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Abstract Obesity is considered one of the greatest risk to
human health and is associated with several factors in-
cluding genetic components, diet, and physical inactivity.
Recently, the relationship between obesity and numerous
progressive and aging-related neurodegenerative diseases
such as Parkinson’s disease (PD) and Alzheimer’s disease
(AD) have been observed. Thus, the involvement of the
most abundant and heterogeneous group of glial cells in
neurodegenerative diseases, the astrocytes, is caused by a
combination of the failure on their normal homeostatic
functions and the increase of toxic metabolites upon path-
ological event. Upon brain damage, molecular signals in-
duce astrocyte activation and migration to the site of in-
jury, entering in a highly active state, with the aim to
contribute to ameliorating or worsening the pathology.
In this regard, the aim of this review is to elucidate the
relationship between obesity, Alzheimer’s disease, and
Parkinson’s disease and highlight the role of astrocytes
in these pathologies.
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Introduction

Obesity is an excessive accumulation of fat stored in adipose
and non-adipose tissue as triglycerides that can be broken
down into fatty acids, which can negatively affect health by
the increased expression of pro-inflammatory markers [1].
Globally, the prevalence of obesity is rising [2–4]. Actually,
it is a public health problem, and according to the World
Health Organization, it is estimated that more than 1.9 billion
adults, 18 years and older, were overweight in 2014 [5]. In
fact, globally, there are more than 300 million adults who are
obese and 1 billion who are overweight [6]. Obesity, which is
considered one of the greatest threats to human health [7], is
associated with multitude of risk factors including genetic
components, physical inactivity, blood lipid disorders, inflam-
mation, and insulin resistance. All these clusters of common
pathologies have been associated to metabolic syndrome,
which is a risk factor for neurological diseases [8, 9].

Over the last decade, the population of obese people has also
increased in epidemic proportions. For this reason, the probable
association between obesity and neurodegenerative diseases has
been studied with a main focus on the probability that obesity
may lead to neurodegeneration, exacerbate cognitive decline,
and increase susceptibility to brain damage [2, 10]. In this re-
gard, a large number of studies have demonstrated that people
who suffer from midlife obesity (measured by body mass index
or central adiposity) have an augmented risk for developing
Alzheimer’s disease (AD) and Parkinson’s disease (PD) [11].

The precise mechanisms of the relationship between fat gain
and loss and cognitive functioning remain to be explained.
Obesity involves a series of pathological cellular responses
due to an increment in basal lipolysis and subsequent release
of free fatty acids (FFA) into the bloodstream. Indeed, the in-
crease in FFA produces the activation of non-oxidative meta-
bolic pathways such as ceramides, lysosomal degradation,
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pattern recognition receptors activation, and endoplasmic retic-
ulum stress. Thus, the activation of these pathways are detri-
mental to normal cellular homeostasis and cell viability [12],
thus resulting in systemic and brain inflammation, particularly
in the hypothalamus, leading to cellular dysfunction, lipid drop-
let formation, and finally cell death [13, 14].

Neurodegenerative diseases (ND) are an important cause of
disability, morbidity, and decreased quality of life, constituting
the cause of 12 % of total deaths globally [1, 5]. These diseases
represent a heterogeneous group of disorders, which are char-
acterized by progressive dysfunction of neurons and astrocytes
[15–18]. Recent findings suggest that astrocytes have been
strongly involved in the maintenance of brain metabolism,
anti-oxidant maintenance, and neuroprotection [17, 19–27].
For this reason, these cells play a critical role in the onset and
progression of neurodegenerative diseases [28]. However, the
cause of the progressive degeneration of neurons remains un-
resolved. It has been demonstrated that there is an activation of
astrocytes in areas mostly affected by the disease. Both in vitro
and in vivo studies suggest that astrocytes can be activated by
FFAs [29]. In turn, these compounds can be elevated in subjects
with obesity [30, 31]. FFAs can activate Toll-like receptors
(TLR) and signaling cascades and generate nuclear transloca-
tion of the transcription factor NF-kB (nuclear factor kappa-
light chain enhancer of activated B cells) [32]. This factor is
implicated in several cellular processes, such as immune and
inflammatory responses. After activation and nuclear translo-
cation, NF-kB can promote the production of inflammatory
cytokines like interleukin (IL)-6), tumor necrosis factor
(TNF), and IL-1 [33]. According to this, in the specific case
of interleukin 6, it is important to highlight that it is a cytokine
not only implicated in inflammation and infection responses,
but also in the adjustment of metabolic, restorative, and neural
processes. It has been shown that IL-6 has been classified as a
pro-inflammatory cytokine, but in some cases, it might exert
restorative or anti-inflammatory activities [34].

Experimental findings identify these pro-inflammatory
pathways are important regulators of different neurodegener-
ative pathologies [35]. Additionally, these cytokines have
been recognized as an important mediator in facilitating leu-
kocyte extravasation from the circulation through the blood-
brain barrier (BBB) into the CNS parenchyma and that has
been associated with neurodegeneration [36, 37]. Taking into
account these evidences, the aim of this review is to elucidate
the role of obesity and astrocytes in AD and PD development.

Association of Obesity with Neurodegenerative
Diseases

Increasing life expectancy is concomitant with increased risk
of aging-associated diseases such as neurodegenerative dis-
eases and related health problems such as obesity. Recently,

the relationship between obesity and numerous progressive
and aging-related neurodegenerative diseases have been ob-
served [38]. This relationship has been assessed in human and
animal models with the aim to demonstrate that obesity might
be associated to neurodegeneration by stimulating cognitive
deterioration and raising the vulnerability to brain injury [39].
Although the exact mechanisms by which obesity negatively
affects the brain are poorly understood, previous study has
indicated that augmented inflammatory responses are key
physiologic features of obesity [40]. In this respect, obesity
may lead to brain inflammation and cause protein deposition,
oxidative stress, morphological changes in brain cells, and
alterations in important metabolic pathways [3, 4, 41].

