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Abstract The NMDA receptor, which is heavily involved in
several human brain diseases, is a heteromeric ligand-gated
ion channel that interacts with multiple intracellular proteins
through the C-termini of different subunits. GluN2A and
GluN2B are the two primary types of GluN2 subunits in the
forebrain. During the developmental period, there is a switch
from GluN2B- to GluN2A-containing NMDA receptors in
synapses. In the adult brain, GluN2A exists at synaptic sites
more abundantly than GluN2B. GluN2A plays important
roles not only in synaptic plasticity but also in mediating
physiological functions, such as learning and memory.
GluN2A has also been involved in many common human
diseases, such as cerebral ischemia, seizure disorder,

Alzheimer’s disease, and systemic lupus erythematosus. The
following review investigates the functional and molecular
properties, physiological functions, and pathophysiological
roles of the GluN2A subunit.
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Introduction

The N-methyl-D-aspartate receptor (NMDAR) is a
heteromeric protein containing two obligate GluN1 subunits
and a variety of GluN2 and GluN3 subunits [1]. GluN2A is
one of the primary types of GluN2 subunits in the forebrain.
The predicted amino acid sequence for GluN2A exhibits a
sequence of 1464 amino acids [2]. The 1464-aa predicted
sequence encoded by human GluN2A cDNA exhibits a
95.2 % identity with those of its mouse and rat homologues.
GluN2A contains four putative transmembrane domains
(M1–M4) and a C-terminal extension of greater than 600 res-
idues that provides additional target sites for cellular constit-
uents [3]. The expression of the GluN2A gene is under devel-
opmental control. There is an increasing trend for GluN2A
expression as development progresses. Synaptic activity and
sensory experiences cause this developmental switch from
GluN2B- to GluN2A-containing NMDARs [4]. Over the last
decade, an increasing number of reports have demonstrated
important roles for GluN2A in physiological and pathophys-
iological processes. The following review provides a summa-
ry of recent findings regarding the functional and molecular
properties, physiological functions, and pathophysiological
roles of GluN2A.
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The Functional andMolecular Properties of GluN2A

Electrophysiological Properties

In neurons of the cerebral cortex and regardless of postnatal
age, cells expressing GluN2A subunit messenger RNA
(mRNA) have faster NMDAR excitatory postsynaptic cur-
rents than cells that do not express the GluN2A subunit [5].
Chen et al. reported that GluN1/GluN2A-mediated peak cur-
rent densities are ∼4 times larger thanGluN1/GluN2B, and the
peak channel open probability is significantly higher for
GluN1/GluN2A than for GluN1/GluN2B [6]. The transition
of NMDARs from the open to the closed state is also regulated
by the GluN2 subunit. Based on calcium-dependent inactiva-
tion, GluN2A-containing NMDARs show a reversible inacti-
vation that is highly similar to native NMDARs in cultured
hippocampal neurons; however, those containing GluN2B ex-
hibit no significant inactivation [7]. Moreover, recovery from
desensitization was faster for GluN1/GluN2A- than for
GluN1/GluN2B-containing channels [8]. The above results
suggest that GluN2A-containing NMDARs desensitize more
and take less time to recover than GluN2B-containing recep-
tors [9]. These electrophysiological properties could enable
GluN2A subunits to more flexibly regulate synapse activity.

Domains in the Extracellular Regions of GluN2A

From the N- to C-terminal, the GluN2A subunit contains an
N-terminal domain containing a modulatory site that binds
Zn2+ followed by an agonist-binding domain, a channel-
forming domain comprised of four transmembrane segments
(M1–M4) and an intracellular C-terminal domain [10]. The
extracellular regions of GluN2A include an N-terminal region
and an extracellular loop between M3 and M4 [11]. The
agonist-binding domain and the extracellular loop form the
glutamate-binding site. Although the subunit-specific gating
of NMDARs is controlled by the region that is formed by the
GluN2 N-terminal domain [12], the interface of the agonist-
binding domain dimer between GluN1 and GluN2A could be
a major structural determinant that controls the allosteric mod-
ulation of GluN2A [10]. Moreover, the N-terminal domains of
both GluN1 and GluN2 subunits determine allosteric Zn2+

inhibition and the glycine affinity of NMDARs [13]. The ex-
tracellular N-terminal domain of GluN2A also contains an
endoplasmic reticulum retention signal that can be specifically
masked by the N-terminal domain of GluN1α [14].

