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Abstract Dysfunction of iron metabolism, which includes its
uptake, storage, and release, plays a key role in neurodegen-
erative disorders, including Parkinson’s disease (PD),
Alzheimer ’s disease , and Hunt ington ’s disease .
Understanding how iron accumulates in the substantia nigra
(SN) and why it specifically targets dopaminergic (DAergic)
neurons is particularly warranted for PD, as this knowledge
may provide new therapeutic avenues for a more targeted
neurotherapeutic strategy for this disease. In this review, we
begin with a brief introduction describing brain iron metabo-
lism and its regulation. We then provide a detailed description
of how iron accumulates specifically in the SN and why
DAergic neurons are especially vulnerable to iron in PD.
Furthermore, we focus on the possible mechanisms involved
in iron-induced cell death of DAergic neurons in the SN.
Finally, we present evidence in support that iron chelation
represents a plausable therapeutic strategy for PD.

Keywords Parkinson’s disease . Brain ironmetabolism . Iron
transporters . Iron regulatory protein . Iron chelation

Introduction

Dysfunction of iron metabolism plays a key role in the path-
ogenesis of Parkinson’s disease (PD) [1–5]. Elevated iron
levels were first found in neuromelanin (NM)-containing neu-
rons of the substantia nigra pars compacta (SNpc) in PD pa-
tients [6], suggesting that an iron-melanin interaction contrib-
uted to dopaminergic (DAergic) neurodegeneration in PD [7].
Although the role of iron in the pathogenesis of PD has been
extensively studied over the past 2 decades, two key questions
are still puzzling: First, why are iron levels elevated only in
select brain regions? Second, is excessive iron accumulation
in the brain an early event that causes neurodegeneration or a
consequence of the disease process? Whether iron accumula-
tion is the initial cause for DAergic neuron degeneration or a
subsequent event tied to cell death has been under debate for
many years.

However, a growing body of evidence shows that elevated
iron levels are one of the initial events leading to DAergic
neuron degeneration in PD [8–13]. Direct evidence for high
levels of iron in individual DAergic neurons of substantia
nigra (SN) from postmortem tissue of PD patients was
established using sensitive and specific wavelength dispersive
electron probe X-ray microanalysis coupled with
cathodoluminescence spectroscopy [10]. Although the mech-
anisms underlying iron accumulation in the SN are fully un-
determined, it is proposed that iron accumulation in the SN
results from a combination of increased import, decreased
export, and redistribution of intracellular iron. In summary, it
is certain that iron accumulation may be due to a general
malfunction in iron metabolism in the central nervous system
(CNS), which may involve both genetic and environmental
factors, centering on divalent metal transporter 1 (DMT1)
and transferrin receptor (TfR) for iron uptake, ferroportin
(Fpn), and amyloid precursor protein (APP) for iron efflux
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and ferritin for iron storage. In this article, we describe brain
iron metabolism and its regulation. We then provide a detailed
description of iron metabolism dysfunction in PD with a pri-
mary focus on how iron specifically accumulates in DAergic
neurons in the SN, making them particularly vulnerable.

Brain Iron Metabolism and Its Regulation

Iron enters the brain primarily through the blood-brain barrier
(BBB) and ventricular system [14, 15]. A recent study re-
vealed that the expression of iron transporters is exceptionally
high in the choroid plexus, suggesting a prominent role of the
choroid plexus in brain ironmetabolism [16]. Levels of iron in
the brain also have developmental, regional, and cellular dis-
tribution patterns. In humans, iron concentrations increase
with aging in the striatum (and related basal ganglia struc-
tures) and the brain stem [17], whereas its levels are decreased
in cortical white matter and thalamus in the elderly [18]. Iron
is also present in most cell types in the CNS, including neu-
rons, oligodendrocytes, microglia, and astrocytes.
Interestingly, iron staining is more abundant in oligodendro-
cytes than in any other cell types in the brain [19], indicating
an important role of oligodendrocytes in brain iron
metabolism.

Iron metabolism is important for brain development and
brain function. Iron deficiency negatively impacts a variety
of neurodevelopmental processes including hippocampal neu-
ronal development and spatial memory behavior [20, 21]. Iron
deficiency is also implicated in a number of psychiatric and
neurological conditions, including learning disabilities, atten-
tion deficit hyperactivity disorder (ADHD) and pediatric rest-
less leg syndrome (RLS) [22, 23]. In fact, iron supplementa-
tion was shown to improve RLS symptoms [24]. In addition,
iron overload also led to a variety of neurodegenerative dis-
eases including PD, Alzheimer’s disease, and Huntington’s
disease due to iron-induced oxidant stress [8–13]. These re-
ports support the idea that brain iron metabolism is essential
for developmental aspects of normal brain function and that
both insufficient or high levels of brain iron are associated
with neurological disorders.

Cellular Iron Transport

Iron Uptake

There are two pathways responsible for cellular iron uptake,
the transferrin (Tf)-transferrin receptor (TfR) pathway, and the
non-transferrin-bound iron (NTBI) transport pathway (see
Fig. 1). Traditionally, Tf-TfR is considered a major pathway
for cellular iron uptake in the brain. The primary receptor
responsible for this pathway is TfR1. The Tf-TfR1 complex
is internalized into the cell via receptor-mediated endocytosis.

In endosomes, where the pH is lower relative to the cyotosol,
Tf-bound iron is released and then transported across the
endosomal membrane by a divalent metal transporter 1
(DMT1)-mediated process. Although Tf can be synthesized
by oligodendrocytes and choroid plexus epithelial cells, the
primary source for Tf in the brain is its diffusion from the
ventricles [25, 26]. TfR1 expression is abundant throughout
the CNS, especially in neurons, indicating that these cells can
acquire iron through the classic Tf-TfR1 pathway. The trans-
port of iron across these barriers is most likely the result of
receptor-mediated endocytosis of Tf-bound iron by capillary
endothelial cells and choroid plexus epithelial cells [27].

Another type of TfR, named TfR2, is a homologue of TfR1
and shares about 45 % homology with TfR1 [28, 29]. Unlike
TfR1, TfR2 messenger RNA (mRNA) does not contain an
iron responsive element (IRE) RNA stem loop in its 3′-un-
translated region to iron-dependent control message stability.
Therefore, it is not regulated by intracellular iron levels [30].
Although TfR2 has a lower affinity for Tf binding than TfR1
[30], it is involved in Tf-bound iron uptake, which is enhanced
in the presence of hemochromatosis (HFE) [28]. HFE is an
MHC class I molecule and requires interaction with β2-
microglobulin (β2M) for normal cell surface localization. It
can also form a stable complex on the cell membrane with
TfR2 to regulate iron homeostasis [28, 31]. This TfR2/HFE
complex forms the sensor for extracellular iron levels and can
regulate the expression of hepcidin to maintain iron homeo-
stasis [32–35].

The main NTBI pathway is DMT1, which is responsible
for ferrous iron uptake. Several other metal transport systems
such as the ferritin receptor, lactoferrin (Lf)/lactoferrin recep-
tor (LfR), and melanotransferrin (MTf) are also involved in
the NTBI pathway [24, 36–39] (Fig. 1). However, some stud-
ies also demonstrate that MTf might not be essential for iron
metabolism [40–43]. Thus, further studies regarding the role
of MTf in iron transport are needed. Previous work has dem-
onstrated that DMT1 is present in endothelial cells of the brain
microvasculature, which is responsible for iron release from
endosomes to the endothelial cell cytoplasm [44]. It is also
present in astrocytes lining the blood vessels, in the choroid
plexus, and in ependymal cells, and therefore relevant to the
pathways by which iron crosses the blood-brain barrier.
DMT1 was first discovered to be responsible for the initial
uptake of iron from the duodenal lumen and iron translocation
from the endosome. However, we showed that in rat SN,
DMT1 is expressed in neurons, astrocytes, and microglia,
but not in oligodendrocytes [45], providing evidence that
DMT1 might participate in iron influx of these cells.