Obesity and Astrocytes

Two of the main characteristic changes in obese population
are insulin resistance and hyperglycemia; while in the first
insulin levels are higher in comparison with the levels of glu-
cose, in the second there is an abnormal increase of glucose in
the blood [42–46]. The relationship between obesity and as-
trocytes is primarily generated by hormones. For example,
astrocytes are able to synthesize different hormones such as
leptin, ghrelin, and insulin [47–49], and as such, these hor-
mones have been intensively studied because of their close
relation with obesity and body weight [50, 51]. Indeed, it is
shown that obese subjects show higher levels of these hor-
mones than control subjects and this fact is correlated with
the accumulation of fat tissue [51].

Different signaling pathways are closely related with the
regulation of food intake. For example, one of them is the
leptin signaling pathway which plays an important role in
the regulation of energy homeostasis and regulation of food
intake [52]. There is evidence that leptin signaling in astro-
cytes can modulate the metabolic response to high-fat diet
[53]. According to this, different studies with animal models
showed a decrease in food intake and an increase of the hor-
mone ghrelin that is closely related with the stimulation of the
hunger after deletion of leptin receptors in the brain [52].

Taking into account that main pathological alteration in
obese population is the insulin resistance, it is important to
stand out that insulin actions are mediated by the insulin re-
ceptor (IR), which is constituted by two alpha sub-units locat-
ed in the extracellular level [54]. García-Cáceres et al. (2016)
used positron emission tomography and glucose monitoring
in cerebral spinal fluid in in vivo GFAP-IR KO mice and
showed that lack of insulin receptors in hypothalamic astro-
cytes affects systemic glucose metabolism, thus raising the
question of a possible effect in neuroprotection [45].
Moreover, different studies in mice have demonstrated that
administration of insulin in the brain reduces body weight,
and also showed that mice without insulin receptors become
obese [55]. Finally, insulin is also related with dopamine
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circuits [56]. In this regard, it has been demonstrated that
insulin increases the activity of dopamine receptors in mice
brain, while there is a decrease in the level of the enzyme
tyrosine hydroxylase in obese animals [57].

Obesity and AD

AD is the most common form of dementia and a progressive
neurodegenerative disease that is mainly diagnosed by its clin-
ical features [12, 58]. Of the 5.4 million Americans with AD,
an estimated 5.2 million people are 65 years of age and older
and approximately 200,000 individuals are under 65 years of
age. Age is an important risk factor, with one in nine people
over 65 years old having AD [59]. It is important to highlight
that more women than men have AD and approximately two
thirds of Americans with the disease are women [60]. AD is
determined clinically by progressive cognitive impairment in
two or more domains, such as memory, language, calcula-
tions, orientation, and judgment, in which these alterations
may be severe enough to induce social or occupational dis-
ability [61]. Neuropathologically, the two characteristic find-
ings of the disease are deposits of aggregated amyloid β (Aβ)
in neuritic plaques [62] and neurofibrillary tangles (NT),
which are produced by hyperphosphorylation of Tau, a
microtubule-associated protein [61, 63]. It has been suggested
that Aβ could trigger changes in Tau, producing the formation
of these neurofibrillary tangles, thus resulting in synaptic loss
and neuronal damage [64–66].

The increased prevalence of obesity, as well as reduced age
of onset of obesity in the population, may lead to much higher
incidence and prevalence of diseases such as AD in younger
people, which are normally considered an old-age disease
[12]. Also, there is evidence that obesity accelerates memory
dysfunction and neuroinflammation in AD [67]. Several stud-
ies have exposed that people with obesity have an elevated
risk of developing AD and dementia [68, 69]. The overweight
in the elderly of 70 to 88 years and older has also been report-
ed as a risk factor for AD [2, 70].

The mechanisms by which overweight increased risk of
AD have not been fully understood. There are multifactorial
mechanisms that link obesity with ADwhich includes system-
ic inflammation, activated astroglia, plaque deposition, and
diminished plaque clearance [2, 71–73]. Increased adiposity
tissue is associated with insulin resistance, hyperinsulinemia,
oxidative stress, and dysregulation of glucose metabolism.
Consequently, these metabolic profiles might cause formation
and deposition of advanced glycosylation end-products
(AGEs) and precursors [72]. AGEs are neurotoxic compounds
which increase aggregation by the glycation of amyloid β, as
the receptors for AGEs can use amyloid β as ligands. This
interaction has been previously shown to play a key role in the
pathogenesis of AD [74].

Though the association of obesity and AD has been con-
templated here, this should be analyzed in the context that AD
may have a reciprocal action in developing hyperinsulinemia,
insulin resistance, dyslipidemia, and hypertension. It is impor-
tant to point that this cluster of risk factors is considered a
metabolic syndrome (MS), which has been linked with AD
in recent studies [75, 76]. It is important to highlight that
obesity is also related with dyslipidemia and disordered fatty
acid and cholesterol metabolisms, thus affecting numerous
neuronal processes that have been implicated in the develop-
ment of neurodegenerative disorders [77]. Table 1 shows clin-
ical and animal studies which demonstrate the relationship
between obesity and AD. These studies showed that BMI is
directly associated with cognitive performance and function
including memory [78–83]. Indeed, many studies assessing
the brain parenchymal fraction demonstrated that obesity in-
fluences brain structure, and volume, thus triggering brain
dysfunction, brain atrophy, and cognitive impairment in
humans [84–86]. Besides, it has been demonstrated that
high-fat diet reduces synaptic plasticity in the hippocampus
and cerebral cortex in animal models [87, 88] and increases
amyloid and tau aggregates in transgenic mouse models of
AD [89, 90], leading to neuroinflammation, reactive gliosis,
and predisposition to injury [39, 91]. Finally, studies in brain
and adipose tissue in a murine model of high-fat diet-induced
obesity showed elevations in amyloid precursor protein
(APP), Aβ, and Tau phosphorylation in the hippocampus,
demonstrating that high-fat diet-dependent obesity is associ-
ated to pro-inflammatory changes in brain and adipose tissue,
which is characterized by increased levels of APP [92, 93].
Although more studies on this matter are needed, experimen-
tal findings discussed here support the idea that overweight
may increase the risk of developing AD through the modula-
tion of cerebral amyloid and tau proteins, and that relationship
might be modulated by sex hormones.

