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Abstract Osteoarthritis (OA) is a degenerative and progres-
sive disease characterized by cartilage breakdown and by sy-
novial membrane inflammation, which results in disability,
joint swelling, and pain. The purinergic P2X3 and P2X2/3
receptors contribute to development of inflammatory
hyperalgesia, participate in arthritis processes in the knee
joint, and are expressed in chondrocytes and nociceptive af-
ferent fibers innervating the knee joint. In this study, we hy-
pothesized that P2X3 and P2X2/3 receptors activation by en-
dogenous ATP (adenosine 5′-triphosphate) induces articular
hyperalgesia in the knee joint of male and female rats through
an indirect sensitization of primary afferent nociceptors de-
pendent on the previous release of pro-inflammatory cyto-
kines and/or on neutrophil migration.We found that the block-
ade of articular P2X3 and P2X2/3 receptors significantly at-
tenuated carrageenan-induced hyperalgesia in the knee joint
of male and estrus female rats in a similar manner. The
carrageenan-induced knee joint inflammation increased the
expression of P2X3 receptors in chondrocytes of articular car-
tilage. Further, the blockade of articular P2X3 and P2X2/3
receptors significantly reduced the increased concentration

of TNF-α, IL-6, and CINC-1 and the neutrophil migration
induced by carrageenan. These findings indicate that P2X3
and P2X2/3 receptors activation by endogenous ATP is essen-
tial to hyperalgesia development in the knee joint through an
indirect sensitization of primary afferent nociceptors depen-
dent on the previous release of pro-inflammatory cytokines
and/or on neutrophil migration.
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Introduction

Osteoarthritis (OA) is the most common form of arthritis oc-
curring more frequently in women than men. It is a progres-
sive and degenerative disease with a higher prevalence in
women than in men [1–3]. OA is characterized by inflamma-
tion of the synovial membrane (synovitis), cartilage degrada-
tion, and pain that interferes with function [4, 5]. A better
understanding of the peripheral processes linking inflamma-
tory pain with OA is necessary for the improvement of the
analgesic treatments of this disease [6].

There are seven P2X purinergic receptor subtypes (P2X1–
P2X7), which are ligand-gated ionotropic channels that open
in response to the binding of extracellular ATP (adenosine 5′-
triphosphate) [7] and form as both homomers and heteromers
in sensory fibers. P2X3 forms as a homomer or can form as a
heteromer with P2X2 [8], and both forms are involved in
articular pain and hyperalgesia [9–11]. Specifically, P2X3
and P2X2/3 receptors are localized on peripheral and central
terminals of unmyelinated C-fiber and thinly myelinated Aδ
sensory afferents [12–14]. Thus, P2X3 and P2X2/3 receptors
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play a significant role in articular pain and hyperalgesia based
on their location on afferent fibers.

Purinergic receptors are also found on non-neuronal cells
including those involved in the inflammatory process. In par-
ticular, human epidermal keratinocytes express P2X3 receptor
mRNA [15] and endothelial cells of thymus [16], urothelial
cells [17], and chondrocytes [18] express P2X3 receptors.
Further, activation of P2X3 receptors in chondrocytes induced
nitric oxide and PGE2 release [18], suggesting that P2X3 re-
ceptors on non-neuronal joint cells may enhance nociception
through modulating the inflammatory process. However, it is
not known whether the expression of P2X3 receptors on
chondrocytes is increased during inflammation or whether
inflammatory mechanisms such as pro-inflammatory cyto-
kines and neutrophil migration are involved in the contribu-
tion of P2X3 receptors to articular pain.

Although the prevalence of articular pain conditions is
higher in women than in men [1, 3], and the involvement of
some receptors in pain and analgesia processes is sex-
dependent [19–21], it is not known whether P2X3 and
P2X2/3 receptors contribute to articular hyperalgesia in a
sex-dependent manner.

Therefore, in this study, we used the carrageenan-induced
knee joint inflammation model in rats [22–24] to test the hy-
pothesis that: (I) the P2X3 and P2X2/3 receptors contribute to
carrageenan-induced articular hyperalgesia in a sex-dependent
manner, (II) the carrageenan-induced articular inflammation
increases expression of P2X3 receptors in the chondrocytes
of knee joint articular cartilage, and that (III) the contribution
of P2X3 and P2X2/3 receptors activation to carrageenan-
induced articular hyperalgesia involves a previous release of
pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and
chemokine-induced chemoattractant-1 (CINC-1, analog to
IL-8 in rats) and/or the migration of neutrophils to the in-
flamed knee joint.

Materials and Methods

Animals

Male and female Wistar rats (200–250 g) obtained from the
Multidisciplinary Center for Biological Research (CEMIB -
UNICAMP, Campinas, SP, Brazil) and from Harlan
Laboratories (Madison, WI, USA) were used in this study.
The animals (specific pathogen free, SPF) were housed in
plastic cages with soft bedding (five/cage) on a 12:12 light–
dark cycle (lights on at 06 a.m.), with food (commercial chow
for rodents) and filtered water available ad libitum, in a
temperature-controlled room (±23 °C). Testing sessions took
place during light phase (09:00 a.m.–5:00 p.m.) in a quiet
room maintained at 23 °C [25]. During the tests, the animals
had no access to water or food.