There are at least four distinct isoforms of DMT1, which
differ in both the C-terminus and the N-terminus. At the N-
terminus of the gene, alternative promoter usage leads to dif-
ferent transcription start sites at either exon 1A or exon 1B. Of
the two C-terminal splice variants, one possesses a stem-loop
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IRE in the 3′-untranslated region (UTR) of the mRNA
(termed +IRE), whereas the other does not (termed −IRE)
[46, 47]. The expression of DMT1 can be regulated
posttranscriptionally through IRE and posttranslationally
through the ubiquitin-proteasome system (UPS) [48]. Parkin
is the E3 ligase responsible for ubiquitination of the 1B

species of DMT1 [49]. Moreover, Ndifip1 binding to DMT1
is instrumental for its ubiquitination and its downregulation.
Nedd4-2 is also a ubiquitin ligase for the polyubiquitination of
DMT1 under metal-induced stress [48]. DMT1 expression
increases with age, which is in line with increased levels of
iron in the aging brain [50]. Decreased levels of brain iron in

Fig. 1 A hypothetical scheme for iron transport in neuronal and glial
cells. There are two pathways responsible for cellular iron uptake, the
Tf-TfR1 pathway and the NTBI transporters. In neurons, Tf-Fe is taken
up via a TfR1-mediated process and NTBI is acquired probably via a
DMT1 or LfR-mediated process. TRPML1, acting as an endolysosomal
iron release channel, might be involved in iron release from lysosomes
into the cytoplasm. Iron can be transported out of the cell by Fpn with the
help of HP and GPI-CP. Hepcidin can also regulate intracellular iron
levels by action on Fpn. TfR2 is expressed within the mitochondria of
DAergic neurons in the SN and mediates iron sequestration into mito-
chondria. NM is present in DAergic neurons of the SN and noradrenaline
neurons of the locus coeruleus. In astrocytes, iron is taken up via a TfR1-
mediated process, as well as DMT1 and LfR-mediated processes.
Upregulated HO-1 in astrocytes liberates heme-derived carbon monoxide
and free ferrous iron. The latter generates intra-glial oxidative stress that

promotes opening of mitochondrial PTP and influx of (non-transferrin
derived) iron into the mitochondrial matrix. Iron is taken up via a
DMT1-mediated process in microglia and via H-ferritin/Tim2-mediated
process in oligodendrocytes. The red dotted lines indicate that IRPs can
regulate the expression of DMT1, Fpn, and TfR1. (?: representing the
potential role of these proteins in brain iron metabolism). DMT1 divalent
m e t a l t r a n s p o r t e r 1 , F p n f e r r o p o r t i n , G P I - C P
glycosylphosphatidylinositol-anchored ceruloplasmin, HO-1 heme oxy-
genase-1, HP hephaestin, IRPs iron regulatory proteins, Lf lactoferrin,
LfR lactoferrin receptor, MtFt mitochondria ferritin, NM neuromelanin,
NTBI non-transferrin-bound iron, PTP permeability transition pore, SN
substantia nigra, Tf transferrin, Tf-Fe transferrin-bound iron, TfR transfer-
rin receptor, Tim2 T cell immunoglobulin and mucin domain-containing
protein-2, TRPML1 transient receptor potential mucolipin 1 (color figure
online)
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Belgrade rats, which have a defect in DMT1, further suggest a
critical role for this protein in brain iron uptake [51].

Autoradiographic studies using 125I-recombinant human
ferritin demonstrate that ferritin binding sites exist in the brain
[52], indicating a ferritin-receptor-dependent iron delivery
mechanism. A receptor for heavy-chain ferritin (H-ferritin)
has been identified as T cell immunoglobulin and mucin
domain-containing protein-2 (Tim2) [53], which can bind
and internalize H-ferritin. It is present in oligodendrocytes
both in vivo and in vitro, which express neither TfR [54] nor
DMT1 [44, 45] (Fig. 1). Since oligodendrocytes contain more
iron than any other cells in the brain, Tim 2 is thought to be the
primary mechanism for iron acquisition by these cells [54].
For example, ferritin receptors are capable of delivering 2000
times more iron per mole of protein than transferrin. Thus,
iron delivered via H-ferritin could make this pathway a pre-
dominant player in cellular iron delivery [55]. Receptors for
light-chain ferritin (L-ferritin) have not been well documented
until a recent study demonstrated Scara5 (scavenger receptor,
member 5) as a receptor for L-ferritin in murine embryonic
and adult kidney cells. Scara5 could bind L-ferritin but not H-
ferritin or Tf and thereby mediate its endocytosis [56]. The
discovery of receptors for H-ferritin and L-ferritin provides
new insights into iron acquisition and raise the possibility that
they might mediate iron accumulation in neurodegenerative
diseases.

Iron Release

To our knowledge, Fpn is the only known iron transporter
responsible for cellular iron export [57]. Fpn was first found
to transport Fe2+ across the basolateral membrane of
enterocytes with the auxiliary ferroxidase activity of cerulo-
plasmin (CP) or hephaestin (HP) [58–60] (Fig. 1). In the brain,
Fpn is found in endothelial cells of the BBB, neurons, oligo-
dendrocytes, astrocytes, the choroid plexus, and ependymal
cells [44, 61, 62]. Using immunohistochemistry, we discov-
ered that expression of Fpn and HP is co-localized in neurons,
astrocytes, oligodendrocytes, and microglia, raising the possi-
bility that HP could facilitate Fpn-mediated iron export from a
variety of brain cells [63]. The cellular overlap of Fpn and HP
further suggests a dynamic flux of iron out of brain cells, just
as established in enterocytes of the gut tract. CP is a ferroxi-
dase that converts highly toxic ferrous iron to its nontoxic
ferric form and cooperates with Fpn to facilitate iron export.
Direct evidence for the role of CP in iron metabolism comes
from studies of patients with aceruloplasminemia, a hereditary
disease caused by deficiency of CP [64, 65]. These individuals
have very little or undetectable levels of CP, which causes
severe intracellular iron accumulation in a number of organs,
including the brain, particularly in the deep extrapyramidal
motor nuclei, where it is associated with neurodegeneration.
It is reported recently possible that CP might contribute to the

pathology of PD [66]. HP is the homologue of CP, and both
are expressed in the brain. However, it is uncertain which one
performs the dominant role in the brain iron metabolism. It is
certain that mice lacking both CP and HP (double knock-out)
show elevated brain iron accumulation relative to single mu-
tant in the cerebellum, substantia nigra, and hippocampus
[67].

In addition, APP was shown to promote iron export from
DAergic neurons by stabilizing Fpn [68–70]. Lei et al. has
demonstrated that Tau deficiency induced Parkinsonism with
dementia by impairing APP-mediated iron export from
DAergic neurons in the SN [68]. This novel mechanism of
iron accumulation may be attributable to APP’s role in iron
export from neuron [69, 71]. The E2 domain for APP encodes
an REXXEmotif that, embedded in a peptide, can stabilize the
central iron exporter ferroportin (Fpn), thus to facilitate iron
export [70].

Iron Storage

The majority of iron is bound and inactivated by ferritin inside
brain cells [72]. L-Ferritin is required for the long-term storage
of iron [73], whereas H-ferritin has ferroxidase activity [74].
Cellular distribution of the two isoforms of ferritin in the brain
is different, varying with iron status, age, and disease state [75,
76]. Immunohistochemical analysis of the cytosolic ferritins
in the brain of adult nonhuman primates indicates that neurons
express predominantly H-ferritin, while oligodendrocytes ex-
press both H- and L-ferritin, and microglia only express L-
ferritin [76, 77]. Thus, oligodendrocytes and microglia are
capable of storing large amounts of iron. With regard to astro-
cytes, one study showed that neither forms of ferritin are de-
tectable [76], while another found L-ferritin expression [78].
However, in DAergic neurons of the SNpc, H-ferritin and L-
ferritin are barely detectable compared to neurons in other
brain regions [79]. The system relevant in iron storage in
DAergic neurons is the polymer NM [77, 80]. However, a
targeted proteomics approach has revealed L-ferritin in NM
granules of postmortem human brain tissue and implicates
iron storage and release from iron binding sites in these neu-
rons [81]. Recent findings showed that extracellular ferritin in
CSF was elevated in PD and lowering of iron by deferiprone
lowered CSF ferritin levels [82], indicating that elevated fer-
ritin might be involved in PD.

