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Abstract The retina is a delicate neural tissue responsible for
light signal capturing, modulating, and passing to mid-brain.
The brain then translated the signals into three-dimensional
vision. The mature retina is composed of more than 50 sub-
types of cells, all of which are developed from a pool of early
multipotent retinal progenitors, which pass through sequential
statuses of oligopotent, bipotent, and unipotent progenitors,
and finally become terminally differentiated retinal cells. A
transitional progenitor model is proposed here to describe
how intrinsic developmental programs, along with environ-
mental cues, control the step-by-step differentiation during
retinogenesis. The model could elegantly explain many cur-
rent findings as well as predict roles of intrinsic factors during
retinal development.
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In the adult vertebrate retina, there are six major classes of
neurons and one class ofMüller glial cells. The retinal neurons
include cone and rod photoreceptors and horizontal, amacrine,
bipolar, and ganglion cells. Photons from the light are first

caught by cone or rod photoreceptors, which convert them
into signals and relay the signals to the interneurons, the bi-
polar cells. The horizontal cells modulate the signals from
photoreceptors before they are relayed to the bipolar cells.
Again, the amacrine cells integrate and modulate the signals
from bipolar cells before they are relayed to retinal ganglion
cells (RGCs). Finally, the RGCs transferred the signals to the
specific brain regions and the brain generated the three-
dimensional vision. As the only major non-neuronal cell type,
Müller cells provide scaffolding supports, nutrients, metabo-
lite recycling, etc. for the neurons. A special cell type, microg-
lia, is not from retinal origin but arises from circulating mono-
cytes/macrophages. Microglia is involved in immune surveil-
lance and cleaning of the retina.

Retinal cells are highly diversified. Most of the major class
of retinal cells can be further categorized into subgroups ac-
cording to their morphology and function. For example,
RGCs have more than 30 subgroups [1]; amacrine cells have
over 29 subgroups [2, 3]. All these retinal cells are originally
developed from a small group of multipotent progenitor cells
in the optic vesicle. This complicated process is delicately
controlled. A popular intrinsic model has been proposed to
describe this process [4–8]. The main point of the model is
that progenitors go through intrinsically determined compe-
tence states, during which they are capable of giving rise to a
limited subset of retinal cell types under the influence of ex-
trinsic signals. The model could gracefully explain how the
intrinsic and extrinsic factors together control retinal cell gen-
esis. However, details of howmultipotent progenitors develop
into each cell type are still murky. Here, I summarized the
recent advances on retinal and neural development, focusing
on topics such as cell division and differentiation, retinal in-
trinsic programs, intrinsic program versus stochastic mecha-
nism, transitional progenitor model, early-born progenitors
(EBPs) versus late-born progenitors (LBPs), and so on.

* Kangxin Jin
kxjin@yahoo.com

1 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic
Center, Sun Yat-sen University, 54 South Xianlie Road,
Guangzhou, Gongdong 510060, China

Mol Neurobiol (2017) 54:3565–3576
DOI 10.1007/s12035-016-9899-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s12035-016-9899-x&domain=pdf


Cell division and differentiation

Retinal progenitor cell (RPC) pool contains a limited number
of cells. To guarantee the normal size of the retina, the
multipotent progenitors undergo fast cycles of self-
replication before initiating cell differentiation. The self-
replicating process is under the tight control of Rax,
Meis1&2, Pax6, Notch1, Shh, and other factors [9–14].
Mutations in this group of factors generally cause
microphthalmia or more serious phenotypes in human and
animal models, due to far fewer progenitor cells available in
the progenitor pool.