Each animal was used once, and the number of animals per
group was kept to a minimum. Experimental protocols were
approved by the Committee on Animal Research of the State
University of Campinas (protocol number: 2049-1) and by the
Animal Care and Use Committee at the University of Iowa
and were carried out in accordance with the IASP guidelines
for the study of the pain in animals [26]. The sample size of
this study was determined and calculated in accordance with
[27]. The group size (n) for each experimental group is
showed in BResults^ and between parentheses in all the fig-
ures. Animals were divided randomly into the groups. The
experimenter blinded to the experimental groups made all
analyses.

Carrageenan-Induced Knee Joint Inflammation
(Synovitis)

Under brief inhalation of isoflurane anesthesia, the skin
around the knee joints was shaved and treated with an anti-
septic solution of iodine alcohol. Using a 26-gauge needle
connected to a polyethylene catheter and also to a Hamilton
syringe (50 μL), rats were subjected to intra-articular (i.a.)
injection of λ-carrageenan dissolved in 25 μL sterile 0.9 %
saline solution into their right knee joints [23, 28]. The other
drugs were injected intra-articularly in the same manner that
carrageenan and the control animals received vehicle or sterile
0.9 % saline solution.

Drugs and Doses

The following drugs were used: λ-carrageenan (Cg; 300 μg/
knee, i.a., [23, 29, 30]) and 5-([(3-phenoxybenzyl) [(1S)-
1,2,3,4-tetrahydro-1-naphthalenyl]amino]carbonyl)-1,2,4-
benzenetricarboxylic acid (A-317491 - the selective P2X3 and
P2X2/3 receptor antagonist [31]: 20, 60, 180, 540 μg/knee,
i.a., [32]). The drugs were obtained from Sigma-Aldrich (St.
Louis, MO, USA) and dissolved in 25 μL sterile 0.9 % saline
solution.

Estrus Phase Determination of Estrous Cycle

Because female rats with lower levels of ovarian hormones,
such as estrus females, are the most responsive to some anal-
gesic drugs [19–21] and presented an articular hyperalgesic
response of the same magnitude than males rats, they were
used in this study.

Estrus phase in female rats was determined by daily micro-
scope examination (9:00–10:00 a.m.) of vaginal smears taken
by gentle lavage. Estrus phase was identified by the predom-
inance (80 %) of anucleated cornified cells in rats with at least
two consecutive regular 4-day cycles [33, 34]. This phase was
chosen because it represents the phase of low ovarian hormon-
al level, 17β-estradiol and progesterone [35, 36].
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Gait Disturbance—Rat Knee Joint Incapacitation Test

We used the rat knee joint incapacitation test (Insight, Ribeirão
Preto, SP, Brazil), as described previously [23]. Briefly, 3 h
after drugs injection into their right knee joints, rats were put
to walk on a steel rotary cylinder (30-cm wide × 50-cm diam-
eter), covered with a fine-mesh non-oxidizable wire screen,
which rotates at 3 rpm. Designed metal gaiters were wrapped
around both hind paws. After placement of the gaiters, rats
were placed in the cylinder to walk and the right paw was
connected via a simple circuit to microcomputer data input/
output port. The paw elevation time (PET) is the total time that
rats walk failing to touch the cylinder surface with the injected
hind paw, during a 60-s period, which is directly proportional
to the gait disturbance. Incapacitation (articular hyperalgesia)
was quantified as an increase in the PET. To minimize varia-
tions in PET, all rats were introduced to the experimental
environment and trained on the apparatus to habituation into
the equipment before the testing sessions. To confirm the local
effect of A-317491, it was injected into the contralateral rat’s
knee joint and the test was performed on the ipsilateral knee
joint.

Tissue Preparation

Three hours after carrageenan (300 μg/knee) or sterile 0.9 %
saline solution injection (when carrageenan-induced articular
hyperalgesia reaches its maximum), rats were anesthetized
with sodium pentobarbital (120 mg/kg i.p.) and transcardially
perfused with 4 % paraformaldehyde (PFA, in 0.1 M phos-
phate buffer (PB), pH 7.4). Whole knee joints were rapidly
removed and kept in the same fixative for 24 h at 4 °C. The
fixed specimens were decalcified for 8 weeks with 10 % eth-
ylenediaminetetraacetic acid (EDTA) in 0.01 M phosphate
buffered saline (PBS) at 4 °Cwith three fresh solution changes
per week [37]. After the complete demineralization, the
decalcified specimens were then rinsed thoroughly in PBS,
placed in 30 % sucrose overnight, and embedded in OCT
compound (Sakura Finetek, Torrance, CA, USA). All samples
were rapidly frozen and stored at −80 °C until being cut on
cryostat. Serial sections were then cryosectioned at 20 μm
using a cryostat, which was obtained at the medial
midcondylar region in sagittal plane [38, 39].