Signaling Proteins Associated to the Intracellular
C-Terminal of GluN2A

The C-terminal of GluN2A provides additional target sites for
downstream signaling molecules (Fig. 1). The 1349–1464
amino acid sequence in the C-terminal of GluN2A is

responsible for the binding of Ca2+/calmodulin-dependent
protein kinase II (CaMKII) [15]. The last three amino acid
sequences in the C-terminal of GluN2A binds directly to sev-
eral neuronal scaffolding proteins, including postsynaptic den-
sity protein-95 (PSD-95), postsynaptic density protein-93
(PSD-93), synapse-associated protein 102 (SAP102), and
synapse-associated protein 97 (SAP97). Based on these scaf-
folding proteins, GluN2A could transduce many signal types
to its downstream proteins.

Among the scaffolding proteins mentioned above, PSD-95
is the most widely studied. PSD-95, p35, and cyclin depen-
dent kinase-5 (cdk5) can form a complex in synaptosomes
[16]. Phosphatase and tensin homolog located on chromo-
some 10 (PTEN) contains a PDZ-binding motif at its C-termi-
nus, and NMDAR activation triggers a PDZ-dependent asso-
ciation between PTEN and PSD-95 [17]. PSD-95, GluN2A,
and PTEN interact with each other at the synapse [18]. The
PDZ3 domain of PSD-95 and the SH2 domain of Fyn are
responsible for the association between the two proteins
[19]. The 43–57 amino acid sequence in the N-terminal region
of PSD-95 is essential for the interaction between PSD-95 and
Src [20]. Proline-rich tyrosine kinase 2 (Pyk2) can bind to the
SH3 domain of PSD-95, and this binding is facilitated by the
Src-induced phosphorylation of PSD-95Y523 [21]. PKCα
has a classic T/SXV motif (QSAV) and can interact with all
three PDZ domains of PSD-95 and SAP102 [22, 23].

Additional scaffolding proteins can also couple the signal-
ing of several proteins. PSD-93 also interacts with GluN2A
and with Fyn in the mouse cerebral cortex [24]. A ternary
complex assembled by PSD-93 with GluN2A and nNOS also
exists in cultured cortical neurons [25]. SAP97 directly asso-
ciates with GluN2A through its PDZ1 domain, and the
CaMKII-dependent phosphorylation of SAP97-Ser-232 dis-
rupts its interaction with GluN2A [26].

Physiological Functions

Synaptic Plasticity

Many studies have indicated that GluN2A is a critical factor
that determines the polarity of synaptic plasticity. However,
the exact role of GluN2A in long-term potentiation (LTP) and
long-term depression (LTD) is still a matter of controversy
(Table 1).

With regard to the role for GluN2A in LTP, several research
groups have observed opposing results. Following the
targeted disruption of the mouse NR2A gene, the LTPs in-
duced by high-frequency stimulation in the hippocampal
CA1 and juvenile superior colliculus were significantly re-
duced [27] and blocked [28], respectively. Furthermore, there
was a considerable reduction in LTP in CA1 slices from 3-
month-old GluN2A C-terminal-truncated mice, and this
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reduction could be due to impairments in cellular signal trans-
duction events involved in LTP induction [29]. However,
using RNA interference (RNAi) and overexpression, Foster
et al. found that GluN2A is not essential for LTP that is
induced by pairing postsynaptic depolarization to 0 mV
with presynaptic stimulation consisting of 200 pulses at
2 Hz [30]. In addition, these researchers determined that
the cytoplasmic tail of GluN2A appears to carry

inhibitory factors for LTP. However, in these genetic
experiments, indirect effects on synaptic plasticity
resulting from compensatory mechanisms were difficult
to describe. In addition, the stimulations used were also
different from other experiments.

Others studies have used pharmacological approaches to
study the direct effect of GluN2A on LTP. Several have indi-
cated that the inhibition of GluN2A by NVP-AAM077

Fig. 1 Signaling molecules associated to the C-terminal of GluN2A. The
amino acid sequence in the C-terminal of GluN2A is responsible for the
binding of CaMKII and PSD-95. Based on the scaffolding protein PSD-
95, GluN2A could transduce many signal types to its downstream

proteins. PSD-95, p35, and cdk5 can form a complex in synaptosomes.
The N-terminal region of PSD-95 is essential for the interaction between
PSD-95 and Src. PKCα, PTEN, nNOS, and Fyn are the PDZ ligands of
PSD-95. Pyk2 can bind to the SH3 domain of PSD-95