Obesity and PD

PD is the second most prevalent neurodegenerative disease
after AD and is a chronic and progressive disorder. PD is
characterized by the death of dopaminergic neurons in the
substantia nigra (SN), as well as intracellular accumulation
of aggregates of α-synuclein in neurons of the brainstem,
spinal cord, and cortex [101–105]. It is estimated that 10 mil-
lion people worldwide and about 1 % of the population over
60 years of age are living with PD [61, 106]. It is important to
highlight that men are one and a half times more likely to
suffer from PD than women [106]. It is believed that at early
stages, PD pathology has a focal initiation site that later prop-
agates throughout the brain [107, 108], and initial α-synuclein
accumulation occurs without neuronal death or evident symp-
toms [103]. Although the complete molecular mechanisms of
PD progression are not well understood [109], the central
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focus has always been on the damage of the dopaminergic
neurons and reduction of dopamine, but a role for glial cells
in mediating pathological or neuroprotective responses in PD
is becoming increasingly recognized [61].

Several studies indicated that some factors might be asso-
ciated with risk of developing PD. These factors include age,
genetic factors, environmental toxins, oxidative stress, mito-
chondrial dysfunction, body shape, low physical activities,
and poor diet. Other investigations used a semiquantitative
food-frequency questionnaire in 110 PD case patients and
287 control subjects and showed that a high-fat diet, especially
that one with increased intake of animal fat, is a risk factor for
PD pathogenesis [110]. People with obesity and who are over-
weight are more physically inactive than normal weight peo-
ple [111, 112], and lower levels of physical activity may in-
crease the risk of developing PD [113]. On the other hand,
other studies have suggested that obesity/overweight might be
associated with PD due to disturbances of eating behavior
which are associated with abnormal hypothalamic neurotrans-
mission [114, 115].

The relationship between obesity and PD was revealed
when overweight subjects demonstrated a depletion in their
striatal dopamine receptor availability (D2) [116], and that
dopamine played an important role in both obesity and PD,
having in common the loss of dopaminergic neurons, and
lower dopamine levels in the hypothalamus and striatum
[117–119]. The relationship between obesity and dopamine
levels can explain in part these findings. The mechanisms
associated to obesity and PD are multifactorial. In this context,
fat acting as a substrate for lipid nigrostriatal dopaminergic

neurotoxins and overweight acting as a systemic metabolic
modulator may increase body’s vulnerability to impairment
from neurotoxins. Experimental evidences from positron
emission tomography (PET) support that obese transgenic an-
imal model exhibits increased striatal dopaminergic neurons
susceptibility to methamphetamine and kainic acid [2].
Additionally, dopamine has a key role in the regulation of food
intake [114, 115, 120].

Recent epidemiological studies have demonstrated a poten-
tial association between obesity/overweight and the risk of
PD. In a prospective study with 451 Japanese-American sub-
jects in Hawaii, the authors reported that greater midlife tri-
ceps skinfold thickness was correlated with higher risk of PD,
which is independent of BMI [121, 122]. Nevertheless, stud-
ies correlate BMI with disease severity and cognitive decline
and dyskinesia in PD [123], and it was reported that high-fat
diet may confer a greater susceptibility to environmental
toxins and accelerate the pathogenesis of PD [124]. Finally,
Briceño and colleagues carried out a cross-sectional study
including 177 healthy controls and 177 PD patients and dem-
onstrated that overweight/obesity was more common among
patients with PD, in comparison with non-demented patients
[97]. Also, preclinical studies using animal models link obe-
sity and PD. For example, high-fat diet exacerbated the pro-
gression of parkinsonism by increasing dopamine depletion in
the substantia nigra in mice and also by the reduced capacity
of nigral dopaminergic terminals to cope with 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotox-
icity [124–126]. Although some studies were not able to pro-
vide substantial evidences about the association between

Table 1 Studies showing a relationship between obesity and AD pathology

Subject
to study

Focus of the study Results and conclusion References

Human Post-mortem non-demented
obese individuals

Presence of increased levels of hippocampal Aβ, APP, and Tau protein,
compared with non-obese individuals

[94]

BMI Inverse relationship between BMI and cognitive function [79, 82]

Indices of central obesity Demonstrated a directly association between obesity and poorer cognitive
test performance

[95]

BMI, early adulthood, early
and late midlife

Found that be obese at two of three stages was associated with lower
memory and executive function scores

[83]

BMI and middle-aged An elevated level of BMI is related with lower cognitive performance [78, 81]

Brain and obesity Obesity may influence brain structure and volume [84, 86, 96]

Obesity and sex Increased BMI was related with poorer cognitive performance in
middle-aged men but not middle-aged women

[80, 81]

Animal Diet-induced obesity Induced elevations in APP, amyloid β, and Tau phosphorylation in rats
and wild-type mice shown

[92, 93]

Incremented amyloid and tau pathology in transgenic mouse models of AD [89, 90]

A range of memory and learning skills were found affected [87, 88]

Reduced synaptic plasticity in the hippocampus and cerebral cortex [87, 88]

Increased neural apoptosis in the hippocampus and hypothalamus [97, 98]

Disrupted BBR permeability [87, 99, 100]

Leads to brain inflammation, reactive gliosis and predisposition to injury [39, 91]
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BMI, weight change, and waist circumference with the risk of
PD [127, 128], others showed a clear relationship between
obesity and PD and a correlation among BMI increase, in-
flammation, and PD disease severity [97, 121–126].