Immunohistochemistry

Immunohistochemistry labeling was performed using stan-
dard immunofluorescence techniques. Nonspecific binding
sites were blocked with 10 % normal goat serum (NGS) for
30 min. Sections were then rinsed twice for 5 min in 0.1 M
PBS and incubated in primary antibody (1:1000, guinea pig
Anti-P2X3 Receptor, AB5896, Merck Millipore, Billerica,
MA, USA) diluted in 1 % NGS and 0.05 % Triton X-100 in

0.1 M PBS and applied to the tissues overnight (4 °C) in a
humid atmosphere. Sections were then rinsed twice for 5 min
in 0.1 M PBS and incubated in secondary antibody (1:1000,
goat anti-guinea pig IgG-Alexa488, Life Technologies, Grand
Island, NY, USA) diluted in 1 % NGS and 0.05 % Triton
X-100 in 0.1 M PBS for 1 h at room temperature. Sections
were then rinsed twice for 5 min in 0.1 M PBS and incubated
with TO-PRO3 (1:4000, 30 min; Invitrogen, Carlsbad, CA,
USA) for nuclear staining. After a final washing, the sections
were cover slipped using Vectashield (Vector Laboratories,
Burlingame, CA, USA). Negative controls were prepared
without incubation in primary antibody to confirm that there
was no non-specific binding of the secondary antibody.

After staining, sections were examined with the
Confocal Bio-Rad MRC 1024 Microscope and images
were taken with a ×20 objective lens of three specific re-
gions of the knee joint: the articular cartilage covering the
femoral condyle, the articular cartilage covering the tibial
plateau, and the meniscus. Five randomly selected knee
sections were chosen for each sample (six samples per
group) and were digitally imaged and stored for later anal-
ysis. The density (mean, arbitrary units) of each section
and the number of positive cells (chondrocytes) were quan-
tified by manually counting total numbers in a given area
using Image J (National Institutes of Health). Specifically,
a standard size (average area of 75,190 μm2 for the layer of
cartilage covering the femoral condyle, 62,410 μm2 for the
layer of cartilage covering the tibial plateau, and
93,630 μm2 for meniscus) was applied to each section.
Chondrocytes were counted if they were positively stained
for P2X3 receptor.

Synovial Lavage Fluid

Under deep anesthesia (80 mg/kg ketamine and 20 mg/kg
xylazine, i.p.), rats were killed by cervical dislocation, the skin
overlying the knee was excised, the patellar ligament was
dissected, and a 26-gauge needle connected to a Hamilton
syringe (100 μL) was inserted through the joint capsule. The
knee joint cavity was washed twice by injecting and immedi-
ately aspirating 100 μL of phosphate-buffered saline solution
(PBS) containing 4 mM EDTA. The resulting synovial la-
vages (total volume of 100 μL) were combined and immedi-
ately stored at −80 °C for further analysis [28].

Enzyme-Linked Immunosorbent Assay Procedure

An adaptation of enzyme-linked immunosorbent assay
(ELISA) [40] was used to quantify the cytokines of the
rat’s knee joint. Briefly, 3 h after the drug injections, the
synovial lavage fluid (100 μL) was collected and homog-
enized in 500 μL of a solution of PBS containing 0.4 M
NaCl, 0.05 % Tween 20, 0.5 % bovine serum albumin

6176 Mol Neurobiol (2017) 54:6174–6186



(BSA), 0.1 mM phenyl-methylsulfonyl-fluoride, 0.1 mM
benzotonic-chloride, 10 mM EDTA, and 2 ng/mL aprotinin
(Sigma-Aldrich, St. Louis, MO, USA). The samples were
centrifuged (10,000 rpm, 15 min, 4 °C), and the superna-
tants were used to evaluate the protein levels of TNF-α, IL-
1β, IL-6, and CINC-1 in the rat’s knee joint. The cytokines
were quantified by the following DuoSet ELISA Kits:
TNF-α: Rat TNF-α/TNFSF1A (DY510); IL-1β: Rat IL-
1β/IL-1F2 (DY501), IL-6: Rat IL-6 (DY506), and CINC-
1: Rat CXCL1/CINC-1 (DY515). All procedures followed
the instructions of the manufacturer (R&D Systems,
Minneapolis, MN, USA). All procedures were repeated
twice to guarantee the accuracy of the results.

Measurement of Myeloperoxidase Activity

Myeloperoxidase (MPO) is one of the enzymes released from
neutrophils and associated with tissue injury and is used as a
marker of neutrophilic activity in peripheral tissues [41].
Briefly, 3 h after the drug injections, synovial lavage fluid
was collected and homogenized in 500 μL of buffer 1
(0.1 M NaCl, 0.02 M NaPO4, 1.015 M NaEDTA) followed
by centrifugation (3000 rpm, 15 min, 4 °C). The pellet was
resuspended in 500 μL of buffer 1 and subjected to hypotonic
lyses by the addition of 500 μL of 0.2 % NaCl followed 30 s
later by addition of 500 μL of 1.6 % NaCl in 5 % glucose.
After further centrifugation, the pellet was resuspended in
0.05 M NaPO4 buffer (pH 5.4) containing 0.5 % hexadecyl-
trimethylammonium bromide (HTAB). Samples were then
snap-frozen in liquid nitrogen three times and centrifuged
(10,000 rpm, 15 min, 4 °C). The supernatant was used in the
assay.