Table 1 The role of GluN2A in LTP and LTD

Methods for regulating GluN2A Animals Cerebral regions LTP LTD References

Stimulations Effect Stimulations Effect

GluN2A knockout Mice Hippocampal CA1 2 HFS (100 Hz) or LFS
(1 Hz)-HFS (100 Hz)

Reduced NR NR [27]

GluN2A knockout Mice Superior colliculus HFS (20 Hz) Blocked LFS (1 Hz) Unaltered [28]

GluN2A C-terminal knockout Mice Hippocampal CA1 HFS (100 Hz) Reduced NR NR [29]

GluN2A RNAi Rats Hippocampal CA1 PPD-LFS (2 Hz) Enhanced NR NR [30]

Overexpression of
GluN2A+GluN2B RNAi

Rats Hippocampal CA1 PPD-LFS (2 Hz) Blocked NR NR [30]

Overexpression of GluN2A Rats Hippocampal CA1 PPD-LFS (2 Hz) Blocked NR NR [30]

GluN2B-RNAi+GluN2B*-2A tail Rats Hippocampal CA1 PPD-LFS (2 Hz) Blocked NR NR [30]

GluN2B-RNAi+GluN2A*-2B tail Rats Hippocampal CA1 PPD-LFS (2 Hz) Restored NR NR [30]

GluN2B-RNAi+GluN2BΔC Rats Hippocampal CA1 PPD-LFS (2 Hz) Blocked NR NR [30]

GluN2B-RNAi+GluN2AΔC Rats Hippocampal CA1 PPD-LFS (2 Hz) Enhanced NR NR [30]

NVP-AAM077 Rats Hippocampal CA1 HFS (100 Hz) or
3 HFS (100 Hz)

Blocked LFS (1 Hz) or
3 LFS (3 Hz)

Unaltered [31]

NVP-AAM077 Rats Hippocampal CA1 HFS (100 Hz) Blocked LFS (1 Hz) Blocked [32]

NVP-AAM077 Mice Lateral amygdala 2 HFS (100 Hz), IN,
or EC

Reduced LFS (1 Hz)
or PP-LFS

Blocked [34]

NVP-AAM077 Rats Hippocampal CA1 NR NR LFS (2 Hz) Reduced [36]

NVP-AAM077 Rats Hippocampal CA1 NR NR Chem-LTD Blocked [36]

NVP-AAM077 Mice Nucleus accumbens NR NR 3 HFS (100 Hz) Blocked [37]

NVP-AAM077 Normal mice Hippocampal DG 4 HFS (100 Hz) Blocked LFS (1 Hz) Enhanced [33]

NVP-AAM077 Runner mice Hippocampal DG 4 HFS (100 Hz) Blocked LFS (1 Hz) Blocked [33]

NVP-AAM077 P12-P18 mice Visual Cortical NR NR LFS (1 Hz) Unaltered [35]

NVP-AAM077 P21-P28 mice Visual Cortical 3 HFS (100 Hz) Reduced LFS (1 Hz) Reduced [35]

NVP-AAM077 P45-90 mice Visual Cortical 3 HFS (100 Hz) Blocked NR NR [35]

RNAi RNA interference, HFS high-frequency stimulation, LFS low-frequency stimulation, NR not reported, PPD-LFS pairing postsynaptic depolari-
zation to 0 mVwith presynaptic stimulation consisting of 200 pulses at 2 Hz, PP-LFS 1 Hz for 15 min, 2 trains, 40-ms interval paired-pulse-LFS, Chem-
LTD 20 μM NMDA for 5 min
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blocked or reduced LTP in the hippocampal CA1 [31, 32],
dentate gyrus [33], lateral amygdala [34], and visual Cortical
[35]. Although these results are highly consistent, there are
two issues worth addressing. One is that the selectivity of
NVP-AAM077 drops to tenfold for rodent GluN2A over
GluN2B; at the concentrations used, NVP-AAM077 also par-
tially blocks GluN2B. The second is how to interpret the ef-
fects of NVP-AAM077 on GluN1/GluN2A/GluN2B
NMDARs.

Most studies concluded that GluN2A plays a critical
role in LTD. NVP-AAM077 can prevent LTD in hippo-
campus [32, 36], lateral amygdala [34], and nucleus
accumbens [37]. However, several conflicting results
have been reported. Liu et al. showed that the preferen-
tial inhibition of GluN2A did not affect the appearance
of LTD [31]. Vasuta et al. found that exercise can sig-
nificantly alter the contribution of GluN2A to LTD and
that NVP-AAM077 prevented LTD in running but not
control animals [33]. It was also observed that LTD can
be reduced by NVP-AAM007 in P21-P28 mice but not
in P12-P18 or P45-90 mice [35].

