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Abstract Cellular reprogramming is a promising strategy to
generate neural stem cells (NSCs) or desired subtype-specific
neurons for cell-based therapeutic intervention. By far, the
intricate cell event like reprogramming of non-neural cells to
desired cell types can be achieved by forced expression of
lineage-related transcription factors (TFs), nuclear transfer, a
defined set of factors, and via non-coding microRNAs
(miRNAs), as well as other precisely defined conditions. In
addition, scientists have been trying to develop better ap-
proaches for reprogramming, either by using distinct combi-
nations of a set of small molecules and certain TFs or delivery
of appropriate small molecules and miRNAs. The miRNA-
mediated approach is fascinating because of its potential to
rapidly generate a variety of therapeutically desired cell types
from other cell lineages. Recent studies have made great prog-
ress in miRNA-mediated neural reprogramming of somatic
cells to various specific neuronal subtypes with more efficien-
cy even though the exact mechanisms remain to be further
explored. Based on key roles of miRNAs in neural
reprogramming across differentiated cell lineages, it is of vital
interest to summarize the recent knowledge regarding the in-
structive role of miRNAs in direct conversion of somatic cells

into neural lineages. This precise review mainly focuses on
recent discoveries of miRNAs functions in initiating cell
reprogramming and fate specification of the neuronal subtype.
Moreover, we discuss most recent findings about some
miRNAs’ activity in regulating various developmental stages
of neurons, which is helpful for understanding the event net-
work between miRNAs and their targets.
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Introduction

MicroRNAs (miRNAs) are a class of small, endogenous short
non-coding RNAs 19-23 nucleotides in length that regulate
gene expression at the post-transcriptional level in wide vari-
ety of cellular processes including cell proliferation, cell fate
determination and differentiation, and metabolism [1–6].
MiRNAs specifically recognize and regulate expression of
mRNAs by sequence complementarity with the mRNAs 3′
untranslated region. Importantly, a single miRNA can have
several target mRNAs to regulate a process; and conversely,
a unique mRNA can be targeted by more than one miRNA.
Thereby, by degrading target mRNAs or inhibiting translation,
miRNAs exert a potential impact on the transcriptome,
influencing various biological events [7, 8].

Since the discovery of the first miRNA in 1993, numerous
miRNAs have been identified in various species from plants
to mammals [9]. Furthermore, miRNA characteristics and reg-
ulatory roles in many important cellular processes were re-
vealed. Strikingly, specific miRNAs were employed in the
regulation of de novo DNA methylation which is responsible
for the direct or indirect cell reprogramming event [10, 11].
Since Takahashi and Yamanaka discovered that the simple
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combination of a few transcription factors (TFs) can initiate
the reprogramming toward a pluripotent state [12, 13], direct
cell reprogramming into a variety of target cells has sparked
great interest in the field of regenerative medicine and opened
several new research avenues due to the facts that ethical con-
troversies can be avoid and immune rejection reduced. In the
most studied cellular reprogramming approaches, different
TFs and signaling pathways have been described as crucial
players within the intricate gene expression regulatory net-
works during cell reprogramming processes [14, 15]. On basis
of Yamanaka and colleagues’ strategy for conversion of fibro-
blasts to their desirable cell types, increasing studies have
demonstrated that numerous transcriptional regulators play
critical roles in neurogenesis and cell reprogramming, and that
several TFs such as Oct4, Sox2, Nanog, and kif4 are sufficient
to robustly induce neuroblasts [16–23], suggesting that these
TFs possess powerful reprogramming activity. Although TFs
in cell fate conversion has been widely documented during
this reprogramming process, epigenetic and gene expression
regulation by non-coding RNAs (ncRNAs) as additional and
essential regulatory mechanisms for the reprogramming pro-
cess must be precisely regulated to accomplish this cell event
at the same time, and maintain the reprogrammed cell profiles.
Of note, some miRNAs are suff ic ient to induce
reprogramming of mammalian somatic cells such as fibro-
blasts without forced expression of other TFs. Thus,
miRNAs may be a valuable means to regulate the distinct
stages of a stepwise cell reprogramming. Here, we will review
the recent findings about miRNAs as post-transcriptional reg-
ulators in regulating and orchestrating the cellular event.