The MPO kinetic-colorimetric assay was conducted as
previously described [42]. Fifty microliters of each sample
and 0.08 M NaPO4 were dropped into wells of a 96-well
microplate. Twenty-five microliters of 1.6 mM 3,3′,3,3′-
tetramethylbenzidine (TMB) was added in each well, and
the reaction was initiated by the addition of 100 μL of
0.5 mM H2O2. The reaction was stopped 5 min later by
the addition of 50 μL of 4 M H2SO4. The optical density
was read at 450 nm using an Asys UVM340. After that, the
results were calculated by comparing the optical density of
rat’s knee joint synovial lavage fluid supernatant with a
standard curve of neutrophil (>95 % purity), as previously
described [43]. The results were presented as number of
neutrophils × 104/knee. All procedures were repeated twice
to guarantee the results authenticity.

Statistical Analysis

Statistical analysis was performed using Prism v5
(GraphPad, La Jolla, CA, USA). To determine if there were
significant differences (p < 0.05) between treatment groups

for all measures, one-way ANOVAwas performed. If there
was a significant between-subjects main effect for treat-
ment group, Tukey’s test examined for individual differ-
ences between groups. For PET data shown in Fig. 1b, c, a
two-way repeated measures ANOVA with one between
subjects factor (i.e., treatment) and one within-subjects fac-
tor (i.e., time) were used to determine whether there were
significant (p < 0.05) differences among the groups. If
there was a significant between-subjects main effect of
treatment group, post hoc contrasts using the Bonferroni
test were performed to determine the basis of the signifi-
cant difference. Data are expressed in figures as means ±
S.E.M.

Results

P2X3 and P2X2/3 Receptors Contribute
to Carrageenan-Induced Articular Hyperalgesia in Males
and Females

In the current study, we show that 300 μg of intra-articular
injection of carrageenan increases PET during walking to a
similar extent for both male and estrus female rats (Fig. 1a, b,
second bar, P > 0.05, one-way ANOVA, Tukey test, n = 6 per
group). The increased PET begins within 1 h after carrageenan
injection, remains elevated through 6 h (Fig. 2b, P < 0.05,
two-way ANOVA, Bonferroni test, n = 6 per group), and
returns to baseline 24 h later (Fig. 2b, P > 0.05, two-way
ANOVA, Bonferroni test, n = 6 per group).

To determine if P2X3 and P2X2/3 receptors contributed
to the enhanced PET, the selective antagonist A-317491
was co-administrated with carrageenan (300 μg/knee) into
the knee joint. A-317491 at doses of 60, 180, and 540 μg/
knee, but not 20 μg/knee (Fig. 1a, b, P > 0.05, one-way
ANOVA, Tukey test, n = 6 per group), significantly atten-
uated the carrageenan-induced increase in PET (Fig. 1a, b,
P < 0.05, one-way ANOVA, Tukey test, n = 6 per group) in
males and estrus females knee joint when compared to
vehicle controls. The highest dose of A-317491 (540 μg/
knee) did not affect the carrageenan-induced elevated PET
when applied on the contralateral knee joint (Fig. 1a, b,
P > 0.05, one-way ANOVA, Tukey test, n = 6 per group)
of males and estrus females, confirming its local peripheral
action. There were no significant differences in the anti-
hyperalgesic effect of the different doses of A-317491 on
carrageenan-induced articular hyperalgesia between males
and estrus females (Fig. 1c, P > 0.05, two-way ANOVA,
Bonferroni test, n = 6 per group). Therefore, either males
or females could be used to perform the subsequent exper-
iments and we chose to perform them only in male rats due
to methodological facilities.
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P2X3 and P2X2/3 Receptors Are Crucial
to the Development of Carrageenan-Induced Articular
Hyperalgesia

To characterize the period of time at which the activation
of P2X3 and P2X2/3 receptors contributes to the develop-
ment of carrageenan-induced hyperalgesia in the knee
joint, A-317491 was co-administrated (0 h) with carra-
geenan or administrated ½, 1, 2, or 3 h after injection of
carrageenan. Co-administration of A-317941 (540 μg/
knee) with carrageenan (300 μg/knee) (Fig. 2a, P < 0.05,

one-way ANOVA, Tukey test, n = 6 per group), but not its
administration ½, 1, 2, or 3 h after the carrageenan admin-
istration (Fig. 2a, P > 0.05, one-way ANOVA, Tukey test,
n = 6 per group) significantly prevented the carrageenan-
induced PET.