In view of the switch of GluN2B to GluN2A during devel-
opment and the dominant expression of GluN2A in synapses,
GluN2A could play an important role in the production of
both LTP and LTD.

Learn and Memory

Behavioral assays have demonstrated an important role for the
GluN2A subunit in mediating physiological functions, such as
learning and memory.

Studies have shown that GluN2A is involved in the learn-
ing process, and spatial or discrimination learning impair-
ments have been observed in mice lacking the GluN2A sub-
unit [27, 38]. GluN2A is also required for vestibular-
cerebellar motor learning through potentiation at the mossy
fiber to granule cell synapse [39]. The blockade of GluN2A
in the dorsal striatum impairs the learning of complex motor
skills [40].

There is increasing evidence to indicate that GluN2A is
closely related to hippocampal-dependent spatial memory.
Mice lackingGluN2A exhibit impairments in rapidly acquired
spatial working memory [41] and also perform poorly in spa-
tial pattern separation tasks [42]. The suppressed expression
of GluN2A by peroxisome proliferator-activated receptor α
(PPARα) knockdown rendered animals markedly impaired
in their consolidation of spatial memory, whereas the intro-
duction of PPARα to the hippocampus of PPARα-null mice
increased hippocampal GluN2A and improved spatial learn-
ing andmemory [43].Mice treated with dexamethasone for 21
consecutive days showed significantly impaired spatial mem-
ory during the Morris water maze task, which could be due to
the reduction in the expression of GluN2A/B [44].

GluN2A also plays an important role in fear memory. Con-
textual fear conditioning is impaired in GluN2A C-terminal-
truncated mice [29]. The expression of GluN2A in the amyg-
dala [45], hippocampus [46], retrosplenial cortex [47], or
prelimbic medial prefrontal cortex [48] contributes to contex-
tual or trace fear memories. The coactivation of GluN2A and
GluN2B induces resistance to fear extinction, and patients
with posttraumatic stress disorder could benefit from the an-
tagonism of specific GluN2 subunits [49].

Several results have indicated an important role for
GluN2A in auditory activity. Sensory and neuronal injury af-
fects the expression level of GluN2A protein in rats [50].
GluN2A transcripts increase significantly in both the IMAN
and Area X of zebra finches, and this increase is critical for
vocal learning during the song-learning period between
posthatching day 20 and 40 [51].

Pathophysiological Roles

NR2A has been implicated in many common human diseases,
such as cerebral ischemia, seizure disorder, Alzheimer’s dis-
ease, systemic lupus erythematosus, depression, schizophre-
nia, Parkinson’s disease, Huntington’s disease, anxiety, and
bipolar disorder.

Cerebral Ischemia

Excitotoxicity induced by the overactivation of NMDAR is a
critical mechanism that contributes to neuronal damage during
cerebral ischemia. It is generally accepted that GluN2B has
neurotoxic effects; however, the contribution of GluN2A to
excitotoxicity remains controversial.

The regular pattern of GluN2A expression following cere-
bral ischemia changes could be increase–decrease–increase
over time. At early time points, such as 0.5 h for bilateral
common carotid artery occlusion in gerbils [52, 53] and 3 h
for middle cerebral artery occlusion in rats [54], the expression
of GluN2A was increased. From 6 to 24 h after challenge,
especially in the rat four-vessel occlusion model, the level of
GluN2A was decreased [55–57]. After 48 h, there was a re-
versal in GluN2A expression [57, 58], and at the 1-week time
point, the expression of GluN2A decreased again [57]. The
age of rats also influences the expression of GluN2A [59]. In
addition, the expression of GluN2A in the penumbra was sig-
nificantly increased 3 h after focal cerebral ischemia and was
then reversed after 24 h [60].

Following cerebral ischemia, there exists a persistent phos-
phorylation of GluN2A in the hippocampus [61]. The tyrosine
phosphorylation of GluN2A occurs as early as 15 min after
reperfusion and is sustained for at least 24 h [62–64]. Tyrosine
kinases, such as Fyn, Src [65], protein kinase C [66], and Pyk2
[67], are involved in the tyrosine phosphorylation of GluN2A.

Mol Neurobiol (2017) 54:1008–1021 1011



This phosphorylation of GluN2A could induce the redis-
tribution of NMDA receptors between synaptic lipid
rafts and postsynaptic densities [68] and leads to rapid
clustering from extrasynaptic to synaptic membrane
fractions [69].