There are two scenarios when a progenitor cell undergoes
mitosis (Fig. 1). One scenario is that the progenitor is evenly
divided into two identical daughter cells, either two identical
progenitors (Fig. 1a) or two neurons/glias of the same type
(Fig. 1c). Two progenitors are usually generated at the early
developmental stage when the progenitor pool needs to be
expanded rapidly. On the other hand, two differentiated
daughter cells will be produced at the late stage of organogen-
esis. The second scenario is that the progenitor divides asym-
metrically and gives rise to one progenitor cell and one

neuron/glia (Fig. 1b), or two neuron/glial cells of different
types (Fig. 1d). Examples of these scenarios were provided
in the study of Ath5 in the wild-type and lakritz mutant mice
[15] and in a work by Cayouette and colleague [16, 17].

At the onset of neurogenesis, the progenitors gradually
switch from proliferative, symmetric to neurogenic, asymmet-
ric divisions. The shift is shown to be associated with a change
of the orientation of the mitotic spindles in the dividing pro-
genitors. It is proposed in CNS development that if the cleav-
age plane aligned in parallel with apical-basal axis, it is termed
horizontal division; whereas the cleavage plane is perpendic-
ular to apical-basal axis, it is named vertical division (Fig. 1e,
f). It is found that horizontal division of a mitotic cell usually
divides symmetrically and gives two identical daughter cells,
while the vertical division tends to be asymmetric and gives
two daughter cells of different size and morphology. This may
partially attribute to the unequal inheritance of cell surface
molecule Notch and intracellular cell fate determinants
Numb and etc. [16, 18]. Observations byKosodo et al. suggest
that the vertical division is mostly asymmetric, but it can be
either proliferative, symmetric or neurogenic, asymmetric, de-
pending on the equal or unequal inheritance of cell constitutes
[19]. Interestingly, the definition of horizontal versus vertical
division of neural progenitors is similar to Dr. Hans
Spemann’s definition of sagittal versus frontal division of fer-
tilized eggs, and the apical side is counterpart of the gray
crescent region.

The key question is, what is the molecular machinery de-
termining symmetric versus asymmetric inheritance? The
findings from drosophila to mammals show that the polarity
is controlled by evolutionarily conserved protein complexes:
the Par proteins (Par3-Par6-aPKC), the heterotrimeric G pro-
tein complex (Gαi-Pins (LGN/Gpsm2 in mammals)-Mud
(NuMA in mammals)), and Insc that can bind Par3 and Pins
[20, 21]. The Notch signaling pathway is also critical in reg-
ulating the division polarity. Notch is found to promote the
asymmetric localization of the protein Numb and the position-
ing of the cleavage furrow [22]. Eya1 and Gαs also controls
spindle orientation and asymmetrical division by regulating
Notch signaling [23, 24]. However, it is still unclear how each
fate-determining transcription factor specifically controls the
asymmetrical cell division by regulating these polarity pro-
teins during cell cycle. Mostly, the regulation was initiated at
G1 phase, as G1 phase cells have permissive epigenetic envi-
ronment that allows developmental programs to be activated,
and G1 phase cells favorably respond to fate-determining ex-
trinsic cues [25].

Retinal intrinsic programs specifying cell fates

Emphasis has been put on intrinsic developmental programs
in specifying cell fates. However, what composes an intrinsic

Fig. 1 Four cell divisionmodes for symmetric and asymmetric divisions.
(A) A progenitor cell divided symmetrically and gave rise to two
undifferentiated progenitor cells. (B) A progenitor cell divided
asymmetrically and resulted in one undifferentiated daughter cell and
one differentiated daughter cell. (C) A progenitor cell divided
symmetrically and two differentiated daughter cells of same type were
born. (D) A progenitor cell divided asymmetrically, and two
differentiated daughter cells of different types were generated. In E&F,
cleavage plane aligns in parallel or vertical to the apical-basal axis,
namely horizontal or vertical division, respectively. (E) Horizontal
division usually leads to symmetric division of two identical daughter
cells, each inheriting equal amount of cell fate determinants. (F)
Vertical division tends to asymmetrically divide a progenitor into two
daughter cells of different size and morphology, each inheriting unequal
amount of cell fate determinants