Iron Homeostasis Regulation

Iron homeostasis is regulated systemically by hepcidin and
cellularly by iron regulatory proteins (IRPs). Hepcidin, origi-
nally found in hepatocytes, is proposed to maintain body iron
homeostasis through regulating intestinal iron absorption [83,
84]. Binding of hepcidin to Fpn causes the internalization and
degradation of Fpn, which is reported to be a hepcidin-
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regulated iron efflux protein and hepcidin receptor [57],
resulting in decreased iron efflux into the plasma [85, 86]
(Fig. 1).

Hepcidin is widely expressed in mouse brain, and the
mRNA levels of hepcidin increase with aging [87, 88].
Injection of hepcidin into the mouse lateral cerebral ventricle
results in decreased Fpn protein levels in cerebral cortex, hip-
pocampus, and striatum. Treatment of primary cultured rat
neurons with hepcidin also causes decreased Fpn expression
and results in the subsequent release of iron [87], indicating
that local hepcidin might be involved in brain ironmetabolism
by regulating Fpn protein levels. More recently, it is demon-
strated that hepcidin significantly reduces brain iron in iron-
overloaded rats by downregulating iron transport proteins in-
cluding TfR1, DMT1, and Fpn [89].

Cytosolic iron metabolism is primarily controlled by IRPs,
which are critical components of a sensory and regulatory
system that coordinates mRNA-encoding proteins to maintain
cellular iron homeostasis. Through binding to IREs, IRPs are
able to posttranscriptionally regulate mRNAs that have IREs
in the 3′- or 5′-UTRs, control iron uptake (TfR1, DMT1), store
(ferritin), and export (Fpn). There are two distinct forms of
IRPs, IRP1 and IRP2, which share 44 transcripts including the
transcripts that had been confirmed in literature, i.e., FTL,
FTH, TfR1, DMT1, and Fpn [90]. IRP1 is a bifunctional pro-
tein with IRE-binding activity and enzymatic activity as cyto-
solic isoform of aconitase (c-acon). The action (regulation) of
IRP1 is achieved in the presence or absence of the [4Fe-4S]
cluster within the protein. Unlike IRP1, IRP2 lacks enzymatic
activity and is devoid of Fe-S clusters. A notable difference
from IRP1, relative to IRP2, is the presence of a unique 73-
amino-acid sequence. This motif is an iron-dependent degra-
dation signal for IRP2 and facilitates iron-dependent oxida-
tion, ubiquitination, and proteasomal degradation [91, 92].
IRP1 has a critical role in the pulmonary and cardiovascular
systems, while IRP2 function predominates in the nervous
system and erythropoietic homeostasis [90]. Signals other
than iron levels are capable of regulating IRPs. Oxidative
stress, for example, can activate IRPs by other, not yet fully
elucidated, pathways. For IRP1, oxidative stress induces the
inactivation of its aconitase activity and causes rapid stimula-
tion of IRE binding in several mammalian cell lines.
Interestingly, increased IRP1 activity and IRP2 accumulation
mediated by oxidative stress are largely abolished by the an-
tioxidant N-acetyl-L-cysteine [11, 93].

Iron Metabolism in Lysosomes

There is increasing recognition that lysosomes participate in
cellular iron metabolism [89, 94–98]. The lysosomal compart-
ment provides cells with the ability to recycle organelles and
long-lived proteins by a process termed autophagy, which is
the main mechanism that delivers substrates to the lysosomal

compartment for degradation. The lysosomal compartment is
rich in iron because of autophagic degradation of iron-
containing proteins (e.g. ferritin, mitochondrial electron-
transport complexes) [89, 96, 98]. In addition, mitochondrial
iron accumulation also results in lysosomal iron loading due to
autophagic degradation in lysosomes [99].

It is not clear how iron is transported from lysosomes to the
cytosol. A recent report found that, by measuring the differ-
ence in iron levels between the cytosol and lysosome, the
transient receptor protein mucolipin 1 (TRPML 1, also known
as MCOLN1) functions as an iron permeable channel and
mediates iron release from late endosomes and lysosomes
[100] (Fig. 1). TRPML 1 is also a Ca2+, K+, and Na+ perme-
able cation channel sensitive to pH changes and capable of
regulating a critical step in the maturation of late endosomes to
lysosomes [101, 102]. Moreover, TRPML 1 is ubiquitously
expressed in cells of every tissue [103] (Fig. 1). Interestingly,
mucolipidosis type IV (ML4), which is an autosomal reces-
sive, neurodegenerative disorder characterized by severe psy-
chomotor retardation and vision impairment, is caused by mu-
tations in the human TRPML1 gene [101]. Indeed, ML4 re-
sults in a lysosomal storage problem [101]. In fact, ML4 mu-
tations are shown to impair iron permeability of TRPML1 to
various degrees, which correlates well with the disease sever-
ity, indicating that impaired iron transport might contribute to
both the hematological and degenerative symptoms of ML4
patients [100]. There are no reports regarding TRPML1 and
PD.

Iron Metabolism in Mitochondria

Mitochondria play a critical role in cellular iron metabolism.
Iron is transported into the mitochondria for heme synthesis
and iron sulfur cluster synthesis that is involved in the electron
transport and oxidative phosphorylation [94, 104, 105].
However, the mechanism by which iron is transported from
the cytosol labile iron pool (LIP) to neuronal mitochondria is
not well understood. Recently, a novel Tf/TfR2-mediated iron
transport pathway in the mitochondria of DAergic neurons in
the SN has been reported [106] (Fig. 1). This Tf/TfR2 path-
way can deliver Tf-bound iron to mitochondria and also to the
respiratory complex I. Disruptions to this Tf/TfR2-dependent
system have been associated with PD, and this finding high-
lights the role for iron accumulation in this movement disorder
[106]. Recently, a protective association between PD and a
haplotype in Tf and TfR2 was reported, suggesting that Tf
or a Tf-TfR2 complex may play a role in the etiology of PD
[107].

The discovery of mitochondrial ferritin (MtFt) has en-
hanced our understanding of mitochondrial iron metabolism.
MtFt has a similar structure to ferritins in cytoplasm and in-
corporates iron in a similar manner with cytosolic H-ferritin
[108]. However, there are some differences between
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mitochondrial and cytoplasmic ferritin. First, with regard to
the quaternary structure, the cytosolic ferritins are
heteropolymers, while those in the mitochondria are homopol-
ymers and are assembled after processing within the mito-
chondria [108]. Second, there is no apparent IRE in the gene
for MtFt, suggesting that other mechanismsmight be involved
in its regulation [109]. Another difference is that MtFt appears
to have a limited tissue distribution compared with the ubiq-
uitous H- and L-ferritin. Although MtFt has relatively high
expression levels in the testis and erythroblasts of sideroblastic
anemia patients, it is also identified in other organs including
the brain, spinal cord, heart, kidney, and pancreatic islet of
Langerhans and other high oxygen-consumption tissues
[110–112]. It is also reported that MtFt participates in brain
iron metabolism [111]. Santambrogio et al. [113] demonstrat-
ed that MtFt antibodies stain the majority of neurons in the
cortex and spinal cord, whereas glial cells were largely
immunonegative. In addition, the cerebellum shows a strong
signal for MtFt only in Purkinje cells and in scattered glial
cells of the molecular and granular layers. Moreover, Shi et
al. [111] confirmed the endogenous expression of MtFt in the
cerebellum and striatum of mice. The function ofMtFt has not
been fully elucidated. Its expression levels increase in the face
of mitochondrial iron overload, suggesting that it might play
an important role in iron trafficking and storage in the mito-
chondria [108]. In addition, it has ferroxidase activity similar
to the ferritins in cytoplasm, detoxifying potentially harmful
free ferrous iron to the less soluble ferric iron [114].
Overexpression of MtFt results in an increase in IRP/IRE in-
teraction, accompanied by an increase in TfR1 levels and a
decrease in cytoplasmic ferritin synthesis [115]. This indicates
that alterations in mitochondrial iron homeostasis lead to
changes in cellular iron metabolism.

Pertaining to pathogenic consequences of disruption to the
function ofMtFt on neuronal cell ironmetabolism, its possible
role in PD has been investigated. For example, it was demon-
strated that MtFt could affect neuronal iron metabolism and
prevent neuronal cell damage induced by 6-OHDA [111].
More recently, it was reported that MtFt could protect SH-
SY5Y cells against β-amyloid-induced neurotoxicity, imply-
ing a potential protective role of MtFt in AD. This provides a
new neuroprotective strategy, as a therapy to PD may be
persued to regulate MtFt expression in neuronal cells as has
been reported for the treatment of AD [116].