Although it is generally agreed that GluN2A plays an im-
portant role in ischemic damage, it is still a matter of contro-
versy whether GluN2A mediates prosurvival signals (Table
2). Zhou et al. reported that NMDA-mediated toxicity is
caused by the activation of GluN2B- but not GluN2A-
containing NMDARs and that the switch from GluN2B to
GluN2A in adult rats led to the invulnerability of adult hippo-
campal slices to NMDA treatment [70]. Subsequently, Liu et
al. found that the activation of GluN2B results in
excitotoxicity, while the activation of GluN2A promotes neu-
ronal survival both inmature cortical cultures and in an in vivo
rat model of focal ischemic stroke [71]. Similarly, Chen et al.
found that the GluN2A subtype-specific antagonist NVP-
AAM077 enhanced neuronal death following transient global
ischemia and abolished the induction of ischemic tolerance;
GluN2B was found to have an opposite role [72]. However,
other groups have disputed these findings. Morikawa et al.
found that, after a 2-h middle cerebral artery occlusion,
brain injury volumes revealed a significantly smaller in-
jury size in GluN2A subunit knockout mice [73]. Wang
et al. observed that endogenous cdk5 activated by

forebrain ischemia can phosphorylate GluN2A at
Ser1232 and induce CA1 pyramidal neurons damage
[74]. Choo et al. found that activation of NR2A-
containing NMDARs was associated with JNK phosphor-
ylation that was neuroprotective in neuronal cultures sub-
jected to excitotoxicity [75]. Zhou et al. reported that
overexpression and molecular knockdown of GluN2A ex-
acerbate and attenuate NMDAR-mediated neuronal death,
respectively [76]. They proposed that the magnitude and
duration of GluN2A activation could be a key factor
which determines neuronal fate [77]. It was also found
that the downregulation of GluN2A by a GluN2A anti-
sense construct [78], Co 101244 and Zn2+ [79],
conantokin G [80], PSD-95 antisense construct [81], or
PP2 [82], a potent inhibitor of Src family kinases, signif-
icantly reduced excitotoxic cell death. Moreover, en-
hanced glutamate excitotoxic vulnerability with age is as-
sociated with a substantial increase in GluN2A in vitro
[83, 84]. Interestingly, von Engelhardt et al. found that
50 nM NVP-AAM077 increased the toxicity induced by
submaximal 5 μM NMDA in DIV21 cortical cultures
[83].

In a word, GluN2A might mediate both prosurvival and
prodeath signalings. The GluN2A-PTEN-TDP-43 (TAR
DNA-binding protein-43) [85] and GluN2A-CaMKIV-
TORC1 (transducers of regulated CREB activity 1) [86]

Table 2 The role of GluN2A in cerebral ischemia

Models Regulation
of GluN2A

Methods Animals Cerebral regions Effect on
damage

References

NMDA exposure Downregulation NVPAAM-077 Rats Hippocampal slices Unaltered [70]

NMDA exposure Downregulation NVPAAM-077 Rats Cortical cultures Enhanced [71]

NMDA exposure Downregulation GluN2A knockout Mice Cortical cultures Unaltered [71]

OGD Downregulation NVPAAM-077 Rats Cortical cultures Enhanced [71]

MCAO Downregulation NVPAAM-077 Rats Enhanced [71]

Four-vessel occlusion Downregulation NVPAAM-077 Rats Hippocampal CA1 Enhanced [72]

NMDA exposure Downregulation NVPAAM-077 Rats Cortical cultures Unaltered [75]

MCAO Downregulation GLUN2A knockout Mice Reduced [73]

BCCAO Downregulation S1232A-GluN2A Overexpression Rats Hippocampal CA1 Reduced [74]

GluN2A-EYFP
transfection

Downregulation GluN2A antisense construct NR1-C02′-EYFP cells Reduced [78]

NMDA exposure Downregulation NVPAAM-077 Mice Cortical cultures (DIV 21) Enhanced [83]

NMDA exposure Downregulation NVPAAM-077 Mice Cortical cultures (DIV 21) Unaltered [83]

Glu exposure Upregulation Naturally over time Rats Hippocampal cultures
(DIV 7–23)

Enhanced [84]

NMDA exposure Downregulation Co 101244 and Zn2+ Rats Hippocampal cultures Reduced [79]

NMDA exposure Downregulation CGX-1007 Rats Hippocampal slices Reduced [80]

Four-vessel occlusion Downregulation PSD-95 antisense construct Rats Hippocampus Reduced [81]

Four-vessel occlusion Downregulation PP2 Rats Hippocampus Reduced [82]

NMDA exposure Upregulation GluN2A Overexpression Rats Cortical cultures Enhanced [76]

NMDA exposure Downregulation GluN2A knockdown Rats Cortical cultures Reduced [76]

OGD oxygen-glucose deprivation, MCAO middle cerebral artery occlusion, BCCAO bilateral common carotid arteries occlusion
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signaling pathways could mediate the prosurvival effect of
GluN2A. In contrast, cdk5 could be a downstream prodeath
molecule for GluN2A [74].