In another set of experiments, A-317491 (540 μg/knee)
was co-administrated with carrageenan (300 μg/knee) and
the measurements were taken ½, 1, 2, 3, 4, 5, 6, and 24 h later.
The carrageenan-induced articular hyperalgesia reached its
maximum 3 h after injection (Fig. 2b). A-317491 prevented
the development of the carrageenan-induced PET from 1 to

Fig. 1 Effect of articular blockade of P2X3 and P2X2/3 receptors on
carrageenan-induced hyperalgesia in the knee joint of males and estrus
females. Co-administration of the P2X3 and P2X2/3 receptors antagonist
A-317491 (60, 180, and 540 μg/knee) with carrageenan (300 μg/knee)
significantly reduced carrageenan-induced articular hyperalgesia in males
(a) and estrus females (b), as indicated by the symbol B#^ (P < 0.05,
Tukey test) in a similar manner (P > 0.05, Bonferroni test, C). The
highest dose of A-317491 (540 μg/knee) injected in the contralateral

knee joint (ct) did not affect the carrageenan-induced articular
hyperalgesia (P > 0.05, Tukey test, a and b). A-317491 injected only
with 0.9 % NaCl had no effect by itself (P > 0.05, Tukey test, a and b).
The symbol B*^ indicates a response significantly greater than that
induced by 0.9 % NaCl (a and b; P < 0.05, Tukey test). In this and in
the subsequent figures, the articular hyperalgesia was measured 3 h after
the intra-articular (i.a.) drugs administration and the number of rats or
samples used are in parentheses

Fig. 2 Temporal analysis of the effect of the articular blockade of P2X3
and P2X2/3 receptors on carrageenan-induced articular hyperalgesia. a
Co-administration (0 h) of the P2X3 and P2X2/3 receptors antagonist
A-317491 (540 μg/knee) with carrageenan (Cg, 300 μg/knee), but not
its administration ½, 1, 2, or 3 h after the carrageenan administration
(P > 0.05, Tukey test) significantly reduced carrageenan-induced
articular hyperalgesia, as indicated by the symbol B#^ (P < 0.05, Tukey

test). The symbol B*^ indicates a response significantly greater than that
induced by 0.9 %NaCl (P < 0.05, Tukey test). b The temporal analysis of
the effect of the co-administration of A-317491 (540 μg/knee) with
carrageenan showed that A-317491 blocked the hyperalgesic response
1, 2, 3, 4, 5, and 6 h after its co-administration, as indicated by the
symbol B#^ (P < 0.05, Bonferroni test)
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6 h (Fig. 2b, P < 0.05, two-way ANOVA, Bonferroni test,
n = 6 per group).

Carrageenan Increased Expression of the P2X3 Receptor
on the Chondrocytes in the Knee Joint

To test if intra-articular carrageenan injection increases P2X3
receptors on chondrocytes in the knee joint, we examined
P2X3 receptors expression after induction of inflammation
by immunofluorescence. Intra-articular administration of car-
rageenan (300 μg/knee) significantly increased the number of
chondrocytes that express P2X3 receptor in the articular car-
tilage covering the femoral condyle (Fig. 3, P < 0.05, one-way
ANOVA, Tukey test, n = 6 per group), the tibial plateau
(Fig. 4, P < 0.05, one-way ANOVA, Tukey test, n = 6 per
group), and on the meniscus (Fig. 5, P < 0.05, one-way
ANOVA, Tukey test, n = 6 per group) when compared to

saline or naive controls. The expression of P2X3 receptors
on the chondrocytes after the intra-articular injection of
0.9 % NaCl (50 μL/knee) was similar to that of naive rats in
all three regions analyzed (P > 0.05, one-way ANOVA, Tukey
test, n = 6 per group).

P2X3 and P2X2/3 Receptors Contribute
to Carrageenan-Induced Increase in Pro-inflammatory
Cytokines

To verify if P2X3 and P2X2/3 receptors contribute to the
release of pro-inflammatory cytokines in the inflamed
joint, we examined the cytokines pro-inflammatory con-
centrations in the inflamed knee joint from animals
injected with A-317491 (540 μg/knee) and compared to
vehicle controls.