Heme oxygenase-1 (HO-1), a rate-limiting enzyme in-
volved in the degradation of heme and a factor that promotes
the accumulation of nontransferrin iron in astroglial mitochon-
dria, is upregulated in AD and PD brains [117]. Thus, HO-1
has a prominent role in iron metabolism of astroglial mito-
chondria. In rat astroglial cultures, HO-1 mRNA, protein,
and activity levels are markedly increased after exposure to
stressors, including cysteamine, DA, β-amyloid 40/42,
TNF-α, and IL-1-β [118]. This causes increased uptake of

non-transferrin-derived 59/55Fe (but not diferric transferrin-
derived iron) by the mitochondrial compartment relative to
untreated control cultures [118]. The net result of this adapta-
tion is iron sequestration into the mitochondria of cultured
astrocytes, an event that is largely abolished by co-
incubation with a competitive inhibitor of heme oxygenase
activity (mesoporphyrin) or a transcriptional suppressor of
the HO-1 gene (dexamethasone) [119]. These findings indi-
cate that astroglial HO-1 inductionmediates iron sequestration
in degenerating neural tissues. Further studies have revealed
that the mitochondrial permeability transition pore inhibitors
cyclosporin A and trifluoperazine can also attenuate mito-
chondrial iron trapping in HO-1-transfected astroglia, as well
as cells exposed to DA, TNF-α, or IL-1 [118]. These results
suggest that intracellular oxidative stress resulting from HO-1
hyperactivity promotes pore opening [120, 121] and the influx
of cytosolic iron into the mitochondrial matrix [117] (Fig. 1).
Furthermore, this glial mitochondrial iron deposition signifi-
cantly enhanced the vulnerability of nearby neuronal constit-
uents to oxidative injury [122].

Iron and PD

There are three lines of evidence that indicate disruption of
iron metabolism as a key mechanism involved in neuronal
death in PD: (1) Iron levels are increased in the SN, but not
in other brain regions of PD patients (see Table 1). (2)
Postmortem studies have shown increased iron levels specif-
ically in DAergic neurons in PD, but not in other movement
disorders such as HD [10]. (3) Neuroprotection is achieved by
pharmacological or genetic chelation of iron in animal models
of PD [128–131]. (4) Genetic disorders that resulted in brain
iron accumulat ion often manifested as PD (e.g. ,
aceruloplasminemia) [132].

Iron Metabolism Dysfunction in Patients with PD

The role of iron as an etiological factor for PD was first sug-
gested when it was found that levels of total iron were in-
creased by 176 %, and levels of ferric iron were increased
by 225 % in the SNpc of PD patients relative to age-
matched controls [133]. In contrast, there were no significant
differences in the levels of total iron or ferric iron in the cortex
(Brodmann area 21), hippocampus, putamen, and globus
pallidus [133]. Other studies also showed increased iron levels
in the SNpc of PD brains using a spectrophotometric method
and Perl’s staining [134], inductively coupled plasma spec-
troscopy [135], magnetic resonance imaging (MRI) [136,
137], laser microprobe mass analysis [138], susceptibility-
weighted imaging (SWI) [139, 140], and enhanced T2 star-
weighted angiography (ESWAN) [141]. Recently, it was re-
ported that quantitative susceptibility mapping might be the
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most sensitive quantitative technique to detect a significant
increase of nigral iron for PD [142]. Using a variety of meth-
odologies, it was demonstrated that nigral iron levels are ele-
vated in early-stage PD patients, a phenomenon that is linked
to the severity of PD motor symptoms [143–148]. Iron eleva-
tion is also reported with familial PD, demonstrating that PD-
associated proteins including alpha synuclein, LRRK2,
PINK1, Parkin, and DJ-1 are associated with iron accumula-
tion in the SN by TCS [1–4]. We have observed and reported
that the iron content is significantly lower in the temporal
cortex of patients with PD when compared with age-
matched healthy controls. In the same study, the levels of
DMT1+IRE, TfR1, FPN1, and IRP1 were shown to be

decreased in the temporal cortex [149]. These findings suggest
that iron homeostasis might be disrupted through different
mechanisms in the SN and temporal cortex.

Epidemiological studies also revealed that an occupational
exposure to iron or a high intake of iron can increase the risk
for developing PD [150, 151]. A prospective study shows that
dietary nonheme iron intake, but not total iron intake (dietary
and supplemental), from food is associated with a 30 % in-
creased risk for developing PD [152]. A low intake of choles-
terol in combination with iron intake also increases the risk of
developing PD in both genders [153].We noted, however, that
these epidemiological studies are restricted to specific popu-
lations restricted to the USA.

Table 1 The iron content in the SN and cerebrospinal fluid (CSF) of normal and PD patients

Author Methods Normal PD

SN Globus
pallidus

CSF SN Globus
pallidus

CSF

Sofic et al. [133],;
Riederer et al.
[123]

The spectrophotometric method (μg/g
fresh weight)

48 81 / Increase by 77 % No
significance

/

Dexter et al. [6],,
[135]

The sensitive technique of inductively
coupled plasma spectroscopy (nmol/g
dry weight)

About
11000

Lat: About
14500

/ Increase by 35 % Decrease by
29 %

/

Med:About
13500

Mann et al. [124] Inductively coupled plasma
spectrophotometer (ng/mg protein)

1159 / / Increase by 56 % / /

Griffiths et al.
[125]

Absorption spectrophotometry (g/g wet
weight tissue)

139.8 Lat: 207.0 / Increase by 101 % Increase by
43 %

/

Med:163.8 Decrease by
31 %

Salazar et al.
[175],

Atomic absorbance spectroscopy analysis
(ng/mg protein)

SNpc
203.8

/ / SNpc Increase by 44 % / /

Good et al. [138], The Laser Microprobe Mass Analyzer
(LAMMA)

/ / / Increase / /

Jellinger et al.
[126]

Energy disperse X-ray analysis / / / SNpc (neuromelanin-
containing neurons)
Increase

/ /

Ryvlin et al.
[137],

Magnetic resonance imaging (MRI) / / / SNpc Increase Decrease /

Berg et al. [127] Transcranial sonograph / / / Increase / /

Martin et al.
[146],

High field strength MRI / / / SNpc increase No
significance

/

Popescu et al.
[215],

Rapid-scanning x-ray fluorescence (RS-
XRF)

/ / / Increase by 40 % Decrease /

Zhang et al [96,
97]

Susceptibility-weighted imaging (SWI) / / / Increase No
significance

/

Jiménez- et al.
[213],

Atomic absorption spectrophotometry
(mg/l)

/ / 0.21 / / No
significance

Rossi et al. [140] R2* and susceptibility-weighted imaging
(SWI)

/ / / Increase Increase in
anterior GP
by SWI

/

Wang et al. [141] Enhanced T2 star weighted angiography
(ESWAN)

/ / / Increase / /

Wu et al. [148] Susceptibility-weighted imaging (SWI) / / / Increase Increase /

/ nondetective
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Iron Metabolism Dysfunction in Animal Models of PD

Treatment of rodents with either 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) or 6-hydroxydopamine (6-
OHDA) is a well-established method for generating PD ani-
mal models. Neurotoxin-treated animals exhibit the major
hallmarks of PD pathology, including the loss of DAergic
neurons in the SN. Moreover, the enhanced iron level was
observed in dopaminergic neurons in humans [10], and iron
accumulation has also been shown in the SN of both MPTP-
and 6-OHDA-induced animal models [63, 154–159]. In fact,
in 6-OHDA-treated rats, both increased iron levels and neu-
ronal loss are apparent in as short a time as the SN 1 day
following 6-OHDA injection [155].