3566 Mol Neurobiol (2017) 54:3565–3576



program is not clearly defined. An intrinsic program is
established in evolution and is mainly encoded by a cascade
of intrinsic factors, especially transcription factors. An intrin-
sic program can be initiated by a signal from intrinsic or ex-
trinsic factors, or another program. Once initiated, a program
is hardly reversible in vivo; however, it can be forcibly aborted
by another program, which sometimes leads to cell apoptosis.
A cell in homeostasis is in a balanced state of a series of
programs. Once the balance is destroyed in the progenitor,
the cell either changes its status (i.e., dividing or differentia-
tion) or commits to apoptosis. A program may have two or
more alternative subprograms at a branching point. Selective
execution of one of the subprograms depends on the inputs of
extrinsic signals, which underlies the basis that cell fate deci-
sion relies on both intrinsic and extrinsic factors.

In general, there are three major types of intrinsic programs
in retinal or other tissue development (Fig. 2). The first type is
the linear program, which usually occurs at the late stages of
development (Fig. 2a). The linear program reflects the sim-
plest biological causal relationship, and one program specifies
only one cell-type fate. Disruption of the program leaves the
cell nowhere to go, and it usually commits to cell apoptosis.
For instance, Bhlhb4 is specifically expressed in the rod

bipolar cells and guides the terminal differentiation of the
cells. Deletion of Bhlhb4 causes the cells take the path to
apoptosis in the mouse retina (Fig. 2a, [26]).

The second type is the branching program (Fig. 2b), which
mostly takes place in the early and peak stage development.
The progenitor cell taking the branching program has two to
several subprograms to choose, and it depends on the extrinsic
signals to pick the right subprogram to continue. The lack of
complete reliance on intrinsic signals ensures that there are
branching choices and not a linear program. Again, this
is how extrinsic and intrinsic factors together determine
cell fate. Taken as an example, the early-born progenitor
is capable of differentiating into a RGC, horizontal or
amacrine cell (Fig. 2b). The fate choices depend on
whether the extrinsic signals to activate the Foxn4 or
Brn3b subprograms. If Brn3b is activated, the progeni-
tor will terminally differentiate into a RGC. If Foxn4 is
triggered, the progenitor will become a horizontal or
amacrine cell depending on further choice. If Brn3b
gene is knocked out, there would be a temporal increase
of horizontal and amacrine cells [27]. Alternatively, if
Foxn4 expression is abolished, RGC population would
temporally get boosted [28, 29].

Fig. 2 Typical intrinsic programs in retinal and other tissue development.
a The linear program specifies only one cell type fate, and disruption of
the program usually results in cell apoptosis. b The branching program
has two or more subprograms to choose at the branching point. Which
subprogram(s) to execute depends on the extrinsic signal input and will
lead to different cell fate(s). For example, the extrinsic factor x will force
the progenitor to take the RGC path while inhibiting Amacrine and

Horizontal path. Disruption of one subprogram will result in more
execution of the other programs. In this case, more amacrine and
horizontal cells will be generated when RGC subprogram is destroyed
during development. c The converged program is the contrary to the
branching program. Two or more subprograms merged together to
define one cell type fate. Block of one of subprograms will generate
less target cells to some extent

Mol Neurobiol (2017) 54:3565–3576 3567



The last major type is the converged program (Fig. 2c).
Contrary to the branching program, the converged program
has two or more subprograms merged together to specify one
cell type. Evolutionally considered, this is important since it
provides a redundant mechanism to guarantee the generation
of a crucial cell type. Interruption of one of the subprograms
usually results in a decrease but not a complete loss of target
cells. For instance, Brn3b, Isl1, Sox4, and Sox11 are all im-
portant for RGC development. Deletion of any one of them
would cause partial loss of RGCs, but compound knockout of
two factors would lead to a near-complete loss of RGCs
[30–32].