Fig. 3 Effect of intra-articular
injection of carrageenan on P2X3
receptors expression in the
chondrocytes of the articular
cartilage of the femoral condyle
of the rats knee joint. Induction of
knee joint inflammation with
carrageenan (300 μg/knee)
significantly increased expression
of P2X3 receptor in the
chondrocytes of the articular
cartilage of the femoral condyle
(a and b). The symbol B*^
indicates an expression
significantly greater than that of
0.9 % NaCl and naïve groups
(P < 0.05, Tukey test).
Immunofluorescence confocal
micrographs of the articular
cartilage (white arrows) of the
femoral condyle after
carrageenan (c, d and e) and
0.9 % NaCl injection (f, g and h)
and of untreated (naive, i, j and k)
groups. Sections show
immunohistochemical labeling
for P2X3 receptor (green, c, f and
i) and labeling for nuclear staining
with TOPRO-3 (red, d, g and j).
Merged pictures in e, h and k
show co-localization of P2X3
receptor and nucleus cells
(yellow). BM bone marrow. Scale
bars = 100 μm
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Intra-articular injection of carrageenan (300 μg/knee)
significantly increased concentrations of TNF-α (Fig. 6a),
IL-1β (Fig. 6b), IL-6 (Fig. 6c), and CINC-1 (Fig. 6d) in the
knee joint 3 h after carrageenan injection (P < 0.05, one-
way ANOVA, Tukey test, n = 8 per group). Co-
administration of A-317491 (540 μg/knee) with carrageen-
an significantly prevented increases in TNF-α (Fig. 6a),
IL-6 (Fig. 6c), and CINC-1 (Fig. 6d) (P < 0.05, one-way
ANOVA, Tukey test, n = 8 per group), but not IL-1β con-
centration in the inflamed knee joint (Fig. 6b) (P > 0.05,
one-way ANOVA, Tukey test, n = 8 per group). The en-
dogenous concentration of TNF-α, IL-1β, IL-6, and
CINC-1 after the intra-articular injection of 0.9 % NaCl
was not significantly different from that of naive rats
(Fig. 6, P > 0.05, one-way ANOVA, Tukey test, n = 8
per group).

P2X3 and P2X2/3 Receptors Contribute
to Carrageenan-Induced Knee Joint Neutrophil
Infiltration

To test if P2X3 and P2X2/3 receptors contribute to the neu-
trophilic infiltration induced by carrageenan, we examined
myeloperoxidase enzyme (MPO) activity after co-
administration of A-317491 (540 μg/knee) with carrageenan
and compared to vehicle-controls.

Intra-articular injection of carrageenan (300 μg/knee)
significantly increased MPO activity 3 h after injection
(Fig. 7, P < 0.05, one-way ANOVA, Tukey test, n = 8
per group). Co-administration of A-317491 (540 μg/knee)
with carrageenan showed significantly lower MPO activity
when compared to vehicle-controls (Fig. 7, P < 0.05, one-
way ANOVA, Tukey test, n = 8 per group). The intra-

Fig. 4 Effect of intra-articular
injection of carrageenan on P2X3
receptors expression in the
chondrocytes of the articular
cartilage of the tibial plateau of
the rat’s knee joint. Induction of
joint inflammation with
carrageenan (300 μg/knee)
significantly increased the
expression of P2X3 receptor in
the chondrocytes of the articular
cartilage covering the tibial
plateau (a and b). The symbol B*^
indicates an expression
significantly greater than that of
0.9 % NaCl and naïve groups
(P < 0.05, Tukey test).
Immunofluorescence confocal
micrographs of the articular
cartilage (white arrows) covering
the tibial plateau after carrageenan
(c, d and e) and 0.9 % NaCl
(f, g and h) injection and of
untreated (naive, i, j and k)
groups. Sections show
immunohistochemical labeling
for P2X3 receptor (green, c,
f and i) and labeling for nuclear
staining with TOPRO-3 (red,
d, g and j). Merged pictures in
e, h and k show co-localization of
P2X3 receptor and nucleus cells
(yellow). BM bone marrow. Scale
bars = 100 μm
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articular injection of 0.9 % NaCl showed similar levels in
MPO activity when compared to naive rats (Fig. 7,
P > 0.05, one-way ANOVA, Tukey test, n = 8 per group).

Discussion

In this study, we showed for the first time that P2X3 and
P2X2/3 receptors contribute to carrageenan-induced articular
hyperalgesia in the knee joint of both male and female rats.
Uniquely, we showed that carrageenan-induced articular in-
flammation increases the expression of P2X3 receptors on
chondrocytes of the articular cartilage of the knee joint, and
that blockade of P2X3 and P2X2/3 receptors prevents
carrageenan-induced increases in pro-inflammatory cyto-
kines, and prevents neutrophilic migration to the knee joint.

Together these data suggest that P2X3 and P2X2/3 receptors
contribute to carrageenan-induced articular inflammatory
hyperalgesia indirectly through enhanced release of the pro-
inflammatory cytokines (TNF-α, IL-6, and CINC-1) and stim-
ulation of neutrophilic infiltration to the injured joint.

We showed that the blockade of P2X3 and P2X2/3 recep-
tors in the knee joint significantly reduced carrageenan-
induced articular hyperalgesia from 1 to 6 h. Although spinal
P2X3 and P2X2/3 receptors also contribute to hyperalgesia
[44], this anti-hyperalgesic effect was arguably the result of
blockade of P2X3 and P2X2/3 receptors local to the site of
inflammation since A-317941 injection into the contralateral
joint did not reproduce the effect.