miRNA Biogenesis

miRNAs were initially discovered in Caenorhabditis elegans
during a genetic screen to uncover molecules involved in reg-
ulating nematode development [9, 24]. The majority of the
characterized miRNA genes were intergenic or antisense ori-
ented to neighboring genes and therefore, suspected to be
transcribed as independent units that consist of one or more
hairpin structure, each composed of a stem and terminal loop
[1]. Generation of miRNAs from long double-stranded RNAs
is a stepwise process that can be canonical (Drosha/Dgcr8-
dependent) or non-canonical (Drosha/Dgcr8-independent)
[25]. The canonical miRNA biogenesis in animals undergo
the following processes: (1) miRNA loci transcription and
further editing to precursor transcripts known as pri-miRNA
by RNA polymerase II and some related proteins factors; (2)
The conversion of pri-miRNA to precursor miRNA (pre-
miRNA) in the nucleus by type III RNase Drosha complex
[26]; (3) Transportation of pre-miRNA to the cytoplasm by
the nucleo-cytoplasmic transport factor Exportin5, in a Ran-
GTP-dependent manner [27]; and (4) Generation of an

approximately 21-22 nt RNA duplex structure (miRNA/
miRNA*) by a second type III RNase endonuclease called
Dicer [2]. Subsequently, one guide strand of miRNA duplex
is preferentially incorporated into the RNA-induced silencing
complex (RISC), which guides the binding of the miRNA
response elements (MREs) to specific mRNA transcripts by
partial base pairing between the miRNA and the target mRNA
[28, 29]. For better understanding of the miRNA biogenesis
process, a schematic diagram of the possibilities of miRNA
biogenesis is illustrated in Fig. 1. Besides, miRNA*, also
called passenger strand, is typically assumed to be merely a
carrier strand, which is finally degraded by several
exoribonucleases and is therefore non-functional [30, 31].
Furthermore, pre-miRNAs can be generated by non-
canonical mirtron pathway [32, 33]. Mirtrons are generated
when their host genes are transcribed and, then, short introns
with potential hairpin enter the mirtron pathway. After lariat
debranching enzyme (Ldbr) gives rise to shorter pre-miRNAs
that abutted intron-exon boundaries, this pre-miRNA is ac-
tively transported from the nucleus to the cytoplasm by Ran-
GTP and the export receptor Exportin5 [34]. Once pre-
miRNAs are cleaved to 22-nucleotides by the Drosha cleav-
age site of Dicer, an imperfect duplex consisting of the mature
miRNA and its corresponding complementary sequence de-
rived from the other arm of pre-miRNA results [1]. Intragenic
miRNAs are generated from transcripts located within
protein-coding regions of genes (Fig. 1).