In conclusion, three types of programs are all important
in fate decision during development. It should be emphasized
that none of the programs is isolated in the cell, and they work
synergistically in sequential or in parallel to activate/inhibit
downstream genes, since conflicting programs usually lead
to cell death, which were eliminated during evolution. For
instance, Foxn4, Ptf1a [33], and Tfap2α/Tfap2β [34, 35] op-
erate in a sequential cascade to determine horizontal and
amacrine cell fates, while RORβ1 seems to work in parallel
with Foxn4 to turn on Ptf1a expression [36]. These programs
work coordinately to form functional horizontal and amacrine
neurons in the retina.

Intrinsic programs versus stochastic mechanism

It is believed that intrinsic developmental programs are the
most decisive forces in specifying cell fates [37, 38]. Slater
[39] and Gomes [40] et al. found that stochastic mechanism
also plays an important role in the process. However, Gomes’s
conclusion that stochasticity is the major role during retinal
development is in question. If it is largely a stochastic force,
one would expect that an approximately equal number of rods,
amacrine, bipolar, andMüller cells would be generated during
the experiment, obviously this is not the case. Then, it raises
the questions: (i) what is underlying the stochastic mecha-
nism, and (ii) when does the stochastic mechanism take over
the control? One plausible answer to (i) is random fate choice
due to the balance of forces from two or more opposite pro-
grams, per se, the balance due to the dose-dependent effect of
antagonistic transcription factors. As illustrated in Fig. 3, in
postmitotic Otx2+ progenitors, Blimp1 and Vsx2 (Chx10)
were the two intrinsic determinants to choose a bipolar or a
rod cell fate [41, 42]. There exists a point which I called
balance point when Blimp1 and Vsx2 reach equivalence. A
small region flanking the balance point, named the stochastic
zone, is the key to question (ii). Beyond the left side of sto-
chastic zone, the Blimp1 dominates the Vsx2 and the cell will
definitely become a rod, and vice versa. Only in the stochastic
zone, the stochastic force has some effects on cell fate choices;
however, the ratio should be close to 50:50 for rod and bipolar

fates in the zone. As a result, stochasticity causes variations in
cell fate determination, but will not affect the overall cell ratio
statistically. We may conclude that the intrinsic program(s) is
the major driving force, while the stochastic mechanism also
plays a minor role and causes variations in the development.

Transitional progenitor model for retinogenesis

A pluripotent progenitor cell usually does not give rise to
terminally differentiated cells directly; instead, it generates
the multipotent progenitors. The multipotent progenitors lose
the pluripotency, are partially determined cells, and can only
produce a limited set of cell types. The multipotent progeni-
tors also give birth to more restricted intermediate progenitors,
the oligopotent progenitors, which are capable of generating
only three or more cell types. The oligopotent cells then dif-
ferentiate into bipotent and finally into unipotent progenitors
that can only produce terminally differentiated progeny. This
multi-step commitment seems to be the case in the
retinogenesis as well as in other tissue development, such as
in hematopoietic genesis. Each step is controlled by one or a
serial of intrinsic programs. The intermediate oligopotent,
bipotent, and unipotent retinal progenitors are defined as tran-
sitional progenitors in this model. The transitional progenitor
model emphasizes the heterogeneity of RPCs, reflecting the
fact that the retina, at any given developing point, is a bag of
mixed multipotent and transitional RPCs with terminal cells.

Here, a model is proposed that the intrinsic programs define
the competence state of transitional progenitors and specify
retinal cell types and subtypes. Previous popular models de-
scribing retinal development were reviewed in details recently
[43]. These models suggest that the RPCs gradually lose the
competence during the developmental process [4, 5, 43]; how-
ever, the transitional progenitor model here proposes that the
multipotent RPCs keep their competence to generate all po-
tential retinal cell types. The ‘restricted’ competence is due to