Likewise in the subcutaneous tissue of rat paw [32], the
P2X3 and P2X2/3 receptors antagonist only reduced
carrageenan-induced articular hyperalgesia when it was co-

Fig. 5 Effect of intra-articular
injection of carrageenan on P2X3
receptors expression in the
chondrocytes of the cartilage that
forms the meniscus of the rat’s
knee joint. Induction of joint
inflammation with carrageenan
(300 μg/knee) significantly
increased expression of P2X3
receptor in the chondrocytes of
the cartilage that forms the
meniscus (a and b). The symbol
B*^ indicates an expression
significantly greater than that of
0.9 % NaCl and naïve groups
(P < 0.05, Tukey test).
Immunofluorescence confocal
micrographs of the meniscus after
carrageenan (c, d and e) and
0.9 % NaCl (f, g and h) injection
and of untreated (naive, i, j and k)
groups. Sections show
immunohistochemical labeling
for P2X3 receptor (green, c,
f and i) and labeling for nuclear
staining with TOPRO-3 (red,
d, g and j). Merged pictures in
e, h and k show co-localization of
P2X3 receptor and nucleus cells
(yellow). Scale bars = 100 μm
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administered with carrageenan, but not when it was adminis-
tered ½, 1, 2, or 3 h after the carrageenan administration in the
knee joint. Therefore, these purinergic receptors in the periph-
eral tissue seem to be essential to the development of
hyperalgesic response, but not for its maintenance. These re-
sults may suggest that in this carrageenan-induced synovitis
model, ATP may be released only immediately after the car-
rageenan administration. However, many inflammatory artic-
ular conditions (e.g., osteoarthritis) are in a progressive devel-
opment and ATPmay be continuously released, sustaining the
articular hyperalgesia in these pathologies. Therefore, P2X3
and P2X2/3 receptor blockers may be effective in ongoing
articular inflammatory conditions, although this possibility
needs further confirmation by clinical studies in patients with
arthropathies.

Our findings are consistent with animal studies showing
that during inflammation ATP is released from macrophages,
platelets, neutrophils, and dying cells [45–51] to the extracel-
lular milieu, where it contributes to the development of in-
flammatory hyperalgesia in the subcutaneous tissue [32] and
in the articular tissue such as the TMJ [11] and the knee joint
[9] of rats via P2X3 and P2X2/3 receptors activation. Further,
they are also consistent with human studies showing that

Fig. 6 Effect of the articular blockade of P2X3 and P2X2/3 receptors on
carrageenan-induced pro-inflammatory cytokine release. Induction of
joint inflammation with carrageenan (Cg, 300 μg/knee) significantly
increased local concentrations of TNF-α (a), IL-1β (b), IL-6 (c), and
CINC-1 (d) 3 h after carrageenan injection. The co-administration of
the P2X3 and P2X2/3 receptors antagonist A-317491 (540 μg/knee)
with carrageenan significantly reduced the local concentration of TNF-

α (a), IL-6 (c), and CINC-1 (d), as indicated by the symbol B#^ (P < 0.05,
Tukey test), but not the local concentration of IL-1β (b) (P > 0.05, Tukey
test). The intra-articular injection of 0.9 % NaCl alone did not
significantly affect the local endogenous concentration of TNF-α, IL-
1β, IL-6, and CINC-1 when compared with naive rats (P > 0.05, Tukey
test). The symbol B*^ indicates a response significantly greater than that
of 0.9 % NaCl and naive groups (P < 0.05, Tukey test)

Fig. 7 Effect of the articular blockade of P2X3 and P2X2/3 receptors on
carrageenan-induced neutrophil migration. Induction of joint
inflammation with carrageenan (Cg, 300 μg/knee) significantly
increased the neutrophil migration into the rat’s knee joint 3 h after
carrageenan injection. The co-administration of the P2X3 and P2X2/3
receptors antagonist A-317491 (540 μg/knee) with carrageenan
significantly reduced the carrageenan-induced increase of neutrophil
migration, as indicated by the symbol B#^ (P < 0.05, Tukey test). The
symbol B*^ indicates a response significantly greater than that of 0.9 %
NaCl and naive groups (P < 0.05, Tukey test)
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extracellular ATP is often found in the synovial fluid of pa-
tients with arthropathies [52, 53].

The chondrocytes, the unique cell type residing in cartilage
[54, 55], can release PGE2 [56], a major contributor of inflam-
matory pain in arthritis conditions, that subsequently acts
through a variety of prostanoids receptors expressed in periph-
eral sensory neurons and spinal cord [57]. A previous in vitro
study showed that ATP and α,β-meATP (P2X3 agonist, [14]
increase PGE2 production, an effect that was blocked by the
selective P2X3 and P2X2/3 receptors antagonist A317491,
indicating a role of P2X3 receptors in PGE2 release by
chondrocytes [18]. Therefore, in addition to the P2X3 and
P2X2/3 receptors expressed on the peripheral terminals of
primary afferent nociceptors that innervate the knee joint
[58], the P2X3 and P2X2/3 receptors expressed in
chondrocytes may also contribute to carrageenan-induced ar-
ticular hyperalgesia.