Diverse Functions for miRNAs in Reprogramming

Since substantial evidence has shown that somatic cells could
be transformed to iPSCs through epigenetic reprogramming
by forced overexpression of the defined TFs, miRNA-based
cellular processes including cell proliferation, differentiation,
and reprogramming as well as maintenance of stemness, have
been intensively studied to evaluate therapeutic applications
of this technique. Although traditional DNA-based
reprogramming for generation of iPSCs has made progress,
there is still the major drawback of possible random insertion
of the reprogramming factors into the genome, which could
lead to genome disruption. Therefore, studies have been con-
ducted to modify the approaches to improve safety and effi-
ciency of the iPSCs using different combinations of TFs, or
non-genetic strategies, such as employing various small mol-
ecules and specific miRNAs to induce pluripotency or
reprogramming. In this respect, microRNA analysis defined
that stem cells from diverse origins have a distinct miRNA
expression pattern as compared to differentiated somatic cells
[35]. This has prompted the researchers using miRNAs for
cellular reprogramming. Notably, no matter what kind of pat-
terns for somatic cell reprogramming was used, a prerequisite
condition is the participation of some specific TFs. Recent
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studies revealed that the combinations of TFs including Oct4,
Sox2, Nanog, Klf4, and c-Myc can convert fibroblasts or other
somatic cells to pluripotent cells, including neural stem cells
(NSCs) [12, 15, 36, 37]. Likewise, some chemicals in combi-
nation with growth factors are shown to induce somatic cells
to convert into distinct lineage cells [38–40]. In
transdifferentiation or cell reprogramming events, miRNAs
were also reported to target multiple molecules, i.e., TFs and
some regulatory factors which are actively involved in cell
reprogramming, and enhance efficiency of defined TF-
mediated reprogramming [41–47]. Recently, several studies
showed that miRNAs can reprogram primary somatic cells
toward pluripotent cells. This may mainly be attributed to
involvement of miRNA in control of pluripotency-related fac-
tors. For example, miRNA302 regulates the expression of
pluripotent markers Oct-4, Sox2, Nanog, and SSEA3/4 [48,
49], which further result in DNA demethylation and downreg-
ulation of Dnmt [48]. These cascade events eventually trigger
somatic cell reprogramming. More strikingly, some small
molecules such as SB431542, BIX-01291, and CHIR 99021
were confirmed to function as TFs [39, 40, 50, 51]. Recently, a
combination of analytical techniques showed that numerous
molecule-mediated cell reprogramming events are intimately
linked to miRNA regulation [51]. Generally, miRNAs possess
a unique ability to modulate an immense and complex regu-
latory network of gene expression [52] in a broad spectrum of
developmental and cellular processes. They regulate gene ex-
pression via association with effector complexes (called
Bmicro-ribonucleoprotein^ or BmiRNP^) and sequence-
specific recognition of target sites [52]. The biological out-
come of miRNA-mRNA interaction can result in binding
strength and repressive effect of a potential target site [53],
leading to repression of transcription or translational initiation.

Thus, miRNAs targeting to directly or indirectly control the
expression of reprogramming genes will suppress the cellular
reprogramming. For instance, miRNA-34 targets P53 and,
thus, contributes to p53 repression of iPSCs generation by cell
reprogramming [54]. Also, the let-7 family members have
been reported to inhibit reprogramming [55, 56]. In contrast
to the general assumption, somemiRNAs can upregulate gene
expression and translation in specific cell types and condi-
tions. This miRNA-mediated gene upregulation could pro-
mote cellular reprogramming [57]. In this sense, either
miRNA-mediated gene regulation by promoting or inhibiting
special mRNA expressions could have distinct consequences
in cell reprogramming [58]. Therefore, miRNAs either facili-
tate or inhibit cell reprogramming in generation of induced
stem cells. Although several approaches like virus-mediated
TF transduction, induction of small molecules or growth fac-
tors, and delivery of chemicals could promote cell
reprogramming, the miRNA-mediated cell reprogramming
technique was claimed to be more efficient than the standard
defined factor overexpression methods [45]. Apart from no
concerns of genome integration of miRNAs, miRNA activity
as a whole regulates reprogramming and efficiency, and
miRNA-mediated cell reprogramming may provide an alter-
native and be likely a safer approach for generation of
reprogrammed stem cells as compared to the traditional
DNA-based cell reprogramming methods.

Possible Mechanism for Somatic Cell
Reprogramming

Because miRNAs typically mediate gene silencing, they are
traditionally regarded as fine tuners of gene expression.

Fig. 1 Graphical illustration of
miRNA biogenesis
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Consistent with this view, most published papers on cell fate
switches used TF-based cocktails, rather than miRNAs. In
spite of this, recent reports revealed the potential of miRNAs
in cell reprogramming and further influencing neuronal cell
fates. One report demonstrated that miRNA-9/9* and
miRNA-124 alone promote the conversion of fibroblasts to-
ward NSCs and neurons in the presence of as few as one TF
[59, 60], suggesting a critical role of these miRNAs in cell
reprogramming and induction of neural cell fates. Moreover,
there is a growing number of literatures about other miRNAs,
including miRNA132, miRNA137, miRNA184, miRNA-
302/367, and Let7 family that participate in mediating cell
reprogramming [42, 61–63]. Thus, the prevailing orthodoxy
regarding cell reprogramming mainly mediated by TFs has
been challenged. Although the critical roles of specific factors,
signaling molecules, and miRNAs in cell reprogramming
have intensively been investigated, the mechanism for
miRNA-mediated cell reprogramming remains to be further
explored.