Fig. 3 Illustration of stochastic mechanism in the rod versus bipolar cell
fate decision. The rod versus bipolar cell fate decision was determined by
the dose-dependent effect of Blimp1 and Vsx2 protein. When Blimp1
dominates Vsx2, the cell will become a rod cell; otherwise, it will
become a bipolar cell if Vsx2 is dominant. There is a balance point
when Blimp1 and Vsx2 reach equivalence. Flanking the balance point
is the stochastic zone where the cell fate was decided by stochastic
mechanism. In the stochastic zone, the progenitor has equal chances to
differentiate into a rod or a bipolar cell
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a gradual decrease of multipotent RPCs and a steady increase
of the transitional progenitors and terminal cells over the de-
veloping course. The model is supported by discoveries that
the late RPC pool is comprised of mixed population with stem
cell-like multipotent progenitors and heterogeneous lineage-
restricted progenitors [44, 45]. Even in the mature retina, there
are adult stem cells (equivalent to multipotent RPCs by defi-
nition) that have the full potential to generate all retinal cell
types and maintain the integrity of the retina. Another differ-
ence is that previous models suggest that differentiating RPCs
follow a linear route during the retinal development (Fig. 4a),
while the transitional progenitor model proposes a tree-
structure route which is more reasonable (Fig. 4b). For exam-
ple, readers could be misled by the linear route to believe that
amacrine cells are generated from the RGC-fate-incompetent
progenitors and are born later than RGCs. As a matter of fact,
the early progenitors are competent for RGC, amacrine, hori-
zontal, and cone cell fates, and birthdays of these cells are
interweaved.

The crucial transitional progenitors, including the early-
born and late-born oligopotent progenitors, bipotent progeni-
tors, unipotent progenitors, and the associated transcription
factors defining the intrinsic programs in these progenitors,
are listed in Fig. 5 and discussed below.

EBP groups

There is evidence to suggest that there is a pool of common
oligopotent progenitors for early-born cell types, such as hor-
izontal, amacrine, RGC, and cone photoreceptor cells (Fig. 5).
All EBPs are Pax6-positive. Pax6 is a transcription factor con-
taining paired box and homeodomain and is highly conserved
in vertebrates. In the chick, the onset of Pax6 starts at
Hamburger and Hamilton stage 8.5 in primordial eye field
and persists at high levels throughout optic cup morphogene-
sis [46]. The continuous expression of Pax6 activates Math5
expression in some of the EBPs [47]. Math5 endorses the
progenitors to differentiate into RGCs, and Math5-negative
progenitors become amacrine, horizontal, and photoreceptor
cells. In theMath5 null retina, there is an increase of amacrine
and cone cells but not bipolar cells [48], supporting the idea
that RGCs, cones, and horizontal and amacrine cells share
common EBPs, since promotion of one cell type will inhibit
the other cell types as they share the same pool of progenitors.
Continual expression of Pax6 can also activate the expression
of Otx2 and Trβ2 in some of the progenitors and leads to
generation of cone but not rod photoreceptors [49], which
explains why cone photoreceptors are generated earlier than
rod photoreceptors. It also lends evidence to support the idea

Fig. 4 Models of RPC differentiation and fate determination. a One
representative intrinsic model is shown. According to the model,
multipotent RPCs pass through temporal order of states of competence
over the course of development, and get more and more restricted in cell
fate choices from one state to another. During each competence state, the
RPC is capable of terminally differentiating into one or several specific
subtypes of cells (for simplicity, only one type of cell is depicted in each
state in the cartoon). b The model proposed here emphasizes transitional
changes and complex heterogeneity among progenitors. The cell fate

determination follows an order from multipotent progenitor to
oligopotent then bipotent and unipotent progenitor, and the RPCs
finally differentiated into particular cells. At any given developmental
stages, the retina is composed of mixed population of multipotent,
oligopotent, bipotent, and unipotent progenitors and terminally
differentiated cells. The multipotent RPCs are getting fewer and fewer
in number, but they keep their competence and are not restricted in fate
choices. The fates of multipotent progenitors were determined by both the
environmental cues and intrinsic programs
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that rods were developed from cones evolutionarily, since the
embryonic development is a reflection of evolution history to
some extent.