In this study, we showed for the first time that the local
inflammation induced by carrageenan in the rat’s knee joint
increases the expression of the P2X3 receptor in the
chondrocytes of the articular cartilage. Specifically, we show
increases in the cartilage covering the femoral condyle and the
tibial plateau and the meniscus of the rat’s knee joint.
However, it is important to point out that the increased
P2X3 receptor expression on the chondrocytes was observed
3 h after the intra-articular administration of carrageenan.
Because, at this time, the administration of the P2X3 and
P2X2/3 receptors antagonist A-317491 had no effect on
carrageenan-induced articular hyperalgesia, the increased
P2X3 receptor expression on the chondrocytes may not con-
tribute to carrageenan-induced articular hyperalgesia.
Alternatively, it may contribute to carrageenan-induced in-
flammation associated with cartilage degradation [59], which
is consistent with the demonstration that ATP can promote
cartilage resorption [60].

Several studies suggest the involvement of pro-
inflammatory cytokines in the articular inflammatory process-
es [61–63]. For example, the concentration of IL-1β, TNF-α,
IL-6, and IL-8 is significantly increased in the experimental
OA knee joint synovial fluid of rats [64, 65] and in the syno-
vial fluid of patients with OA [66]. The importance of TNF-α
and IL-6 to the development of arthropathies was demonstrat-
ed by the ability of anti-TNF-α and anti-IL-6 antibodies to
prevent the progression of bone and cartilage damage, reliev-
ing pain symptoms in patients [67–70] and by their ability in
the prevention of collagen-induced arthritis in mice [71, 72].
In this study, we showed that the pro-inflammatory cytokines
TNF-α, IL-6, and CINC-1 mediates, at least in part, the es-
sential role played by articular P2X3 and P2X2/3 receptors in
the development of carrageenan-induced hyperalgesia in the
knee joint. As shown in the subcutaneous tissue [32], IL-1β is
not involved in the contribution of P2X3 and P2X2/3 receptor
activation in carrageenan-induced articular hyperalgesia.

Thus, we suggest that the activation of P2X3 receptors
expressed on chondrocytes may contribute to the release of
pro-inflammatory cytokines, which subsequently enhance in-
flammation and activate nociceptors.

The pro-inflammatory cytokines TNF-α, IL-6, and CINC-
1 could contribute to the essential role played by articular
P2X3 and P2X2/3 receptors in the development of
carrageenan-induced hyperalgesia in the knee joint by stimu-
lating the release of PGE2 from chondrocytes. Consistent to
this idea, these cytokines can act on chondrocytes [73, 74] and
can release PGE2 [56]. These pro-inflammatory cytokines
could also contribute to the essential role played by articular
P2X3 and P2X2/3 receptors in the development of
carrageenan-induced hyperalgesia in the knee joint by other
mechanisms. For example, TNF-α and IL-6 could direct acti-
vate the primary afferent nociceptor [75, 76] and CINC-1
could stimulate release of sympathomimetic amines [77, 78]
from sympathetic nerves that innervate the synovial tissue
[79].

In patients with OA, there is an intense neutrophil mi-
gration [80] into synovial tissues. Neutrophils are involved
in the genesis of inflammatory hyperalgesia [81], and their
infiltration into synovial tissues can cause proteolytic en-
zymes release which contributes significantly to the tissue
damage [82]. Neutrophil migration can be induced by car-
rageenan [28] and by the pro-inflammatory chemokine
CINC-1 [83]. In this study, we showed that blockade of
P2X3 and P2X2/3 receptors reduces carrageenan-induced
neutrophilic migration. This finding highlights an impor-
tant difference between the pathophysiology of inflamma-
tory hyperalgesia in the articular and subcutaneous tissues
because the neutrophil migration does not mediate the con-
tribution of P2X3 and P2X2/3 receptors to the develop-
ment of carrageenan-induced hyperalgesia in the subcuta-
neous tissue [32]. It further suggests that the inflammatory
process is unique to tissue type and may depend on the cell
types located in the tissue.

Finally, although sex differences in the action of opioids
agonists [19, 20, 84], β-adrenoceptor antagonist [21], and
P2X7 receptor antagonist (unpublished data) have been re-
ported, we showed that there is no sex difference in the anti-
hyperalgesic effect induced by the blockade of the P2X3 and
P2X2/3 receptors in the rat’s knee joint. Similarly, the me-
chanical analgesia induced by kappa opioid agonist
asimadoline is not sex dependent [85]. Therefore, taken to-
gether, these findings reinforce our previous suggestion that
sex differences in pain and analgesia depend, at least in part,
on the particular receptor type under study.

In summary, we have shown in the current study that in the
carrageenan-induced knee joint synovitis model, the endoge-
nous ATP through P2X3 and P2X2/3 receptors activation
plays a crucial role in the development of carrageenan-
induced articular hyperalgesia in the knee joint of males and
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estrus females in a similar manner. Moreover, during knee
joint inflammation, the expression of P2X3 receptors is in-
creased in chondrocytes, suggesting that their activation may
contribute to the inflammatory process. The essential role
played by P2X3 and P2X2/3 receptors in the development
of carrageenan-induced articular hyperalgesia is dependent
on neutrophil migration and on previous pro-inflammatory
cytokines release in the knee joint. Taken together, these find-
ings suggest that selective antagonists for the P2X3 and
P2X2/3 receptors could be potential targets for drug develop-
ment for the symptoms treatment of inflammatory joint
diseases.
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