It is well known that DNA methylation determines the
specific expression pattern in cells and plays an essential role
in mammalian development. A substantial condition for so-
matic cell reprogramming is the removal of DNAmethylation
at promoter regions of crucial stem cell TFs [64]. Once some
miRNAs target the epigenetic regulators that are responsible
for different types of DNA methylation, the transcription ma-
chinery can gain access to these genes and further activate
their expression to initiate the reprogramming process [64].
Due to the importance of histone H3K4 and H3K9
demethylase for the de novo DNAmethylation, their deficien-
cy caused by miRNA usually induces DNA demethylation,
thereby, leading to the resetting of genomic DNAmethylation
pattern which results in somatic cell reprogramming [42,
65–67]. This alteration in methylation causes the gene expres-
sion profiles to resemble that of stem cells by granting TFs
[42]. Generally, 3′ untranslated regions (3′-UTRs) of messen-
ger RNAs often contain regulatory sequences that post-
transcriptionally cause RNA interference [68]. Theoretically,
such 3′-UTRs often contain both binding sites for miRNAs as
well as for regulatory proteins [69]. By binding to specific
sites within the 3′-UTR, miRNAs can decrease gene expres-
sion of various mRNAs by either inhibiting translation or
directly causing degradation of the transcript [70]. The 3′-
UTR also may have silencer regions that bind repressor pro-
teins that inhibit the expression of an mRNA, further causing
downregulation of the relative protein translation [71, 72],
which is considered as a crucial step for reprogramming and
maintaining stemness. As reported previously, miRNA-302
directly target NR2F2, a member of a nuclear receptor sub-
family that negatively regulates Oct-4 [73]. A reduction of
NR2F2 together with the removal of genomic methylation site
on the Oct-4 promoter due to global DNA demethylation
causes an increase in Oct-4 expression [44, 73, 74].

Although miRNAs exert a pivotal role in inducing cell
reprogramming, the interaction of miRNAs with IFs and other
regulators is are also instructive to orchestrate reprogramming,
and actively contributes to molecular mechanisms of cell
reprogramming. For example, Lin28, an ESC-specific RNA
binding protein, has been demonstrated to facilitate
reprogramming by suppressing the activity of Let7 [75, 76].
Thus, it is possible that other regulators other than miRNAs
also participate in this biological process.

Since somatic cell reprogramming is a complex and dy-
namic process involving many different transcriptional and
epigenetic changes, it is insufficient for somatic cells to regain
an alternative biochemical phenotype and morphological
propert ies just by the central role of miRNA in
reprogramming [77]. Accordingly, there also must be other
molecule participation in the reprogramming biological pro-
cess. Along with specific TFs, reprogramming factors such as
SV40 large antigen and telomerase reverse transcriptase also
contribute to the mechanisms for reprogramming. More strik-
ingly, a recent report revealed that vitamin C enhances the
eff ic iency of somat ic cel l reprogramming [78] .
Consequently, future studies to identify new regulators and
target genes of miRNAs will provide a better understanding
of mechanisms underlying miRNA-mediated cellular
reprogramming.