Neuroinflammation

Neuroinflammation is a term used to describe a mixture of
neurotoxic and neuroprotective responses originated in the
CNS by glial cells, as a defense mechanism that is associated
with neutralization of an insult, destruction of injured cells,
and repair of function and structure of the brain [129, 130].
Neuroinflammation is characterized by an integrated response
of the different cells of CNS [131, 132], including neurons,
glial cells, and the infil trating leukocytes [133].
Neuroinflammatory responses may be helpful or harmful, as
these mechanisms are associated with normal brain develop-
ment and function, as well as with neuropathological process-
es during brain injury and neurodegeneration [134, 135].
There are two types of neuroinflammation. Firstly, acute in-
flammation, as a defensive response that helps to repair the
impaired site, and secondly, chronic neuroinflammation that
results from deleterious and more persistent stimuli [136].
Acute neuroinflammation develops quickly with the presence
of pain, whereas chronic inflammation develops slowly [130].

Nowadays, it is broadly recognized that not all forms of
neuroinflammation are necessarily detrimental for CNS func-
tion [133]. An efficient inflammatory response does not only
removes pathogens and abnormally aggregated proteins but
also results in beneficial, self-limiting, and healing processes
[130, 133, 137]. In contrast to acute neuroinflammation,
chronic neuroinflammation is a long-lived, persistent response
that starts with an initial inflammatory stimulus but becomes
self-propagating. Inflammatory factors produced by astro-
cytes, together with released damage-associated molecular
patterns (DAMPs), can further increase inflammation and gli-
al activation, leading to a vicious inflammatory cycle and the
damage of local tissues. This long-term inflammation can
have disastrous consequences in the CNS, ranging from loss
of synapses to impaired cognition and lastly neurodegenera-
tion [138–141]. The concept that the neuroinflammation is
prejudicial implies that astroglial activation precedes and
causes neuronal degeneration [142].

Obesity and Neuroinflammation

The adipose tissue not only stores fatty acids but also produces
and releases a large number of other active compounds such as
FFAs, resistin, TNF-α, IL-6, IL-1β, and others. Studies have
reported that plasma FFA levels are usually elevated in obesity
because the increased adipose tissue mass releases more FFA

and its clearance may be reduced, which will further increase
the rate of FFA release into the circulation [33].

There is evidence that FFAs can activate inflammatory and
innate immune responses and trigger a phenomenon known as
lipotoxicity in the brain. Recent studies demonstrated that acute
elevation of plasma FFA activated the pro-inflammatory NF-
kB signaling resulting in increased astrocytic expression of
several inflammatory cytokines such as TNF-α, IL-1β, and
IL-6. The brain is very sensitive to inflammatory mediators,
and there is substantial data indicating that these inflammatory
mediators play a critical role in the inhibition of different sig-
naling pathway and in the induction of endoplasmic reticulum
(ER) stress in hypothalamic neurons [143].

Mechanisms Associated to Neuroinflammation
in Obesity

Previous studies have shown that hypothalamic dysfunction
induced by inflammation causes neural dysregulation and
neurodegeneration in obesity [144]. Studies have demonstrat-
ed an augmented expression of pro-inflammatory cytokines
and activation of IkB kinase-β (IKKβ)/nuclear factor-kβ in
the hypothalamus induced by high-fat diet. NF-kB is a critical
modulator of immunity and inflammation in the CNS. NF-kB
activation is stimulated mainly by IKKβ, in which this phos-
phorylates and degrades Ikβ proteins, thus liberating NF-kB
to enter the nucleus and inducing the transcription of different
inflammatory genes. During the immune response and inflam-
mation, IKKβ/NF-κB activation is stimulated by different
cell-membrane receptors including Toll-like receptors (TLRs).

It has been demonstrated that long-chain saturated fatty
acids, possibly acting through TLR-3 and TLR-4, stimulate
the generation of pro-inflammatory cytokines, such as TNF-α,
IL-1β, and IL-6 [145–147]. Also, it has been reported that
TLR-4 is expressed by activated astroglia in diet-induced
obese (DIO) mice [148], which also activates NF-κβ signal-
ing [149] thus leading to disrupted leptin and insulin signaling
in the hypothalamus [148, 150]. Cytokine receptors such as
TNF-α receptors have been shown to be mediating neuroin-
flammation in overweight. Experimental approaches of loss of
function have showed that TNF-α receptor knockout [151,
152] reduced dietary-induced obesity in mice. Also, overnu-
trition leads to perturbations in the endoplasmic reticulum
system. This perturbation activates IKKβ/NF-κβ signaling
in the hypothalamus and results in an energy imbalance
[153, 154]. ER stress could be a downstream event that ulti-
mately triggers pro-inflammatory processes in the hypothala-
mus [146]. Recent studies indicated that ER stress and defec-
tive autophagy may activate IKKβ/NF-κB signaling pathway
to generate hypothalamic inflammation [155, 156].
Furthermore, investigations on inflammatory cytokine expres-
sion identified the kinase c-jun N-terminal kinase (JNK) as
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major intracellular contributors to the induction of inflamma-
tion. Compared with lean controls, obese tissues showed in-
creased JNK activity in the liver, muscle, adipose tissue [155,
157], and the hypothalamus [158, 159]. JNK responds to di-
verse stress signals, including ER stress, pro-inflammatory
cytokines, FFAs, and reactive oxygen species (ROS) [157,
160, 161]. Finally, independently of the mechanism involved,
the common fact is that the hypothalamus is the main site of
inflammation caused by the intake of high-fat diet, thus this
process represents an early agent to the development of obe-
sity and insulin resistance [146, 162–164].