Seizure Disorder

There may be a connection between increased gluta-
matergic neurotransmission and seizure activity. The se-
lective increase in the coexpression of GluN2A/2B and
GluN1 in dysplastic neurons of human epileptic cortex
could contribute to focal seizure onset [87, 88]. In sei-
zures induced by pentylenetetrazole in rats, GluN2A was
markedly increased in the cortex during the early sei-
zure development process [89]. In the subiculum of
seizure-sensitive gerbils, GluN2A/B immunoreactivity
increased significantly at 12 h postictal [90]. It has also
been found that GluN2A knockout mice were more re-
sistant to audiogenic-like seizures induced by stimulat-
ing the inferior colliculus [91]. Moreover, tyrosine phos-
phorylation of GluN2A in the rat hippocampus was en-
hanced following KA-induced status epilepticus [92] or
Li/pilocarpine-induced status epilepticus [93].

Seizure activity can also influence the expression of
GluN2A and contribute to cognitive changes in seizure
patients. In the hippocampus of flurothyl- or kainite-
treated neonatal rats, the expression of GluN2A protein
was decreased significantly [94, 95]. Recurrent seizures
in animal models of early-onset epilepsy resulted in a
decrease in the expression of the GluN2A subunit,
which could be delayed by at least 5 days but persists
for at least 3 to 4 weeks [96]. Alterations in the gene
encoding the GluN2A subunit are a major genetic risk
factor for idiopathic focal epilepsy [97]. However, other
studies have shown opposing results. Except for those
with hippocampal sclerosis, all temporal lobe epilepsy
patients showed increased GluN2A and GluN2B hybrid-
ization densities in dentate granule cells [98]. Following
multiple perinatal seizures induced by kainic acid, rat
pups showed a robust increase in GluN2A/2B labeling
specific to cortical layer V throughout the retrosplenial,
parietal, and temporal cortices [99]. Prolonged febrile
seizures induce an increase in the hippocampal levels
of GluN2A [100]. No differences were found in the
expression of GluN2A and GluN2B in the amygdalas
of patients with mesial temporal lobe epilepsy [101].

GluN2A might also be involved in the pathological pro-
cesses of seizures. Ganor et al. found that subpopulations of
epilepsy patients show significantly elevated levels of autoan-
tibodies to a peptide of the GluN2A subunit [102]. This type
of GluN2A autoantibodies could damage the brain [103].

It is found minocycline could exert an anticonvulsant effect
by preventing the increase in GluN2A [104]. Neuropep-
tide Y could inhibit seizures via the downregulation of

the functional expression of GluN2A and GluN2B
[105]. Therefore, a pharmacological strategy directed to
the GluN2 subunit might help to limit the onset or
diffusion of seizures [106].

Alzheimer’s Disease

Many have observed NMDARs dysfunction in Alzheimer’s
disease (AD) patients, which is responsible for the cognitive
deficits of AD. Sultana et al. observed a significantly de-
creased level of GluN2A in the hippocampus of subjects with
amnestic mild cognitive impairment, a prodromal stage of
Alzheimer’s disease [107]. Sze et al. reported that
nonphosphorylated and phosphorylated GluN2A were selec-
tively reduced in the entorhinal cortex of AD patients [108].
These researchers also found reductions in GluN2A mRNA
levels in the hippocampus [109]. Hynd et al. reported that the
transcript and protein expression of both GluN2A and
GluN2B was markedly attenuated in susceptible regions in
subjects with AD pathology, such as the cingulate gyrus, hip-
pocampus, and superior temporal cortex [110]. However,
Mishizen-Eberz et al. found that the expression of GluN2A
subunit mRNA and protein were unchanged during AD pro-
gression and that neuronal mRNA expression revealed a sig-
nificant increase in the GluN2A subunit in subjects with mod-
erate neurofibrillary tangle neuropathology [111]. Marcello et
al. found that SAP97, which is responsible for the trafficking
of GluN1 and GluN2A and is connected to GluN2A and
GluN2A localization in hippocampus, is not altered in AD
patients [112]. These contradictory results could be due to a
small sample size.