Main miRNAs Involved in Neural Reprogramming
of Somatic Cells

miRNA-124

miRNA-124 is highly conserved through diverse species. It
has been documented as one of the best characterized and
most abundant miRNA within the CNS, and accounts for
25–48 % of all brain miRNA [79–81]. MiRNA-124 is
expressed in neurons but not in other cells in the CNS such
as glial cells and NSCs while also found to be expressed in
microglial cells and downregulated in activated microglial
cells [82–84]. For NSCs, miRNA-124 expression just begins
during the transition from NSCs to neural progenitor cells
[85]. Several studies have revealed that within the temporal
progression of neurogenesis in subventricular zone (SVZ),
miRNA-124 promotes the cell cycle exit of neuroblasts, and
its expression at highest level occurs during the terminal neu-
ronal differentiation processes such as neurite outgrowth.
Delivery of miRNA-124 by a lentiviral vector into glioblasto-
ma cells inhibits proliferation and induces differentiation [60,
85–87]. Consistently, overexpression of miR-124 in cultured
NSCs and embryonic cortical neural progenitors (NPs) in-
duced a neuronal phenotype [88]. On the contrary, inhibiting
miR-124 expression in vitro by administrating antisence 2′-O-
methyl AMO prevented the commitment for a neuronal fate
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while the proliferation of NSCs was promoted [86]. Together,
these experiments indicate that miRNA-124 plays a pivotal
role in regulating neurogenesis in neuron development.
Interestingly, Cao and his colleagues found that miRNA-124
is less important for spinal cord neurogenesis during develop-
ment [89]. Thus, the in vivo role of miRNA-124 remains
unclear and controversial.

Considering the importance of miRNA-124 in
neurogenesis, numerous miRNA-124 target genes have been
found and substantiated. REI silencing transcription factor
(REST) has been found as an important target of miRNA-
124, and mainly functions as a regulator of neuronal pheno-
type [90, 91]. MiRNA-124 promotes expression of neural
genes by repression of REST. In contrast, REST also
downregulates miRNA-124 in non-neural cells, which results
in inhibition of expression of neural genes [92]. Another
miRNA-124 target is the polypyrimidine tract-binding protein
1 (Ptbp1), a repressor of alternative splicing in non-neural
cells. MiRNA-124 promotes a neuronal protranscriptome by
targeting Ptbp1, leading to dramatic inhibition of non-
neuronal genes [93]. Zhou et al. found that overexpression
of pluripotency stem cell-specific miRNA-302/367 cluster,
together with two other neuron-specific miRNAs (miRNA-
9/9* and miRNA-124) can convert fibroblasts into neurons
[63]. In this report, fibroblasts reprogramming and further
acquisition of neuronal fate is largely due to miRNA-124 reg-
ulating Ptbp1-mediated alternative splicing. Other targets in-
clude Jagged1, a ligand of Notch and Sox9. Jagged1 is critical
for the maintenance of the self-renewal capacity of NSCs and
for inhibiting their differentiation [86, 94, 95]. Liu et al. re-
vealed that introduction of miRNA-124a in neural progenitor
cells significantly reduced Jagged1 transcript and protein
levels, consequently leading to inactivation of Notch signals,
which finally results in cell cycle exit and neuronal differenti-
ation [29]. The report demonstrated the roles of miR-124a-
mediated Jagged1 regulation. Sox9, a high mobility group
(HMG)-box transcription factor which functions as a pleiotro-
pic actor in numerous terminal differentiation processes, in-
cluding heart development, sex determination, chondrogene-
sis, neural crest differentiation, gliogenesis, hair follicle func-
tion, pancreas development, prostate development, and retina
development [96–98]. Besides, a crucial function of Sox9 is
participation in proliferation control. Once miRNA-124 is el-
evated in somatic cells such as fibroblasts and neuroblasts, cell
growth could be significantly suppressed while blocking
miRNA-124 could promote cell proliferation, revealing that
miRNA-124 can directly regulate the expression of Sox9. In
SVZ, miR-124 mediated repression of Sox9 also plays an
important role for progression along the SVZ stem cell lineage
to neurons. In this sense, Sox9 is involved in regulating neu-
ronal differentiation besides controlling cell proliferation [86].

Importantly, miRNA-124 target genes together with
miRNA-124 and other molecules can induce a neuronal

program, suggesting that miRNA-124 exerts critical role in
establishing and developing a neuronal transcription network
within somatic cell reprogramming (Table 1). In the light of
these reports regarding biofunctions of miRNA-124 and its
target molecules, it is hopeful to develop an approach for cell
reprogramming into neural cells using molecular technology.