Neuroinflammation in AD

Current evidences have shown that many compounds in-
volved in the development of inflammatory processes are
present in the CNS of patients with such neurodegenera-
tive diseases [136]. Activated microglia and reactive as-
trocytes are observed in patients with these diseases, and
it seems like that glial activation might have dual effects
by degrading Aβ [165–167] and inducing neuroinflam-
mation and neuronal dysfunction. The increase in Aβ
concentration in aged transgenic AD mice are associated
with increased concentrations of pro-inflammatory cyto-
kines, including TNF-α, IL- 6, IL- 1α, and GM-CSF
[168]. These results suggest that pathological accumula-
tion of Aβ is a key factor that drives neuroinflammatory
responses in AD.

There is evidence suggesting that the pro-inflammatory
environment in the brains AD patients and in mouse models
of cerebral amyloidosis induces brain damage. For example,
the risk of developing dementia frommild cognitive disability
is increased in AD patients with elevated concentrations of
TNF-α and reduced concentrations of TGF-β in the CSF
[169]. In a clinical trial with elders suffering from metabolic
problems, it was shown that elevated levels of inflammation in
plasma and serum had a negative effect on cognitive perfor-
mance [170]. In animal models of AD, neuroinflammation is
known as a response to sustained Aβ overproduction and
deposition, in which includes involvement of the complement
system and production of cytokines [171–173]. Janelsins and
cols using quantitative real-time RT-PCR detected early acti-
vation of inflammatory processes in the entorhinal cortex and
the hippocampus of the triple transgenic model (3xTg) of AD
at 3 months of age [174]. The neuroinflammatory process was
concurrent with the production and accumulation of intracel-
lular Aβ, but occurred prior to any significant extracellular
Aβ plaque deposition, which manifests at about 12 months
of age in the 3xTg mice [174]. This neuroinflammation was
characterized by a selective trend of increasing expression of
TNF-α and monocyte chemoattractant protein-1 (MCP-1),
which was not detected for 21 other cytokines tested [174].
Hoozemans and colleagues performed a study by analyzing

important characteristics of the neuroinflammatory response
in AD patients and control cases in a range between 52 and
97 years old. The authors used immunohistochemistry and
antibodies directed against CD68 (KP1), HLA class II (CR3/
43), and glial fibrillary acidic protein (GFAP). In this study,
the authors found that the association between neuroinflam-
mation and AD is stronger in relatively young AD cases com-
pared with old AD cases, with an age-dependent presence of
microglia and astrocytes, which is indicative of a
neuroinflammatory response [175]. Finally, inflammation
has a significant and important role in metabolic illness being
a main risk factor for developing AD. Nevertheless, old indi-
viduals with metabolic syndrome did not have an enhanced
risk of cognitive disability [176].

Neuroinflammation in PD

The neuroinflammatory processes in PD is characterized by
the presence of activated glial cells in the substantia nigra from
patients with PD or intoxicated by MPTP [177]. The implica-
tion of glucocorticoids (GCs) on this matter has been assessed.
For example, an elevation in the systemic level of glucocorti-
coids (GCs) after the stimulation of the hypothalamic–pitui-
tary–adrenal axis [178] was observed, which is in accordance
with another study showing the role of glucocorticoid recep-
tors (GRs) in the death of dopaminergic neurons and in neu-
roinflammation in models of PD. The results showed a loss of
dopaminergic neurons induced by MPTP toxicity [179]. This
increased loss of dopaminergic neurons was associated and
directly related with an increased microglial and astroglial
reaction, an enhanced production and release of pro-
inflammatory mediators, and a decreased expression of anti-
inflammatory factors [178], suggesting that glucocorticoids
may adjust the brain inflammation to balance between a pro-
and anti-inflammatory stimuli during neurodegeneration.

Studies performed in transgenic models reported increased
TNF-α levels in the substancia nigra of mice overexpressing
human α-synuclein, and this increase in TNF-α levels in vivo
contrasted with the changes in TNF-α protein levels induced
in vitro [180]. Other studies have shown that one of PD genes
(DJ-1) is expressed in astrocytes and microglia, and it is
known that these expression levels are upregulated in PD pa-
tients [181]. Astrocytes from DJ-1 knockout mice produce
major levels of cyclooxygenase-2 (COX2) and IL-6 after li-
popolysaccharide (LPS) treatment [182]. Mutations in parkin
are the most common cause of recessively inherited PD [183].
It is demonstrated that this mutation may lead to the degener-
ation of dopaminergic neurons induced by LPS in the
substancia nigra pars compacta (SNpc) of parkin knockout
mice [184]. Aged parkin knockout mice showed enhanced
astrogliosis in the striatum and abnormal microglial activation
in the midbrain [185]. Altogether, these experimental
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evidences suggest that parkin plays an outstanding role in the
regulation of inflammation in PD [186].

Role of Astrocytes in Neuroinflammation

Astrocytes are the most abundant group of glial cells,
representing approximately around 20 to 40 % of the total
brain cell population. These glial cells are recognized to mod-
ulate extracellular glutamate level, form a Bglial scar^ after
injury and have powerful pro-inflammatory responses as piv-
otal regulators of CNS inflammatory responses. After a brain
injury, molecular signals induce astrocyte activation and mi-
gration to the site of the damage [18, 20, 21, 26, 187].
Astrocytes enter a highly active state, which are suggestive
to contribute to ameliorating or worsening the pathology
[21, 188, 189]. Astrocytes are part of the BBB [24, 190],
therefore, these cells influence the entrance of cells into the
CNS and also the activity of invading cells [191]. Activated
astrocytes produce a number of cytokines and participate in
mediating immune responses within the CNS [192]. Table 2
shows different functions of astrocytes.

The involvement of astrocytes in neurodegenerative
diseases is associated with the loss of their normal homeo-
static functions and the increase of toxic functions in-
duced by damage. Intracellular aggregates in surviving
astrocytes in various neurodegenerative diseases have
been observed. The presence of these aggregates disturbs
astrocytic functions in different ways that could be dam-
aging to neuronal viability [58]. In this respect, astrocyte
activation is one of the most important processes of the
cellular responses to brain lesion and chronic neurodegen-
eration. Due to their different shapes, which can reflect
their functional phenotypes, astrocytes can adopt from a

quiescent state, as seen in the normal uninjured CNS, to
reactive-like state, as observed after damage or illness
[158, 204–206].