Onecut1 (OC1) and Onecut2 (OC2) are initiated at
E11.5 which is later than Pax6. They seem to be spe-
cifically expressed in EBPs at the stage. Compound de-
letion of both will result in complete absence of hori-
zontal cells and early-born cholinergic amacrine cells,
and partial losses of RGCs and cone photoreceptors
[50, 51]. Other than expressed in EBPs, OC1/2 also
expresses in RGCs and horizontal cells at late stages
[50]. During RGC development, OC1/2 seems to func-
tion independently of Math5.

The intrinsic programs defining unipotent RGC pro-
genitors seem to be complicated. The RGCs have more
than 30 subtypes with morphological and functional dif-
ferences. The specification of the subtypes is decided by
differential expression of Brn3b, Dlx1, Dlx2, Islet1, and
others [30, 32, 52, 53]. For example, Brn3b (Pou4f2) is a

Pou domain and homeobox domain transcription factor
expressed in the postmitotic precursors. Expression of
Brn3b promotes RGC fate at the expense of amacrine,
horizontal, and cone cells [27], which is another evi-
dence supporting the existence of common EBPs.

Horizontal and amacrine cells share a pool of bipotent pro-
genitors that are progenies of EBPs. This is strongly supported
by evidence from the Foxn4 and Ptf1amutant mice. Foxn4, a
forkhead box domain transcription factor, is critical in the
retinal and other tissue development [28, 54]. In the Foxn4
null retina, all horizontal cells and the majority of amacrine
cells are lost; instead, more RGCs and photoreceptors are
temporarily generated [28], showing a fate switch from
amacrine and horizontal cells to RGCs and photoreceptors.
Similar phenotypes are found in the Ptf1a knockout mice
[33, 55]. These evidences support the ideas that these four cell
types share the common pool of EBPs and that horizontal and
amacrine cells rise from the same bipotent progenitors. The
activating protein-2 (AP-2) transcription factors Tfap2α and

Fig. 5 A hypothetical model of intrinsic programs for hierarchy lineage
specification in the mouse retina. The multipotent progenitors give rise to
transitional progenitors from oligopotent to bipotent and unipotent. RGC,
horizontal, amacrine, and early-born cone photoreceptor cells originate

from a common pool of intermediate progenitors (EBPs). Bipolar, Müller,
and late-born photoreceptor cells share a pool of common intermediate
progenitors (LBPs). The differentiated cells can give negative feedback
signals to its progenitor pool. Critical factors are listed on each pathway

3570 Mol Neurobiol (2017) 54:3565–3576



Tfap2β act downstream of Ptf1a and regulate the genesis of
horizontal and amacrine cells as well [34, 35].

Horizontal cells are interneurons situated between photore-
ceptors and bipolar cells and form synaptic connections with
both cell types. There are two kinds of horizontal cells in the
vertebrates, the axon-bearing and the axon-less ones, though
there are only axon-bearing ones in some vertebrates, i.e.,
rodents. The terminal differentiation of horizontal cell de-
pends on the homeodomain protein Lim1, which is exclusive-
ly expressed in the unipotent horizontal progenitors [56]. Loss
of Lim1 causes the horizontal cell precursors stuck in the
wrong laminar position. As a result, the ectopic horizontal
cells adopt a morphology more reminiscent of amacrine cells.

Unlike horizontal cell, the amacrine cell has more than 29
subtypes and its terminal differentiation is more complicated,
most possibly controlled by many terminal programs.
Transcription factors NeuroD and Math3 are genetically
downstream of Ptf1a and redundantly control the genesis of
amacrine cells. In NeuroD and Math3 double knockout reti-
nae, all amacrine cells fail to differentiate; however, ganglion
and horizontal cells are increased [57–60], which is also con-
sistent with the EBP hypothesis. Similar to NeuroD orMath3,
Prdm13 is also a downstream gene of Ptf1a and regulates the
development and function of a subset of glycinergic and
GABAergic amacrine neurons [61]. Only a few genes are
known to control the development of one specific subtype of
amacrine cells. For instance, the dopaminergic amacrine cell
fate is controlled by the orphan nuclear receptor Nr4a2
(Nurr1) [62], and the development of cholinergic amacrine
cells depends on LIM-homeodomain factor Isl1 [63].