A majority of studies show that amyloid-β (Aβ) can alter
NMDARs activity, contributing to its neurotoxicity. Aβ25-35
treatment resulted in elevated tyrosine phosphorylation of
GluN2A in the CA1 subfield of the rat hippocampus and
facilitated the interactions of GluN2A and Src kinases [113].
Aβ oligomers directly activate NMDARs, particularly those
with the GluN2A subunit [114]. Amyloid precursor protein
mutations associated with familial Alzheimer’s disease en-
hanced the trafficking of GluN2A to the cell surface [115].
Aβ induces dendritic spine loss via a pathway involving
GluN2A-containing NMDARs [116]. However, Liu et al.
found that Aβ leads to a loss of synaptic proteins via the
suppression of GluN2A function and the activation of
GluN2B function [117]. The combined oligomer Aβ(1–40)
and stress treatment decreased GluN2A/2B expression in the
hippocampus [118].

There is also a relationship between GluN2A and Tau. The
blockade of GluN2A induces Tau phosphorylation in rat hip-
pocampal slices [119]. This effect could be related to the
GluN2A-PKC-glycogen synthase kinase-3β (GSK3β) signal-
ing pathway [120].
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Systemic Lupus Erythematosus

The anti-NMDAR autoantibodies in patients with systemic
lupus erythematosus (SLE) is a typical example that suggests
that antibodies can alter emotion. DeGiorgio et al. found that
lupus antibodies cross-react with GluN2A and GluN2B, gain
access to cerebrospinal fluid, and might mediate abnormalities
of the central nervous system [121]. Subsequently, autoanti-
bodies directed against GluN2A were found in the sera of
patients with SLE [122]. Omdal et al. considered that neuro-
psychiatric disturbances in SLE are associated with antibodies
against GluN2A and GluN2B [123]. A breach in the integrity
of the blood–brain barrier could expose neurons to these po-
tentially pathogenic antibodies [124]. Indeed, the levels of
anti-NR2 antibodies in the cerebrospinal fluid were signifi-
cantly elevated in patients with diffuse psychiatric/
neuropsychological syndromes, whereas there were no signif-
icant differences in serum anti-NR2 levels [125]. The admin-
istration of the nonnaturally occurring D form of the DWEYS
pentapeptide, a sequence present in the GluN2A and GluN2B
subunits, prevents these antibodies from depositing in glomer-
uli and frommediating neuronal excitotoxicity [126]. An anti-
GluN2A antibody could be a predictor for neuropsychiatric
systemic lupus erythematosus [127]. However, Harrison et al.
reported that no significant association was found between the
anti-GluN2A antibody and cognitive dysfunction, depressive
symptoms, or anxiety in SLE patients [128].

Anti-GluN2A autoantibodiesmight induce the apoptosis of
GluN2A-expressing neurons [129]. The underlying mecha-
nism could be the promotion of NMDAR-mediated
excitotoxicity [130] and enhancement of Ca2+ influx through
the inhibition of the binding capacity of zinc [131].

Depression

Growing evidence implicates a role for GluN2A signaling in
depression. GluN2A knockout mice [132] or mice expressing
mutant GluN2A with a Tyr-1325-Phe mutation, which pre-
vents the phosphorylation of this site [133], showed
antidepressant-like profiles in the forced swim test and tail
suspension test. GluN2A and its downstreammolecules might
contribute to chronic mild stress susceptibility [134].

Depression also has an effect on GluN2A. The decreased
expression of GluN2A in the perirhinal [135] and prefrontal
[136] cortex in major depression patients has been observed.
The levels of GluN2Awere reduced in different brain regions
in prenatally stressed juvenile offspring showing depression-
like behavior [137], while the levels of GluN2A in the lateral
amygdala were elevated in depressed patients [138].
GRIN2A, which encodes GluN2A, was also found to be
hypermethylated in both the prefrontal cortex and hippocam-
pus of recurrent depression patients [139].