miRNA-9

miR-9 is also an enriched miRNAwithin brain [79] and it is
evolutionarily conserved [99]. miR-9 usually plays an impor-
tant role in neuronal proliferation, subtype specification, dif-
ferentiation, and migration [5, 100, 101]. Notably, miRNA-9
also maintains the balance of NPs proliferation and migration
to complete successful maturation process during CNS devel-
opment [5]. Along with diverse roles in different species,
miRNA-9 has been shown to have region diversity in brain
axis [102]. MiRNA-9 inhibits neural precursor migration by
targeting stathmin (Stmn1), resulting in a moremature NP fate
[5]. Other miRNA targets include Gsh2 that plays an early role
in the differentiation and/or migration of the ventral telenceph-
alon known as themedial ganglionic eminence (MGE) and the
lateral ganglionic eminence (LGE) and TLX that regulate
stem cell fate [103]. TLX repression accelerates stem cell dif-
ferentiation [104, 105]. In addition, a recent report showed
that miR-9 controls NPs proliferation by targeting Cyclin D1
mRNA [106].

Due to its high degree of conservation, miR-9 in the
zebrafish also keeps the balance between maintenance and
differentiation of NSCs and NPs by targeting various genes
of the FGF signaling and the anti-neurogenic genes her5 and
her9, leading to the establishment of the midbrain to hindbrain
boundary [107]. Hairy1 has also been suggested as a miR-9
target on mediating cell proliferation [102]. In accordance to
Gsh2, Forkhead box g1 (Foxg1) in vertebrates is a nuclear-
cytosolic transcription factor essential for the development of
telencephalon, cell migration, and cerebral cortex patterning
and layering [108, 109]. During early phases of cortical de-
velopment, Foxg1 controls the rate of neurogenesis by keep-
ing progenitor cells in a proliferative state and by inhibiting
their differentiation into neurons [110]. By overexpression
and knockdown of miRNA-9, it has been demonstrated that
apart from cortical and bulb development, miRNA-9 also par-
ticipates in regulating development of motor neurons in spinal
cord and pre-ganglionic autonomic motor neurons by
targeting Foxg1 [110]. Strikingly, miRNA-9 has reciprocal
actions with REST. REST suppresses neuronal genes in non-
neuronal cells by binding a conserved repressor element
(RE1) in neuronal gene loci and recruiting the corepressor
complex containing histone deacetylases and methyl CpG-
binding protein MeCP2 [111, 112]. Overexpression of
miRNA-9 promotes transition of progenitors to post-mitotic
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neurons. Thus, downregulation of REST during cell
reprogramming enhances neuronal gene expression. In addi-
tion to REST and co-REST, the expression of BAF53a in
human fibroblasts can be repressed by miR-9/9*-124 [112,
113]. Blocking BAF53a results in neuronal conversion of fi-
broblasts, which showed similar results as repressing the ex-
pression of REST, Co-REST, or PTBP1 [112, 114]. This re-
port suggests that these neuron-specific (n)BAFs (BAF53a
BAF45a) targeted by miR-9/9* are essential for post-mitotic
functions [112]. Consequently, it has been validated that miR-
9/9* operates programmatically on multiple targets. However,
the functions of miR-9 distinct target genes still depend on the
temporality of the CNS development, different neural cells

differentiation programs and even between different
organisms.

Let-7

Let-7 is one of the first miRNA discovered inC. elegans and it
is conserved in human and other species [115]. It has been
documented that Let7 is the miRNA family with the highest
expression in NSCs/NPs [83]. There are distinct mature forms
of the miRNA encoding from Let7a to Let7i [116]. Generally,
Let7 mainly participates in early neurogenesis, neural differ-
entiation and fate determination, albeit the different roles of
Let7 in the CNS were characterized (Table 1). Let7a mainly

Table 1 Summary of main miRNAs discussed in the text, with their known biofunctions and targets in somatic cell reprogramming

miRNA Targets/species and tissues Biological functions References

miRNA-124 Ptbp1, Sox9, SCP1, Ephrin-
B1, Jagged1, BAF53a,
Lhx2 (mouse); CREB
(aplysia)

Promotion of neural transcriptome,
neurogenic fate induction, axon
genesis cell cycle exit and neuronal
differentiation, repression of alterative
splicing of neuronal genes in non-
neuronal tissues