It is important to highlight that inflammation, as stated
above, has the ability to influence neuronal homeostasis by
modulating intracellular mechanisms such as oxidative stress
and ER stress. Oxidative stress is characterized by high levels
of superoxide and hydrogen peroxide and has been involved
in neuronal damage and cell death related with neurodegener-
ative diseases [207]. Large amounts of ROS and pro-
inflammatory cytokines are produced by activated immune
cells. In turn, ROS can activate NF-kB and favor the produc-
tion of pro-inflammatory cytokines [208]. Inflammation and
oxidative stress are highly related and therefore co-exist.
There is evidence that high-fat diet is closely related with
oxidative stress in diverse brain areas including the hippocam-
pus [209, 210]. Besides, brain oxidative stress is associated
with astrocyte activation, production of pro-inflammatory cy-
tokine in the brain, and also with cognitive disability after
high-fat diet consumption [91, 100]. Many cytokines, such
as interleukins 1 and 6, are involved in the initiation and mod-
ulation of reactive astrogliosis, thus contributing to patholog-
ical inflammatory responses. Moreover, under different path-
ological situations, these factors are implicated as mediators of
important processes such as neuroprotection and
remyelination [211]. In different studies of injury models, in-
terleukins 1β and 6 KO mice showed retarded astrocyte acti-
vation and enhanced BBB permeability, suggesting that
cytokine-induced astrogliosis is very prominent to restore
BBB integrity after trauma [212–216]. Other in vitro studies
have demonstrated that cytokines, specifically IL-1, IL-6, and
TNF, can favor the production of neuroprotective mediators
[217]. There is evidence showing that TLR on cultured astro-
cytes induces the production of neurotrophic factors [218]. A
similar action is displayed by chemokines such as CCL2 and
CXCL12 which has an important role in the migration of
neural progenitors in brains during development [219].
CCL2 is upregulated in diverse pathological stages in astro-
cytes and microglia [220, 221]. Other important chemokine in
the CNS named CX3CL1 is expressed by astrocytes and neu-
rons and has a role as an inhibitor of microglial-induced tox-
icity, as evidenced in three different in vivo models of neuro-
toxicity [222]. Finally, these studies may suggest that due to
the production of cytokines and chemokines, reactive astro-
cytes may induce regeneration in the lesioned CNS (Fig. 1).
Moreover, pro-inflammatory cytokines produced by astro-
cytes such as TNF-α facilitate leukocyte leakage from the
bloodstream over the blood-brain barrier into the CNS paren-
chyma [223–226]. For instance, van Kralingen and colleagues
found high levels of inflammatory cytokines in the CNS after
injury. Also, in different neurological conditions affecting the
integrity of the BBB, elevated levels of specific cytokines like
IL-1β and TNF-α have been found [227].

Table 2 Biological functions of astrocytes

Astrocyte functions

Function Reference

Blood-brain barrier (BBB) induction and maintenance [193]

Metabolic support [194]

Providing energy to neurons [195]

Regulation of extracellular pH [196]

Synthesis of precursor for glutamate and GABA production [197]

Release of cytokines and chemokines [198]

Forming Bglial scar^ after injury [199]

Brain homeostasis [188]

Brain energy metabolism [200]

Modulate extracellular glutamate level [201]

Spatial buffering [202]

Neuroinflammation [203]
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Astrocytes Are Important Regulators
of Neuroinflammation

Astrocyte Pro- and Anti-inflammatory Mechanisms

Evidence indicates that there are two types of astrocytes acti-
vation such as pro-inflammatory and anti-inflammatory
(Fig. 2). Pro-inflammatory (M1), a classical activation mech-
anism, is characterized by the production of pro-inflammatory
proteins like cytokines (Table 3), including interleukins 1β, 6,
and 12 and tumor necrosis factor alpha, and other cytotoxic
compounds such as nitric oxide (NO), which may promote the
increase of pro-inflammatory responses during damage [186].
Also, as widely accepted, upon CNS injury, activated astro-
cytes can produce and secrete pro-inflammatory molecules
that will trigger neuroinflammation, including CCL2 and
prostaglandins expressions [228–233].

As described above, there are two types of alternative acti-
vation phenotypes. In this regard, the second is the alternative

M2 (anti-inflammatory) phenotype, which suppresses an im-
mune response by neutralizing the typical M1 phenotype and
promotes the resolution of the damage. The second phenotype
(M2) produces different proteins like anti-inflammatory cyto-
kines (Table 4), in which some of them are interleukins and
transforming growth factor beta [186]. In addition, fundamen-
tal anti-inflammatory roles of astrocytes have now been dem-
onstrated by several experiments in diverse models of CNS
injury and disease [206].

Astrocytes and AD

Astrocyte activation is an important component of the
cellular responses against brain injuries and chronic neu-
rodegeneration [188]. Also, it is a pathologic response in
AD and is related with the accumulation of Aβ and/or the
raising number of degenerating synapses and neurons
[251]. It has been reported in studies with tissue from
patients with AD that activated astrocytes were closely

Fig. 1 Obesity involves a series of pathological cellular responses due to
increment in basal lipolysis and subsequent release of free fatty acids into
the bloodstream and the inflammation in the brain, particularly in the
hypothalamus. Indeed, the increase in FFA produces endoplasmic
reticulum stress, astrocytes activation, and activation of Toll-like
receptors, leading to the activation of a signaling cascade and the
activation of the transcription factor NF-kB and AP-1 in the nucleus.
NF-kB can induce the production of inflammatory cytokines, such as