Other animal models of PD also suggested a role for dys-
functional iron metabolism in PD pathogenesis. For example
lipopolysaccharide-induced inflammation models were linked
to PD by demonstration of increased iron deposits, as well as
ferritin accumulation, in the SN [160]. Iron was also consid-
ered to have synergistic effects with paraquat in PD animal
models, which is a key environmental factor in sporadic PD
[161, 162]. The relationship between iron and PD pathogene-
sis is further illustrated in iron-overloaded animal models,
which develop degeneration of DAergic neurons. Moreover,
direct injection of ferric iron into the SN decreases both DA
content and release in the striatum [42, 163, 164]. In addition,
peripheral iron overload leads to iron deposits in the SN and
DAergic neuron loss [165, 166]. In fact, in iron-fed rodent
models, elevated levels of iron give rise to motor dysfunction,
DAergic neuron loss, and reduced DA content in the striatum
[167, 168].

Role of Iron Transporters in Nigral Iron Accumulation
in PD

The altered expression of iron-related proteins in the SN may
be responsible for the nigral iron accumulation in PD. For
example, Faucheux et al. [169] reported that the regional den-
sity of transferrin binding sites is low in the substantia nigra
(SN) but is not different in PD patient brains compared with
controls. However, in 1997, the same group revealed a re-
duced density of transferrin binding sites in the SN of PD
patients [170]. More recent studies have shown that 1-
methyl-4-phenylpyridinium (MPP+) treatment enhances the
cell surface expression of TfR. Therefore, upregulation of
TfR1-dependent iron influx could be involved in elevated iron
levels in PD [171, 172]. These discrepant reports might reflect
differences in results derived from acute insults in vitro and
the chronic lasting status in vivo. Thus, it is pertinent that
further work aims to explore TfR1’s contribution to iron ac-
cumulation in PD. That the levels of Tf and TfR2, as well as
their physical interaction, are increased after exposure to rote-
none [106] implies that this system may be responsible for the

uptake of iron into mitochondria following toxicant exposure
[106]. The selective localization of TfR2 in DAergic neurons
and the accumulation of Tf in parallel with oxidative damage
suggests that the Tf/TfR2 systemmight lead to iron deposition
in PD [106, 173] (see Fig. 2).

In addition to the TfRs, it has been shown that DMT1 plays
a key role in brain iron metabolism [44, 174] and is highly
expressed in neurons of the SN in PD, which correlates with
the abnormally deposited iron in the same area [175] (Fig. 2).
This supports that nigral iron accumulation by DMT1 could
account for some of the increased iron import in PD, although
we discuss the role of FPn and decreased export in section 2 of
this review. The presence of IRE in mRNA of DMT1+IRE
and Fpn implies that posttranscriptional regulation might be
controlled by changes in intracellular iron levels [176]. For
example, evidence derived from MPTP- or 6-OHDA-
induced PD models indicates that increased expression levels
of DMT1+IRE/DMT1-IRE [177] and decreased expression
levels of Fpn are prevalent in both animal and cell PD models
[63, 178–180] (Fig. 2). The upregulation of DMT1+IRE and
the concomitant downregulation of Fpn responsible for iron
accumulation in the SN are due to an IRP-IRE-dependent
pathway in 6-OHDA-induced PD models [11, 178].
However, the upregulation of DMT1-IRE in MPTP-induced
PD models is not in an IRP/IRE-dependent pathway. A reac-
tive oxygen species (ROS)-nuclear factor kappaB (NF-κB)
activation pathway might also be involved in DMT1-IRE up-
regulation [181, 182]. Although PD animal models do not
fully recapitulate the neuropathology of human PD patients,
they do provide a powerful tool to explore changes in iron
transporter expression in the early stage of this disease.
Indeed, dysfunction of iron transport may be the primary fac-
tor for iron accumulation in PD, and not a secondary event of
the disease pathology [45, 63, 179, 182, 183]. Further studies
should focus on direct evidence for iron transport dysregula-
tion in PD patients. Notably, a study revealed that DMT1+IRE
levels are significantly increased in PD subjects compared
with control subjects [175]. These data provide direct evi-
dence that increased intracellular iron import leads to iron
accumulation in the SN and ultimately cell death. In addition,
the mutation (G185R), which impairs DMT1-mediated iron
transport, decreases the susceptibility of microcytic mice (mk/
mk) and Belgrade rats to MPTP- and 6-OHDA-induced neu-
rotoxicity, respectively [175]. Therefore, it appears that
DMT1-dependent increases in iron levels play a prominent
role in the degeneration of DAergic neurons in PD.

Lf is an 80-kDa iron-binding glycoprotein of the Tf family
which is present in most biological fluids and is a major com-
ponent of the mammalian innate immune system. Lf can bind
Fe2+ or Fe3+ ions, as well as Cu2+, Zn2+, and Mn2+ ions [184].
In fact, Lf is involved in processes as diverse as regulation of
iron absorption in the bowel, immune responses, antioxidant
and anticarcinogenic activity, and anti-inflammatory control.
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Lf may have a role similar to that of Tf in iron transport in the
brain, ensuring that an adequate amount of iron is present
under normal circumstances. Lf has a high affinity for iron.
In the brain, Lf is synthesized by activated microglia [19] and
detected in DAergic neurons by immunostaining [185]. The
level of Lf expression is markedly increased in surviving
DAergic neurons from high-dose MPTP-treated mice, which
is accompanied with a pronounced depletion of DA [186]. In
PD patients, an increase in Lf has also been linked with in-
creased iron levels in the SN and degeneration of nigral
DAergic neurons [187]. LfR (also called LactoTf receptor),
a monomeric glycoprotein of 105 kDa expressed in the brain
microvasculature and in the SN, and primarily expressed in
neurons and occasionally in astrocytes, is increased in the
mesencephalon of patients with PD, indicating a role similar
to that of TfR in iron influx in neurons of the brain [188].

CP is the strongest ferroxidase in human plasma, and its
ferroxidase activity is required to stabilize the only iron ex-
porter, Fpn [189]. In mice deficient in either CP or HP, no iron
deposits have been observed in the retina. However, mice
deficient in both CP and HP have a striking, age-dependent
increase in retinal iron, as well as the iron storage protein
ferritin [190]. Similarly, in CP-only-knockout mice, iron over-
load is present in several tissues, including the brain.
Moreover, these animals exhibit enhanced vulnerability to
rotenone-induced neurotoxicity [191]. It was reported that
younger-onset PD patients have significantly lower levels of
serum CP, indicating that inadequate circulating CP levels
may contribute to rapid brain iron accumulation and an
earlier-onset of PD [192]. Decreased levels of serum CP
may also exacerbate nigral iron deposition in patients with
PD [109, 193]. Therefore, ferroxidase dysfunction is a likely

Fig. 2 Iron-induced oxidative stress in nigral DAergic neurons in PD. In
PD, elevated iron levels in DAergic neurons can be caused by increased
iron import by DMT1, decreased iron export by Fpn (?: decreased Fpn in
DAergic neurons was shown in PD models but not in PD patients) and
increased release from NM in the presence of H2O2 and iron overload.
Increased intracellular iron may catalyze the conversion of H2O2 via the
Fenton reaction to highly reactive ·OH, thus resulting in increased
oxidative damage. Depletion of cellular antioxidants (vitamin E, GSH),
reduction of GSH/GSSG, possible activation of GSHPx, and DNA
damage are also observed. The oxidative stress causes the dysfunction
of mitochondria, leading to an increased ROS formation and Cyt C

release. This in turn exaggerates oxidative stress and activates caspase-
mediated apoptosis and ultimate cell demise. The disrupted Tf/TfR2-
dependent system in PD also leads to iron accumulation in mitochondria,
which may enhance the dysfunction of mitochondria. Red arrows show
the increased or decreased status of the components whose levels are
altered in PD. Cyt C cytochrome C, DAergic dopaminergic, DMT1 diva-
lent metal transporter 1, Fe2+ ferrous iron, Fe3+ ferric iron, Fpn
ferroportin, GSH reduced glutathione, GSHPx glutathione peroxidase,
GSSG oxidized glutathione,H2O2 hydrogen peroxide,NM neuromelanin,
·OH hydroxyl radical, PD Parkinson’s disease, ROS reactive oxygen spe-
cies, Tf transferrin, TfR2 transferrin receptor 2 (color figure online)
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mechanism for iron deposition in neurodegenerative diseases
[194]. Recently, it was reported that the activity of Cp in PD
brains was reduced in SN, indicating the therapeutic potential
in treatment of PD [195].