Schizophrenia

There is growing evidence in support of the hypothesis that
hypofunction of NMDARs is involved in the pathophysiology
of schizophrenia. Mice lacking the GluN2A exhibit several
behavioral abnormalities related to schizophrenia, including
hyperlocomotion and cognitive impairments [140]. A micro-
satellite repeat in the promoter of the GluN2A subunit gene
suppresses transcriptional activity and is correlated with
chronic outcome in schizophrenia [141]. Reduced GluN2A
expression is correlated with negative symptoms in the post-
mortem cerebellum during chronic schizophrenia [142].
GluN2A is also decreased in the prefrontal cortex during
schizophrenia [143, 144]. Dysbindin, a schizophrenia-
susceptibility gene that is widely expressed in the forebrain,
prevents the expression of GluN2A in the hippocampus [145].
However, several studies did not report changes in GluN2A
expression in the dorsolateral prefrontal and anterior cingulate
cortex [146], the medial temporal lobe [135], the thalamus
[147], and cerebellum [148] of schizophrenia patients.

Parkinson’s Disease

GluN2A might be linked with impaired LTP in patients with
Parkinson’s disease and dyskinesia induced by long-term L-
DOPA therapy. Hippocampal LTP is altered in both neurotox-
ic and transgenic models of Parkinson’s disease and these
alterations are associated with impaired dopaminergic trans-
mission and a decrease in the GluN2A/GluN2B subunit ratio
in synaptic NMDARs [149]. The modulation of the composi-
tion of synaptic NMDAR using TAT2A, a cell-permeable
peptide targeting GluN2A, during the development of dyski-
nesias led to a reduction in the percentage of Parkinsonian rats
that developed dyskinetic movements [150].

Huntington’s Disease

There is growing evidence indicating the involvement of
GluN2A in Huntington’s disease. Variation in the GluN2A
receptor gene can affect the age of onset for Huntington dis-
ease [151]. The GluN2A expression in the hippocampus of
R6/2 transgenic Huntington’s disease mice was found to be
decreased [152]. A significant decrease in the percentage of
cells expressing GluN2A at all ages is observed in the R6/2
mouse model of Huntington’s disease [153]. However,
Jarabek et al. observed no change in GluN2A in the striata
of N171-82Q mice, a new transgenic model of Huntington’s
disease [154].

Anxiety

A number of different classes of NMDAR antagonists have
been shown to exhibit anxiolytic effects in different laboratory
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tests of anxiety [155]. The underlying mechanism of these
antagonists could act through their blocking effect onGluN2A
[156]. GluN2A knockout mice exhibit decreased anxiety-like
behavior relative to wild-type littermates across multiple tests
[132]. Prenatal stress reduced GluN2A expression in the hip-
pocampus, the prefrontal cortex, and striatum in the offspring,
and the altered expression of GluN1 and GluN2A could have
a potential impact on anxiety-like behavior [157].

Bipolar Disorder

Disturbances in glutamate-mediated synaptic transmission
could be involved in the pathophysiology of bipolar disorder
(BD). There is a decrease in the expression of GluN2A in the
anterior cingulate cortex [158], the perirhinal cortex [135],
and hippocampus during bipolar disorder [159].

Perspectives

The absence of a highly selective rodent GluN2A antagonist
might be the largest obstacle for studying the pathophysiolog-
ical role of GluN2A. The selectivity of NVP-AAM077, the
most widely used selective GluN2A antagonist, against rodent
GluN2A is still a matter of controversy. In contrast, TCN-201
and TCN-213 displayed submicromolar and micromolar po-
tency at GluN1/GluN2A receptor, respectively, although they
did not show activity at GluN2B-containing receptor up to
50 μM concentration [160]. These novel antagonists might
be useful in deeply understanding the physiological and path-
ophysiological roles of GluN2A in brain functions.

PDZ-containing proteins are typical scaffolding proteins
associated with GluN2A. The human genome contains hun-
dreds of different PDZ ligand-containing proteins, and all of
these proteins are likely to be downstream molecules of
GluN2A. Therefore, the signaling of GluN2A is likely to be
highly complicated. The spatial distribution, cooperation, and
relative importance of these signaling proteins remain unclear.

The tyrosine phosphorylation of GluN2A can be regulated
by Src, Fyn, or cdk5; however, the phosphatases related to the
dephosphorylation of GluN2A have not been reported.

GluN2A, a primary type of NMDAR subunit in the brain,
is involved in the pathogenesis of many types of brain dis-
eases. However, the causality between GluN2A and these
brain diseases has not been determined. Moreover, only a
small number of reports have suggested treatment strategies
based on GluN2A or its signaling pathways. In view of the
controversy on whether GluN2A mediates prodeath signaling
or not, the specific prodeath signaling pathways of GluN2A
should be determined in the future. Blocking the actions of the
downstream prodeath molecules of GluN2A could be an ef-
fective strategy to treat brain diseases.
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