TNF-α , IL -6 , IL -1 , and CCL2 . Obes i ty a l so provokes
neurodegeneration and a progressive dysfunction of neurons and
astrocytes, as common pathological mechanisms in Alzheimer’s
disease, which is characterized by deposits of aggregated amyloid β
(Aβ) and the presence of Tau protein. On the contrary, in Parkinson’s
disease, it is common the intraneuronal aggregates of α-synuclein (called
Lewy bodies). These mechanisms lead to neuronal dysfunction and
neuronal loss in both diseases
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associated and related with amyloid plaques in the molec-
ular layer of the cerebral cortex [252]. Thus, astrocytes
might be activated by human Aβ [253], indicating a cor-
relation between this protein and subsequent alterations in
astrocyte function. This astrocyte activation process,
called astrogliosis, is characterized by increased expres-
sion of the astrocyte marker glial fibrillary acidic protein
(GFAP), and this process takes place around Aβ deposits
in the brain parenchyma and the cerebral microvasculature
[251, 254]. Astrocytes can accumulate amyloidogenic ma-
terial resulting from local neurodegeneration, and then
astrocytes might undergo apoptosis and produce the for-
mation of GFAP+ amyloid plaques [253].

There are several studies regarding the capacity of as-
trocytes to internalize and degrade Aβ deposits under
in vitro and ex vivo conditions [165, 173, 255]. For ex-
ample, some studies have shown the presence of Aβ

deposits in post-mortem human AD brain and in animal
models of AD [255–257]. Investigations with fluorescent-
ly labeled astrocytes transplanted into AD mouse brains
[258] showed that glial cells are capable to migrate and
internalize deposits of Aβ and that wild-type astrocytes
can clear Aβ plaques [259]. Functional experiments also
demonstrated the ability of astrocytes to phagocyte and
degrade Aβ deposits in vitro [173]. These findings are
very significant to note the role of astrocytes in AD.
Further, in vitro analyses indicated that treatment of astro-
cytes with Aβ leads to an increase in calcium-wave sig-
naling between these glial cells [260]. To support these
studies, Johnston et al. [261] showed that in cells express-
ing the familial AD presenilin 1 (PSEN1) mutation, calci-
um fluctuations in astrocytes occurred at lower ATP and
glutamate levels than in wild-type astrocytes. These stud-
ies support a model in which calcium signaling between

Fig. 2 Inflammatory mediators and cytokine receptors are expressed in
the CNS by astrocytes and other glial cells at low levels. Specific factors
implicated in reactive astrogliosis comprise large polypeptide growth
factors and cytokines such as IL-1, IL-4, IL-6, IL-10, TNF-α, and TGF-
β. Glial cells activation is followed by enhanced secretion of these

factors, inducing damaging effects in the CNS. As discussed earlier,
astrocytes activation produces a different range of downstream
mediators, including cytokines, NO, and ROS and loss of fundamental
functions, which are important for neuronal homeostasis and synapses
maintenance
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these glial cells is modified by the illness process, which
could promote neuronal dysfunction or death under cer-
tain conditions [61]. Finally, it is very important to high-
light that research about the role of neuroglia in the pro-
gression of AD is increasing. Analysis of astrogliosis in
old patient’s brains has illustrated a relation between the
degree of astrogliosis and cognitive decline [189].

Astrocytes and PD

The role of astrocytes in the progression of PD has not
been well characterized, although astrogliosis was detect-
ed at the late stages of the disease [262, 263]. It is thought
that astrocytes are involved at early stages before neuronal
loss is evident and at advanced stages when neurodegen-
eration occurs [264]. The substantia nigra has low density

of astrocytes compared with other brain regions, and it
has been speculated that a premature astroglial atrophy
may have a role on the development of PD [265].

To date, several studies support the neuroprotective role
of astrocytes in PD [24, 27, 61, 266]. As in other neurode-
generative diseases, these studies have revealed an increase
in the number of astrocytes expressing GFAP in PD [61]
and showing the presence of anti-oxidant pathways that
might contribute to their neuroprotective role. The research
evidence indicated that in control brains, the levels of
glutathione-peroxidase-positive cells were higher in the
dopaminergic cell areas, more resistant to PD pathology
[61]. The increase in the levels of glutathione-peroxidase-
containing cells reflects a protective mechanism against
oxidative stress [267]. Also, an accumulation of α-
synuclein in the cytoplasm of protoplasmic astrocytes at

Table 3 Astrocytic molecules released during CNS injury

Category type Molecule Generalities Pro-inflammatory Anti-inflammatory Reference

Cytokine IL-1β Involved in normal neurofunction X [234, 235]

IL-4 Activation, stimulation, and differentiation of B cells X [236]

IL-6 Promote neuropathic pain behavior following an injury X [34, 237]

IL-10 Antagonizes Th1 cell development X [238]

IL-11 Hematopoietic cytokine X [218]

IL-12 Promotes differentiation of T cells into Th1 cells X [218]

IL-13 Downregulated production of pro-inflammatory mediators X [239, 240]

IL-15 Activates diverse pro-inflammatory signaling mechanisms X [206]

IL-17 Mobilizes phagocytes and granulocytes X [241]

IL-18 Drives the local production of IL-1β and IFN-γ X [186]

IL-23 Promotes acquired immune response and Th17 cell expansion X [218]

IL-27 Promotes Th1 and suppresses Th17 differentiation X [242]

Interferon-γ Macrophage activation X [243]

TNF-α Enhances the expression of various adhesion molecules X [192, 244]

TGF-β involved on inflammation and repair upon damage X [245]

Table 4 Astrocytic pro-inflammatory molecules released during CNS injury

Category type Molecule Generalities Pro-inflammatory Anti-inflammatory Reference

Chemokine CCL2 Attracts memory T cells, B cells, and monocytes X [246]

CCL5 Interacts with CCR1, CCR3, and CCR5+ cells X [246]

CCL7 Recruits diverse leukocyte and dendritic cells X [206]

CCL12 Recruits monocytes X [206]

CCXCL1 Attracts neutrophils and macrophages X [246]