LBP groups

Evidence also suggests existence of a pool of common
oligopotent progenitors for late-born cell types, including
Müller, bipolar, and photoreceptor cells (Fig. 5). The common
transcription factors controlling LBPs were unclear; however,
LBPs might oscillatorily express Notch1 [64, 65] and

temporally express the paired-type homeodomain transcrip-
tion factor Vsx2 [66]. The onset of Vsx2 expression starts
no earlier than Hamburger and Hamilton stage 12 [67].
Vsx2 expression at the early stage of development controls
proliferation of RPCs, and Vsx2 mutation causes ocular retar-
dation due to RPC proliferation defects [66].

The progeny fate of LBPs depends on differential expres-
sion of Vsx2, Otx2, Blimp1, and Notch1. It has been shown
that Vsx2 directly controls bipolar cell genesis by inhibiting
rod differentiation [68]. Mutation of Vsx2 results in the total
loss of bipolar cells; however, the genesis of horizontal and
amacrine cells is pretty much normal in the Vsx2mutants [66],
implying that only LBPs but not EBPs are affected. By regu-
latingVsx2 andOtx2, Blimp1 promotes photoreceptor cell fate
while inhibiting bipolar and Müller cell fates [41, 42, 69].
Ablation of Blimp1 results in far fewer photoreceptors, more
bipolar and Müller cells, but unchanged amacrine, horizontal,
and RGCs [41, 42], which also supports our hypothesis that
Müller, bipolar, and photoreceptor cells share the same pool of
LBPs, and consistent with the notion that promotion of one
cell fate will inhibit the other cell fates. LBP fate determina-
tion is also controlled by transcription factor Math3 and
Mash1. Compound knockout of Math3 and Mash1 also re-
sults in loss of all bipolar cells, but Müller cells are signifi-
cantly increased at the cost of bipolar cells [60], suggesting
bipolar and Müller cells originate from the same progenitor
pool.

Knockout of Otx2 results in loss of all photoreceptor cells
in the mouse retina [70], which indicates that there is a reper-
toire of common bipotent progenitors for cone and rod photo-
receptor cells (Fig. 5). It is supported that the default fate of the
cone and rod progenitors is S-cone cell, since mutations of
numerous genes in the common progenitors unanimously lead
to enhanced S-cone syndromes, such asmutations in Trβ2 and
Nr2E3 [71, 72]. Expression of wild-type Nrl or Nr2E3 blocks
this default pathway in the progenitor and initiates rod cell
genesis, while expression of Trβ2 or Rxrγ blocks the default
pathway and leads to generation of M-cones [71]. Conditional
deletion of Otx2 also leads to a vast increase of GABAergic

Fig. 6 Developmental stages for
transitional EBPs and LBPs in the
mouse retina. EBPs initiated at
about E10 and ended at about P3.
LBPs started aroundE13 and ended
around P10. The development of
EBPs and LBPs overlapped
spatiotemporally. The specification
timing of RGC, amacrine,
horizontal, bipolar, Müller, cone,
and rod photoreceptor cells was
also illustrated
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and glycinergic amacrine cells that span into the space where a
normal ONL layer should be. The Müller and bipolar cells
also increased due to cell fate switches from photoreceptor
cells [70, 73]. Cone-rod homeobox gene Crx works at the
downstream of Otx2, it seems not involved in photoreceptor
fate specification, but rather to enhance the expression of
photoreceptor-related terminal genes [70, 74, 75]. Similarly,
transcription factor Mef2d works with Crx to drive the retina-
specific gene expression in photoreceptor, but not involved in
the fate decision [76, 77].