[60, 84, 86, 93, 94, 113, 162]

miRNA-9 TLX, Rest, Gsh2, Stmn,
Hes1, Map1b (mouse);
Fgf8-1, FgfR1, Her5/Her9
(zebrafish)

Promotion of neuronal fate, motor
neurons specification, and columnar
formation; inhibition of neural
progenitor division; increase of
microtubule formation; establishment
of the midbrain/hindbrain boundary

[5, 44, 60, 102–104, 107, 108, 112]

miRNA-9* Co-Rest, BAF53a, BAF45a
(mouse)

Neuronal fate induction [60]

Let-7 TLX (mouse) Increase of neuronal differentiation [163]

Let-7a Pax6, Lin28 (mouse) Control dopaminergic differentiation and
neuronal lineage commitment

[117, 164]

Let-7b TLX, CyclinD1, Hmga2,
Lin28 (mouse)

Promotion of cell cycle exit; impairment
of neural progenitor expansion;
induction of neuronal differentiation

[117, 163]

Let-7d TLX (mouse) Inhibition of cell proliferation, induction
of neuronal differentiation and
migration

[118]

miRNA-25 p57 (zebrafish), Fbxw7
(mouse)

Induction of cell proliferation and
re-entry to cell cycle

[23, 57]

miRNA-137 LSD1, Ezh2, Jand1b, Cdc42,
Cdk6, Mib1 (mouse)

Inhibition of neural stem cell
proliferation and promotion of
neuronal differentiation, induction of
G1 cycle arrest

[85, 126, 127, 134]

miRNA-134 DCX, Nanog, Sox2, Chrdl-1
(mouse); Limk1 (rat)

Induction of differentiation into
ectodermal lineages, reduction of the
self-renewal potential, inhibition of
cell apoptosis and promotion of cell
survival, inhibition of neurogenesis

[139, 165, 166]

miRNA-200 ZEB1, ZEB2, Sox2 E2F3
(mouse)

Promotion of cell cycle exit and neuronal
differentiation of ventral midbrain/
hindbrain neural progenitors

[142, 144, 150]

miRNA-302/367 AOF1, AOF2, NR2F2, Oct4
(human) Cyclin E-CDK,
Cyclin D-CDK(mouse)

Promotion of cell self-renewal and
multiple differentiation potential
maintenance induction of global
demythylation

[48, 68, 73, 158, 160]
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maintains NSCs self-renewal capacity by targeting lin-28
which inhibits pre-let-7 processing by Dicer in embryonic
stem cells (ESCs) [117]. Let7b exerts over different genes
involved in cell cycle control such as CycleD1 and TLX
[117]. Overexpression of Let7b in NSCs causes reduced pro-
liferation and an increase in neural differentiation [117]. In
somatic cells, Let7c and Let7d have similar roles in regulating
genes involved in self-renewal. Strikingly, downregulation of
TLX promotes NSC proliferation and inhibits neural differen-
tiation and migration [33, 118]. The bioprocess can be medi-
ated by let-7d. Despite several let-7 target genes were un-
veiled, further studies are required to investigate the let-7 sig-
naling pathways for regulation of cell reprogramming. Based
on these reports, it is likely that by using miRNA sponge
technology, somatic cells can be induced into neuronal lineage
or NSCs commitment [117].

miRNA-25

MiRNA-25 belongs to part of the evolutionary conserved
miR-106b∼25 cluster. This cluster is located within the
intronic region of the Mcm7 gene and codes for three different
mature miRNA species: miRNA-106b, miRNA-93, and
miRNA-25 [119, 120]. The miR-106b∼25 cluster has been
reported to have proliferative and anti-apoptotic effects.
Emerging data have indicated that the miRNA-106b∼25 clus-
ter plays a critical role in adult NSC proliferation [121, 122].
The effect of miRNA-25 on proliferation results from direct
regulation of the cell cycle inhibitor p57, and p57 was indeed
identified as miRNA-25 target gene. As is known, p57 is a
Cip/Kip family member of cyclin-dependent kinase (Cdk) in-
hibitors that block the cycle progression through all stages of
G1/S, thereby functioning as a brake on the cell cycle [123]. In
addition, miRNA-25 was also shown to participate in
reprogramming, stem cell self-renewal, and maintenance of
pluripotency [122, 123]. Moreover, bioinformatics analysis
and relative experiments revealed that miRNA-25 directly
regulates Wwp2, an E3 ubiquitin ligase that targets Oct4 for
ubiquitination, Fbxw7, an important regulator of c-Myc, Klf5,
and other important factors [124]. Consistent with this, p53-,
TGFβ-, insulin/IGF-, and nitric oxide-signaling as promising
putative target genes for miRNA-25 were thought as impor-
tant regulators for neural differentiation and maintenance of
stemness [122]. Nevertheless, further experiments are re-
quired to substantiate these targets’ biofunctions and their in-
terplays in cell reprogramming.