CXCL9 Attracts predominantly T cells, B cells, and NK cells X [246]

CXCL10 Related with CXCL9 X [247]

CXCL12 Attracts T cells, activated B cell monocytes, and mast cells X [248]

CXCL16 Membrane-bound chemokine X [249]

Small intercellular
effector molecules

PGE Diverse pro-inflammatory effects X [206]

NO Promotes the deleterious effects on resident cells in the CNS X [250]
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initiation stage of the disease has been found [268]. This
accumulation was more distributed than Lewy bodies and
also present areas without Lewy bodies [269], suggesting
that astrocytes can capture the altered α-synuclein that has
escaped from axon terminals [270]. Also, Lee and col-
leagues demonstrated in both cell culture and animal
models of PD that α-synuclein is transmittable from neu-
ron to neuron [271] and from neuron to astrocytes [270]. In
addition, in vivo studies using transgenic mice overex-
pressing α-synuclein, driven by the neuronal promoter
PDGF-β, showed that α-synuclein immunoreactivity was
detected in both neurons and astrocytes [270]. In humans,
PET studies have shown a pronounced activation of mi-
croglia in various regions of the brain in subjects with
PD [272, 273]. Importantly, the presence of synuclein-
positive astrocytes in PD samples correlated with neuronal
cell death in the substantia nigra [274].

Therapeutic Strategies

Astrogliosis as Therapeutic Target

Based on the pathogenic role of astrocytic dysfunction, the
strategy to restore or enhance astrocytic functions might be
an attractive way to promote neuroprotection in a variety of
brain disorders [15]. Various studies using different types
of transgenic models have shown that reactive astrogliosis
is beneficial and neuroprotective during early stages of
neurodegenerative diseases. However, astrocytic function
in neuroprotection is greatly compromised during chronic
neuroinflammation [275]. New perspectives for therapeu-
tic strategies include the replacement of dysfunctional as-
trocytes or pharmacological treatments. An explicit exam-
ple is the replacement of neurotransmitters, such as levo-
dopa for PD or memantine for the treatment of AD [61].
Several experimental studies have revealed that reactive
astrocytes can protect CNS cells in different ways such as
preventing or reducing oxidative stress by increasing glu-
tathione production [276–280], improving mitochondrial
membrane potential and mitochondrial volume [20, 281,
282], inducing neuroprotection via adenosine release
[283] and neuroglobin expression [284, 285], and facilitat-
ing BBB repair [286]. However, it is important to highlight
that reactive astrocytes can play harmful roles during inju-
ry or disease, due to the increase of the abnormal effects
such as production of reactive oxygen species or some
inflammatory cytokines [287–289]. Thereby, reactive as-
trocytes have a tremendous potential to influence injuries
and/or disease effects in a positive or negative way, as
determined by specific signaling events and molecular
mechanisms [288–290].

Neuroinflammation as Therapeutic Target

Taking into account the important role of neuroinflamma-
tion in the initiation and progression of neurodegenerative
diseases, it is desirable to develop therapies by targeting
the inflammatory pathways mediated by activated glial
cells. For example, minocycline, a semi-synthetic tetracy-
cline analog, which acts as a lipophilic molecule, can
easily cross the BBB and has anti-inflammatory and neu-
roprotective properties in multiple inflammation-related
neurological diseases [291, 292]. Also, substances such
as the glucocorticoids, which are well known for their
anti-inflammatory effects, have been widely used in clin-
ical studies for brain inflammation [293].

Other substances used as therapeutic tools are the non-
steroidal anti-inflammatory drugs (NSAIDS), such as aspirin,
salicylic acid (SA), ibuprofen, and celecoxib [294, 295].
Aspirin has shown to reduce neuroinflammation and neurode-
generation [296], thus promoting the resolution of inflamma-
tion [297]. SA is a metabolite product of aspirin, which is
widely used for the treatment of myocardial infarction and
cardiovascular diseases [295]. Previous clinical studies using
NSAIDS did not show encouraging results, but some meth-
odological problems have been proposed to lead to their fail-
ure and encourage new investigation targeting neuroinflam-
mation [298]. Lastly, it has been demonstrated that gonadal
hormones, such as estradiol and testosterone, selective estro-
gen receptor modulators (SERMs; raloxifene and tamoxifen),
or tibolone, a selective tissue estrogenic activity regulator
(STEAR) might regulate the reactive glia upon brain damage
[20, 281, 284, 299–302]. Future studies should focus on iden-
tifying more specific drug targets with the aim to understand
the fundamental processes of inflammation at different stages
of the disease progression.

Concluding Remarks

Obesity is considered one of the greatest risk to human health
and has a significant role in cognitive dysfunction and aging-
associated cognitive disorders including dementia. Thus, the
high prevalence of obesity, as well as reduced age of onset in
the population, may lead to higher incidence and prevalence
of AD and PD. Nowadays, there is evidence that peripheral
inflammation induced by obesity and high-fat diet may trigger
local inflammation in the hypothalamus altering synaptic plas-
ticity and contributing to the neurodegenerative processes de-
teriorating cognitive functions. After a brain injury, molecular
signals induce astrocyte activation and migration to the site of
injury. Astrocytes enter a highly active state that may amelio-
rate or worsening the pathology at early and late stages, re-
spectively. Recent findings suggest that astrocytes are actively
involved in the maintenance of brain metabolism, anti-
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oxidativemaintenance, and neuroprotection during pathology.
For this reason, these cells play a critical role in the onset and
progression of several neurodegenerative diseases. Thus, the
involvement in neurodegenerative diseases of the most abun-
dant and heterogeneous group of glial cell in the brain, the
astrocytes, is caused by a combination of the loss of their
normal homeostatic functions and the gain of toxic functions
in disease that trigger the release and production of pro-
inflammatory and anti-inflammatory molecules during patho-
logical diseases of the central nervous system. New studies
about the role of astrocytes during early and late stages of
neurodegeneration are guaranteed.
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