As one of the most important pathways affecting the devel-
opment of many tissues, the Notch pathway is not only in-
volved in early RPC maintenance but also in the rod and
Müller cell fate determination. Overexpression ofNotch1 pro-
motes Müller cell fate [78]. Overexpression of its downstream
gene Hesr2 or Hes1 also promotes Müller genesis at the ex-
pense of rod cells [78, 79]. Retroviral-mediated conditional
ablation of Notch1 at postnatal stage induces the generation
of rod photoreceptors at the expense of bipolar and Müller but
not amacrine cells [80]. These findings together strongly sup-
port that bipolar, Müller, and photoreceptor cells share a pool
of common LBPs.

The terminal differentiation ofMüller cells involves in Sry-
related HMG box gene Sox9. Specific deletion of Sox9 from
developing retina resulted in loss of Müller cells [81].
Apparently, other Sry-related HMG box genes were involved
in Müller cell development as well, such as Sox2 [82, 83],
Sox8 [84], etc. The cone bipolar cells have around nine sub-
sets, and specification programs for the subsets depend on
Vsx1 [85], Irx5 [86], Bhlhb5 [87], etc.

Genesis of EBPs and LBPs

Multipotent RPCs were maintained in the collaborated net-
work of Rx [9, 13], Notch1 [64, 78], Meis1/2 [10], Pten [88],
Pax6 [14, 49], etc. A multipotent progenitor’s decision to be
either an EBP or a LBP was mostly controlled by extracellular
environmental cues, including cell-cell contacts (neighboring
effect), interaction between Notchs and ligands [29, 80,
89–91], extrinsic factors such as the BMPs gradient [92–95],
hormones and growth factors [96–98], ephrins and receptors
[99, 100], etc., which initiated intrinsic developmental pro-
grams. Early developmental environment favorably promotes
the EBP fates, and late developmental environment prefers
LBP fates. Genesis of EBPs, LBPs, and major retinal cell
types is in a timely overlapping manner. RGCs initiated at
about E11 and were the first cell type differentiated, followed
by amacrine, cone, and horizontal cells at about E12 (Fig. 6,
[101]). Rod photoreceptors first appeared at around E14 and
then joined by bipolar and Müller cells. We could deduct that
EBPs arise from E10 to P4 and peak at E16, while LBPs
appear from E13 to P10 and peak at P2 (Fig. 6).

Conclusion

The transitional progenitor model defines progenitor status
from multipotent to oligopotent, bipotent, and unipotent
stepwisely. In each transitional status, the competence is con-
trolled by intrinsic developmental programs as well as envi-
ronmental cues. The multipotent RPCs become fewer and
fewer with the ongoing differentiation and are almost depleted
in the adult retina. The terminally differentiated retinal cells
usually are not capable of proliferating, except some stem cell-
like Müller glial cells [102–105] and Lgr5+ amacrine cells
[106]. The epithelial cells in the ciliary margin zone were
previously identified as retinal stem cells [107, 108]; however,
they are unable to differentiate into retinal neurons in vivo or
in vitro [109, 110] and thus disqualified as stem cells.

It needs to be pointed out that there are many mechanisms,
besides transcriptional control, regulating retinal develop-
ment, i.e., RNA-level (microRNAs, ncRNAs, etc.) regulation
[111, 112], protein modification and degradation [113, 114],
epigenetic modification [115, 116], cell death regulation [117,
118], and etc. Neighbor tissues, such as RPE and lens, certain-
ly have indispensable effects on retinal development as well,
mostly through the mechanism of mutual induction and inhi-
bition. We will not discuss these topics in further details.

Understanding the programs underlying the developmental
process not only will provide insights into how each individ-
ual cell type is formed and what function it may have, but also
will give clues on how to treat retinal diseases in the future.
Recent advances in stem cell researches illustrate the impor-
tance of understanding such developmental processes. Many
efforts have been made worldwide to induce retina-specific
cells from adult somatic cells or induced pluripotent stem cells
(iPSCs) [119–121], which shed some light on cell replacement
therapies to treat patients in the near future.
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