Effects of LTCC on Iron Accumulation

The proteome analysis of human SN in PD demonstrated that
the δ subunit of L-type voltage-gated calcium channel (LTCC)
was significantly increased in PD [196], which indicated that
LTCC might be involved in the pathogenesis of PD. Several
studies demonstrated that LTCC mediate iron import into
cardiomyocytes under iron-overload conditions [197, 198].
The functional properties of LTCC in heart, secretory cells,
and neurons are quite similar [199]. In addition to the
cardiomyocytes, Fe2+ uptake through LTCC is common in
other excitable cells such as neurons and pancreatic β cells.
It was reported that iron could compete with calcium via
LTCC for entry into NGF-treated rat PC12 cells and murine
N-2α cells, which may be exacerbated in iron-overloaded
conditions. This suggests that LTCC provide an alternative
route for iron entering into neuronal cells under pathophysio-
logic conditions of iron-overloaded [200]. Based on the ef-
fects of LTCC on the iron accumulation in cardiomyocytes
and cell lines, we proposed that LTCC at least partly mediates
the iron overload in the SN in the pathogenesis of PD. A
preliminary study in our laboratory also showed that the
LTCC blocker nifedipine may protect against iron overload-
induced DA neuron degeneration and iron accumulation in the
SN of rats. These studies further suggest that LTCC might be
involved in the selective iron accumulation in the SN in PD
and potentially provides a new therapeutic target to reduce the
iron accumulation in iron overload diseases, including PD.

Effects of KATP Channels on Iron Accumulation

ATP-sensitive potassium (KATP) channels are octameric pro-
teins consisting of two different types of subunit: members of
the Kir6 inwardly rectifying potassium channel family (Kir6.1
and Kir6.2) and sulfonylurea receptor (SUR) subunits (SUR1,
SUR2A and SUR2B), which are members of the ATP-binding
cassette transporter superfamily. Four pore-forming Kir6 sub-
units are joined together with four regulatory SUR subunits to
make a functional channel. Different subunit combinations
contribute to different biophysical, pharmacological, and met-
abolic properties of KATP channels [201]. It was reported that
the selective activation of KATP channels of dopaminergic
neurons in the SN was a potential mechanism for the selective
degeneration in this region in PD [202]. Kir6.2 and SUR1 are
the relevant KATP channel subunits in both SN and ventral
tegmental area (VTA) dopaminergic neurons in adult mice.
However, when treated with MPP+, electrophysiological ac-
tivities of dopaminergic neurons in the SNwere lost due to the

activation of KATP channels. This was not the case for the
dopaminergic neurons in VTA, since KATP channels were
not activated due to the MPP+ treatment [202]. Genetic inac-
tivation of Kir6.2 resulted in a selective rescue of dopaminer-
gic neurons in the SN but not those in the VTA in the MPTP
model and the mutant weaver mouse [202]. This provides
some evidence that activation of KATP channels plays an im-
portant role in the selective degeneration of dopaminergic
neurons in the SN.

It was reported that higher mRNA levels of the regulatory
subunit SUR1 were found in SN DA neurons from PD pa-
tients compared with neurons from controls. Otherwise,
mRNA expression of SUR2 and the pore-forming subunit
Kir6.2 were not altered. The selective upregulation of SUR1
may be consistent with increased burst firing [203]. The acti-
vation of KATP channels hyperpolarizes the membrane poten-
tial, which is critical for the generation of membrane oscilla-
tions that underlie bursting firing [204]. KATP channels-gated
burst firing in already metabolically challenged SN DA neu-
rons could promote excitotoxicity and increase calcium load-
ing synergistically with NMDA receptors and L-type Ca2+

channels [205]. This led to the reduction of mitochondrial
calcium buffering capacities and acceleration of calcium-
triggered reactive oxygen species production [206], which in
turn activated KATP channels in highly vulnerable SN DA
neurons [202]. This positive feedback might lock SN DA
neurons in a highly stressful bursting state in vivo, potentially
accelerating their degeneration.

It is not known whether the selective activation of KATP

channels in the SN contributes to the selective iron accumu-
lation in this area. The activation of KATP channels induces
hyperpolarization of the membrane potential of dopaminergic
neurons in the SN following MPP+ treatment. The transport
function of DMT1 is proton-coupled and depends on the cell
membrane potential. It was reported that iron transport via
DMT1 was driven at higher rates of hyperpolarized potentials
[207]. This leads to the hypothesis that the hyperpolarization
of cell membrane induced by activation of KATP channels
might increase DMT1-mediated iron transport, with more iron
influx into the dopaminergic neurons. Our preliminary data
demonstrated that the selective KATP channel opener
diazoxide could increase intracellular iron levels after ferrous
iron incubation. This provides initiatory evidence that KATP

channel activation might contribute to the iron accumulation
selectively in the SN. Further investigation should be conduct-
ed in the future to reveal the underlying mechanisms.

Vulnerability of DAergic Neurons in the SN

DAergic neurons are particularly vulnerable to oxidative
stress, a process that is largely intensified in the excess of iron
[94, 208]. In fact, DA itself could be an endogenous source of
ROS [209, 210]. A defective sequestration of DA leads to
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more ROS generation in the cytoplasm and DA-dependent
oxidative stress [211, 212]. Hydrogen peroxide (H2O2), which
is produced in the process of DA auto-oxidation, is inert and
nontoxic, but in the presence of excessive free iron, it interacts
with the reduced form of iron and decomposes to the highly
reactive hydroxyl radical (·OH). This provides the basis of
heterogeneous iron-induced neuronal degeneration in the
SN. Recently, it has been reported that a proportion of SN
neurons were more vulnerable to iron toxicity induced by loss
of CP, although the precise underlying mechanisms are not
known [132]. NM also contributes to the vulnerability of
DAergic neurons to iron. NM could be considered as a
double-edged sword [213–215]. For example, NM is a strong
iron chelator and accumulates with aging, which has high or
low affinity binding sites for iron [80, 216]. At lower iron
concentrations, NM normally exerts protective action on
DAergic neurons, but the protective effects are eliminated at
higher iron concentrations, at which NM acts as a source of
oxidative load rather than an iron chelator [180, 217, 218].
In vitro experiments also demonstrate that NM can inhibit
iron-induced ·OH production generated by Fenton’s reaction
and play a protective role. However, in the presence of H2O2

and iron overload, NM shows a time-course degradation and
subsequent iron release [219]. This may explain why NM
concentration is significantly decreased in PD [220].
Although the NM concentration is the same in the SN and
locus coeruleus (LC), LC neurons are not as vulnerable com-
pared to those in the SN because the amount of iron in the LC
is 7.9 % of that found in the SN [19]. This suggests that there
is less iron mobilization in LC neurons. More recently, a
targeted proteomics approach has revealed L-ferritin in NM
granules and implicates iron storage and release from iron
binding sites in neurons [81]. In addition, the extra-neuronal
NM released by dying neurons is a strong candidate for caus-
ing chronic inflammation and cell death in the SN in PD [13,
210, 221].

The vulnerability of DAergic neurons, but not glia, to iron
is also illustrated by degeneration of DAergic neurons, yet
proliferation of astroglia in PD [222]. For example, in vitro
studies have shown that when astrocytes, microglia, and neu-
rons are isolated and subsequently treated with iron citrate,
cell degeneration and death occur only in neurons and microg-
lia, whereas astrocytes proliferate under the same conditions
[223]. Although iron accumulates more in glial cells, iron-
induced ROS levels in glia are less pronounced than in neu-
rons [224]. Similarly, it was shown that, although iron accu-
mulated to the same extent in primary cultured neurons, oli-
godendrocytes and astrocytes, only neurons and oligodendro-
cytes are affected by elevated intracellular iron [225]. Indeed,
in primary astrocyte cultures, iron induces a transient increase
in the intracellular ROS level before sufficient quantities of
ferritin synthesis are available to store the elevated iron in a
redox-inactive form [226]. In addition, HO-1, which is

predominately expressed in astrocytes, is considered an anti-
oxidant enzyme because of its ability to reduce intracellular
stress. The binding capacity of ferritin also influences levels of
unbound cytosolic iron. High levels of ferritin and the pres-
ence of strong antioxidants might contribute to the resistance
of astrocytes to iron [139]. Somewhat surprisingly, iron may
protect astrocytes from 6-OHDA-induced cytotoxicity [227],
although the underlying mechanisms remain to be defined.

