cord I/R injury by inhibition
of MMP-9 and enhancing the Ang1-Tie2 system.

[153]

L-NG-Nitroarginine (L-NNA) nNOS inhibitor Long-term treatment with L-NNA attenuated
SCI-induced NOS upregulation, BSCB breakdown,
edema formation, and cell injury.

[154]

Ghrelin Neuropeptide Ghrelin inhibits BSCB disruption/hemorrhage by
attenuating MMP-9 and SUR1/TrpM4 expression
and activation after SCI.

[155]

Tamoxifen Estrogen receptor antagonist Tamoxifen attenuates BSCB permeability,
tissue edema formation, microglial activation,
neuronal cell death, and myelin loss in rats
subjected to SCI significantly decreased
interleukin-1beta production.

[156]

D-JNKI1 Specific inhibitor of JNK pathway D-JNKI1 treated animals show a lower increase
of erythrocyte extravasation and BSCB permeability
in a mouse model of SCI.

[157]

iNOS antisense oligonucleotides,
N-[3(Aminomethyl) benzyl]
acetamidine or aminoguanidine

iNOS inhibition All of iNOS inhibitors reduced the degree of BSCB
disruption and neutrophil accumulation within
the injury site in a rat model of SCI.

[133]

ONO-5046 Neutrophil elastase inhibitor Pretreatment of ONO-5046 significantly reduced the
increase of neutrophil accumulation or infiltration
and the extent of BSCB permeability.

[158]

Aminoguanidine Nitric oxide synthase inhibitor Aminoguanidine injection at 150 mg/kg after SCI
significantly decrease BSCB permeability
in a rat model of SCI.

[159]

Bone marrow stromal
cells (BMSC)

Stem cells Intrathecal transplantation of BMSC stabilized BSCB
integrity through inhibiting the upregulation of MMP-9
and TNF-α induced by spinal cord I/R injury in rabbits.

[160]

Ischemic preconditioning Preconditioning Ischemic preconditioning attenuates the increase in BSCB
permeability due to spinal cord I-R injury in rabbits by
the preservation of tight junction protein ZO-1 and reducing
MMP-9 and TNF-α expression.

[161]

MiR-27a MicroRNAs MiR-27a ameliorates inflammatory damage to the BSCB
after spinal cord I/R injury in rats by downregulating
TICAM-2 of the TLR4 signaling pathway.

[10]

17β-Estradiol (E2) Estrogen steroids E2 (300 μg/kg) administration immediately after SCI inhibits
MMP-9 and SUR1/TrpM4 expression and thereby attenuates
BSCB disruption/hemorrhage in a rat model of SCI.

[162]

Melatonin Hormone Melatonin (50 mg/kg) exhibited significantly reduced BSCB
permeability in a mice model of SCI through reducing
MMP3/AQP4/HIF-1α/VEGF/VEGFR2 expression after SCI.

[163]

Sevoflurane Anesthetic Preconditioning with 2.4 % sevoflurane attenuated spinal cord
IR injury by inhibiting recruitment of microglia and secretion
of MMP-9; thus inhibiting downstream effects on inflammatory
damage to BSCB integrity and neuronal apoptosis.

[164]

TICAM-2 Toll-like receptor adaptor molecule 2, TLR4 Toll-like receptor 4, I/R ischemia-reperfusion, JNK c-Jun N-terminal kinases, ZO-1 zonula
occludens, BMSC Bone marrow stromal cells, BSCB blood-spinal cord barrier, VPA valproic acid, TNF-α tumor necrosis factor alpha, SCI spinal cord
injury
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approaches to prevent barrier breakdown after SCI might be
directed toward developing proteins or drugs or combinations
thereof to synergistically target different aspects of BSCB
pathophysiology.

Conclusions

SCI and other spinal cord disorders significantly impair the
normal function of the BSCB. The BSCB represents the first
line of defense against injuries to the spinal cord, and BSCB
dysfunction is well documented in SCI. Vascular damage and
barrier breakdown are universal consequences of SCI, both
clinically and in animal models. BSCB disruption after SCI
generates harmful levels of various bioactive factors, includ-
ingMMPs, TNF-α, ETs, bradykinin, inflammatory cytokines,
and ROS. TJ proteins represent the major protein component
of the BSCB and, therefore, interference with TJ content and
function can impact BSCB permeability. Inflammatory factors
also increase BSCB permeability by time-dependently modu-
lating the expression and distribution of TJ proteins. Finally,
strategies to improve barrier integrity may delay the progres-
sion of SCI or related disorders, and target proteins involved
in maintaining BSCB integrity may provide an attractive strat-
egy to arrest or impede SCI progression.
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