Biology of Iron in Pathogenic Mechanisms of PD

Iron and Oxidative Stress

Iron has strong redox activity in both its ferrous and ferric
states. Indeed, it participates in Fenton chemistry, leading to
a cycle between its 2 redox states and the generation of ·OH.
ROS, in turn, act as secondary messengers, gene regulators,
and cellular activation mediators. However, an imbalance be-
tween ROS production and antioxidant defense induces
Boxidative stress,^ causing cell dysfunction and ultimately cell
death [211]. The brain requires a high concentration of iron
due to its role in energy metabolism, myelin formation, and
neurotransmitter synthesis, including DA, norepinephrine,
and serotonin [228]. Furthermore, brain cells are particularly
sensitive to ROS assault because of their intense oxidative
metabolism, high consumption of oxygen, and their propensi-
ty to generating large amounts of ROS.

The molecular mechanisms that lead to the degener-
ation of DAergic neurons in the SN of PD patients are
still not fully elucidated. However, some evidence has
revealed high levels of basal oxidative stress in the SN
in normal brain, a phenomenon which is markedly in-
creased in PD. In fact, DA metabolism, as described
above, might be responsible for the high level of basal
oxidative stress in the SN. In PD, as illustrated in
Fig. 2, oxidative stress is thought to contribute to the
cascade of neuronal degeneration, resulting from en-
hanced levels of redox-active iron within the SN [229,
230]. Increased brain iron likely induces a vicious cycle
of oxidative stress, by increasing the levels of free iron,
a process that involves releasing iron from ferritin,
heme proteins (e.g., hemoglobin, cytochrome c), and
iron-sulfur proteins [231]. Furthermore, DAergic neu-
rons in the SN of PD patients have impaired mecha-
nisms of eliminating free radicals (e.g., superoxide dis-
mutase, glutathione peroxidase, catalase).

Mitochondria are the main site for ROS production and
also the primary target of oxidative damage. Increased intra-
cellular iron results in the subsequent formation of ROS,
which leads to further damage to mitochondria. Elevated
ROS and enhanced oxidative damage are key events in the
pathogenic cascade that leads to cellular apoptosis and necro-
sis [232, 233]. In fact, mitochondrial disruption is thought to

3088 Mol Neurobiol (2017) 54:3078–3101



be a common feature of many types of familial PD, as diverse
PD-related genetic modifications disrupt mitochondrial func-
tion [234]. Indeed, a combination of an antioxidant and a
mitochondrial complex II activator rescues mitochondrial dis-
ruption induced by genetic modification of α-synuclein,
Parkin, and DJ-1 in Caenorhabditis elegans [234]. The
disrupted Tf/TfR2-dependent system in PD results in iron ac-
cumulation in the mitochondria and subsequent enhanced ox-
idative stress [106] (Fig. 2).

The involvement of iron in oxidative stress is dem-
onstrated in the 6-OHDA-induced PD rat model. It has
been reported that 6-OHDA induces nigrostriatal
DAergic lesions via the generation of oxidative stress
both in vivo and in vitro [235, 236]. The mechanisms
underlying 6-OHDA neurotoxicity come from its ability
to carry out auto-oxidation. H2O2, the product of 6-
OHDA auto-oxidation, participates in a Fenton reaction
in the presence of iron. 6-OHDA can also release iron
from its binding sites, similar to the action of ferritin
[237]. This explains the protective effects of antioxi-
dants and iron chelators against 6-OHDA toxicity.

Iron and UPS

Impairment of UPS, along with iron accumulation, in the SN
has been implicated in the pathogenesis of PD. Excessive iron
could indeed impair UPS [130]. Microinjection of the protea-
some inhibitor lactacystin causes significant DAergic cell loss
in the SN [5, 238, 239]. Desferrioxamine, as well as the brain-
permeable iron chelators VK-28 and M30, are shown to exert
not only neuroprotective but also neurorestorative effects
against nigrostriatal degeneration induced by lactacystin
[130, 238]. Moreover, genetic iron chelation protects against
proteasome inhibition-induced DAergic neuron degeneration
[240]. Thus, iron chelation may act through UPS to protect
DAergic neurons.

Impairment of UPS, which is responsible for the degrada-
tion of IRPs, may also cause the accumulation of IRPs and
iron accumulation [241]. DMT1 is also regulated
posttranslationally by degradation via the proteasomal path-
way, in which Parkin is responsible for the ubiquitination of
the 1B species of DMT1 [49]. Loss of Parkin gene function
results in elevated expression of DMT1 [49]. Evidence also
showed that Ndfip1 could bind to DMT1 and mediate their
ubiquitination in CHO cells [90]. However, the exact targeting
specificity of Ndfip1 remains to be obtained until now [98].
Our results showed that Ndfip1 attenuated 6-OHDA-induced
iron accumulation via regulating the degradation of DMT1
[242]. Thus, dysregulation of UPS and/or accumulation of
iron may induce a vicious cycle in which UPS impairment
causes an iron overload, while increased iron levels further
aggravate UPS dysfunction.

Iron and α-Synuclein Aggregation

Aggregation of α-synuclein is a key event in PD. The
misfolding and aggregation of α-synuclein, which may be
resistant to ubiquitination, is proposed to contribute to the
neurodegeneration of PD [243]. Mutations in the α-
synuclein gene, A53T and A30P, have been identified in au-
tosomal-dominant, early onset PD [244, 245]. Intriguingly,
analysis of Lewy bodies in the parkinsonian SN reveals high
levels of iron [246]. There is also accumulating evidence sug-
gesting that iron plays an important role in modulating struc-
tural transformations, aggregation, and fibrillation of α-
synuclein [247–249]. In fact, iron-induced α-synuclein oligo-
mers form toxic species. These toxic α-synuclein oligomers,
moreover, can form ion-permeable pores in planar lipid bilay-
ers and give rise to α-synuclein-dependent toxicity in neuro-
nal cells [247]. Interestingly, iron accumulates in high concen-
trations in the SN, which is the same region where aggregated
α-synuclein accumulation occurs. Moreover, in in vitro stud-
ies, it was found that purified α-synuclein aggregates rapidly
with application of ferrous [250] or ferric iron. Thus, the in-
teraction between iron and α-synuclein might have important
biological relevance to PD etiology. Recently, it has been in-
dicated that human α-synuclein also acts as a cellular
ferrireductase, responsible for reducing Fe3+ to bioavailable
Fe2+ [251]. This provides the possibility that increased expres-
sion ofα-synuclein in PD could lead to the excess generation
of Fe2+ and initiate oxidative damage through Fenton reaction
[252]. Additionally, aggregation of α-synuclein would result
in loss of ferrireductase activity and then enhance the accumu-
lation of Fe3+ [252]. Another study showed that overexpres-
sion of human α-synuclein led to increased intracellular iron
levels in neurons exposed to iron [253]. This provides evi-
dence that α-synuclein might be involved in the iron accumu-
lation that occurred in PD. Therefore, further studies should be
elucidated to investigate the ferrireductase activity of α-
synuclein and iron accumulation in PD in the future research.
Analysis of the secondary structure of the α-synuclein tran-
script using computer-generated folding has revealed a single
RNA stem loop formed by 46 nucleotides in the 5′-UTR. This
stem loop is similar to that of the H-ferritin IRE, as well as the
IREs in the 5′-UTRs of mRNAs encoding L-ferritin, Fpn,
erythroid 5-aminolevulinate (eALAS), and mitochondrial
aconitase. Interestingly, only human α-synuclein, rather than
β- and γ-synuclein transcripts, has this loop motif [254]. One
study has shown that the α-synuclein IRE from the shorter α-
synuclein transcript confers desferrioxamine-dependent re-
pression of a luciferase reporter gene in response to iron che-
lation in SH-SY5Y neuroblastoma cell lines [255]. However,
this sequence has not yet been tested for the longer α-
synuclein alternative spliced transcript, which deems it ques-
tionable as to whether it is functional. If, and how, the IRE-like
s t ruc ture in α - synuc le in mRNA func t ions as a
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posttranscriptional regulator will be important to determine.
Our preliminary data show increased α-synuclein expression
in cells containing an IRP knockdown, which is likely due to
suppressed binding activity of α-synuclein IRE and IRP. This
indicates that this particular IRE might be a functional one to
bind with IRP. Recently, it was reported that iron overload
could induce distinctive neuropathology and disease pheno-
types in mutant alpha-synuclein expressing flies. They
showed that iron treatment could induce a more severe motor
decline in A53Tand A30P mutant alpha-synuclein expressing
flies thanWTalpha-synuclein expressing flies. This suggested
the possible interaction between mutant alpha-synuclein and
iron [256].

Iron and Gene Mutation

Parkin, α-synuclein, LRRK2, PINK1, and DJ-1 are among
several genes known to be linked to PD. In fact, it has been
shown that there are relationships between genes involved in
monogenetic PD and iron (see the discussion of iron and α-
synuclein above). For example, mutations in Parkin, which

mediates the degradation of a subset of cellular proteins, are
currently recognized as the most common cause of familial
Parkinsonism [257–260]. Iron induces alterations in Parkin
solubility and results in its intracellular aggregation. The de-
pletion of soluble, functional forms of Parkin is associated
with reduced proteasomal activities and increased cell death
[261]. In autosomal recessive juvenile parkinsonism (ARJP),
of which the Parkin mutation was first identified in 1998, it is
reported that iron staining in the SN is more intense than that
of controls, as well as sporadic PD patients [262]. Thus, loss
of the Parkin gene might lead to cellular iron accumulation.
More recently, it was reported that Parkin is responsible for
ubiquitination of DMT1+IRE. It is also relevant that overex-
pression of Parkin in SH-SY5Y cells results in decreased ex-
pression of 1B-DMT1 isoforms. Expression of DMT1+IRE is
also shown to be elevated in human lymphocytes containing a
homozygous deletion of exon 4 of Parkin and in the brains of
Parkin knockout animals [49]. Thus, loss of Parkin gene func-
tion may cause intracellular iron accumulation. Therefore, the
protective function of Parkin is compromised by iron (see
Fig. 3). Hyperechogenicity of the SN has also been found to

Fig. 3 Parkin mutation-related failure of protein ubiquitination in nigral
DAergic neurons in PD. Parkin acts as an E3 ubiquitin ligase, which
could tag specific proteins with ubiquitin and target them for destruction
in the proteasome. α-Synuclein and DMT1 are the candidate targets of
Parkin. Ubiquitin-tagged α-synuclein and DMT1 are then directed to the

proteasome for degradation. Failure of Parkin-mediated degradation ofα-
synuclein and DMT1 may cause intracellular α-synuclein aggregation
and increased DMT1 levels. The subsequent increased intracellular iron
results in Parkin aggregation and function loss. DAergic dopaminergic,
DMT1 divalent metal transporter 1, PD Parkinson’s disease
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be a typical sign in idiopathic PD, and SN hyperechogenicity
has been shown to be, at least in part, due to an increased iron
level in this brain area [263, 264]. In a screen with PD patients
having either α-synuclein, LRRK2, Parkin, PINK1, or DJ-1
mutations, it was found, using transcranial sonography, that all
patients showed significantly larger echogenicity in the SN
relative to healthy controls [173], indicating increased nigral
iron levels. It will be important for future studies to clarify the
role of iron in monogenetic PD.

We summarize the possible mechanisms underlying
iron accumulation in nigral DAergic neurons and the
subsequent neurodegeneration of these neurons in PD
in Fig. 4.

Iron Chelation as a Therapy for PD

The role of iron in the pathology of neurodegenerative
disorders points to iron chelation as a promising thera-
peutic strategy. Indeed, chelation of iron in vivo via
ferritin, clioquinol, or restriction of dietary iron prevents
iron-dependent oxidative insult, thereby protecting mice
from MPTP-induced neurotoxicity [128, 265]. Similarly,
animals deficient in iron, and those administered iron
chelators, are resistant to MPTP, 6-OHDA, and
kainate-induced toxicity [265–267]. Brain permeable
iron chelators, which exert neuroprotective and
neurorestorative effects, such as VK-28, M30, and

VAR10303 (VAR), have been shown to treat PD animal
models [130, 268]. More importantly, recent phase II
clinical trial data showed that the iron chelator
deferiprone improved motor symptoms of PD subjects.
This provided strongest evidence that iron contributed to
the pathogenesis of PD [82].

In recent years, extracts from natural foods have been
shown to have iron-chelating effects. Examples of natural iron
chelators include (-)-epigallocatechin-3-gallate (EGCG), the
main polyphenol constituent of green tea, the polyphenolic
flavonoid curcumin found in the rhizomes of Curcuma longa
(zingiberaceae), myricetin (a type of flavonoid ubiquitous in
fruits, vegetables, and herbs), ginsenosides, the principal ac-
tive components of ginseng, and ginkgetin, a natural
biflavonoid isolated from leaves of Ginkgo biloba L. In fact,
these compounds have been known to have neuroprotective
effects due to their iron-chelating properties [154, 156,
269–271]. Compared with agents that produce iron-chelating
effects, only these natural compounds typically exert multiple
effects against neurotoxicity. Therefore, it will be imperative
to explore the possible use of low toxic natural compounds,
particularly iron chelators, for use in the prevention and treat-
ment of PD.

Despite these promising findings, severe iron restriction
can lead to p53 (a tumor suppressor gene)-mediated neuronal
apoptosis [265]. It also appears that the midbrain may be more
susceptible to iron deficiency than other brain regions

Fig. 4 A schematic diagram showing how iron accumulation in nigral
DAergic neurons causes neuron degeneration in PD. Environmental and
genetic factors act together to cause to a dysregulation of iron metabolism
proteins, which results in iron accumulation in nigral DAergic neurons.
Increased intracellular iron further promotes oxidative stress, UPS
dysfunction, α-synuclein aggregation, and Parkin aggregation, which
all lead to ultimate DAergic neuron degeneration (?: PD patients having

either α-synuclein, LRRK2, Parkin, PINK1, or DJ-1 mutations showed
significantly larger echogenicity in the SN relative to healthy controls,
indicating increased nigral iron levels; it was speculated that this in-
creased nigral iron levels might be due to dysregulation of iron metabo-
lism proteins). DAergic dopaminergic, PD Parkinson’s disease, UPS
ubiquitin-proteasome system
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[272–274]. For example, iron deficiency results in the impair-
ment of tyrosine hydroxylase activity and reduces D1 and D2
receptors [275, 276]. Thus, while iron chelation may provide
protection against PD, the impact of iron chelation on DA
synthesis and neuronal survival should be considered to avoid
toxic side effects [277], particularly when developing iron-
chelating agents for chronic clinical application.

Conclusion and Perspectives

Brain ironmetabolism dysfunction in PD has been extensively
studied and is beginning to gain increasing interest as a novel
clinical approach. Although several transporters and iron-
related proteins are involved in iron-related neurodegeneration
(as summarized in Fig. 4), it should be noted that many of the
conclusions described herein are considered tentative at this
point. We have recently reported a specific increase of iron
levels in the SN of PD animal models [11]. Moreover, we
showed that DMT1 expression is increased and expression
of Fpn and HP is decreased, which may be responsible for
nigral-specific iron accumulation [11, 63, 278]. The mecha-
nisms for these changes are either IRE/IRP-dependent or IRE/
IRP-independent due to different neurotoxin treatment.
Moreover, some iron chelators, such as desferrioxamine,
curcumin, myricetin, and Rg1, can protect DAergic neurons
against neurotoxins.

The following is a list of research topics that may, in our
opinion, represent future research directions:

1. It is worth exploring the changes in iron metabolism in
patients with PD. It will be important to correlate iron
metabolism with the onset, progression, and prognosis
of PD.

2. To investigate the association of SNPs and possible mu-
tations of genes involved in iron metabolism in patients
with PD.

3. To develop noninvasive high-resolution imaging tech-
niques to help detect early intracellular iron deposits in
patients with PD and to track at-risk individuals.

4. Detailed research on the molecular regulation of iron ac-
cumulation and its toxicity is highly needed.

5. To identify targeted therapeutic strategies that prevent
brain iron metabolism dysfunction in PD.
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