miRNA-137

MiRNA-137 is a short non-coding RNA molecule that
functions to regulate expression levels of other genes by

various mechanisms. MiR-137 is located on human
chromosome 1p22 and has been implicated to act as a
tumor suppressor in several cancer types. In nervous
system, apart from the adult NSCs, the expression of
miRNA-137 was found in different brain regions includ-
ing amygdala, hippocampus, cerebral cortex, and hypo-
thalamus [125, 126]. Recently, it has been demonstrated
that miRNA-137 regulates NSC proliferation and differ-
entiation in mouse embryonic stem cells, and neuronal
maturation, including promotion of dendrite morphogen-
esis and spine density in hippocampus neuronal devel-
opment and maturation [85, 127]. To date, several target
genes of miR-137 have been documented and shown to
exert crucial roles in various human cancers, cell cycle
signaling, and mouse embryonic stem cell development
(Table 1) [128, 129]. Balaguer et al. identified a list of
32 genes targeted by miRNA-137 [130, 131]. Among
the s e t a rge t s , LSD1 ( l y s i ne - s pe c i f i c h i s t one
demethylase 1A) has been shown to be directly down-
regulated by miRNA-137 via binding to its 3′-UTR.
Interestingly, LSD1 has been demonstrated as a tran-
scription repressor of TLX, implying the role of
miRNA-137 in maintaining the undifferentiated pheno-
type [126, 131]. In addition, several studies have iden-
tified Cdc42 (cell division cycle 42), a well-known
member of the Rho GTPase family, as direct miRNA-
137 target gene, which is associated with the induction
of G1 cell cycle arrest resulting in neuronal differentia-
tion of NSCs and decreased cell growth and/or prolifer-
ation of glioblastoma and colorectal cancer cells [126].
Thus, by inhibiting the Cdc42/PAK signaling pathway,
miRNA-137 can decrease proliferation, invasion, and
G0/G1 cell cycle progression of tumor cells such as
colorectal cancer cells [132]. In adult, miR-137NA also
directly inhibits cyclin-dependent kinase 6 (CDK6) ex-
pression and decreases the level of phosphorylated RB,
a known CDK6 downstream target. This is proposed to
be the mechanism whereby miR-137 promotes differen-
tiation and inhibits proliferation of adult mouse NSCs,
oligodendroma-derived SCs, as well as human glioblas-
toma multiforme-derived SCs [85]. Besides, miR-137
targets Mib1 (Mind Bomb-1), an ubiquitin ligase known
to be important for neurogenesis and neurodevelopment
[133]. In ESCs, Jarid1b (also known as KDM5b, a his-
tone H3 Lysine 4 demethylase) has recently been shown
to be another direct target of miR-137. Jarid1b is fre-
quently expressed during mouse embryonic development
and maintains ESC undifferentiation state. By suppress-
ing Jarid1b protein level, miR-137 is believed to play a
role in inhibiting the differentiation of ESCs [134].
Consequently, miRNA-137 expression must be highly
regulated to maintain the correct proliferation without
losing the differentiation potential of NSCs. In order
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to maintain the balance of the proliferation and differ-
entiation of NSCs, a feedback loop was formed among
miRNA-137 and LSD1. The feedback loop, thus, con-
trols dynamics between the proliferation and differentia-
tion during CNS development.

miRNA-134

miRNA-134 is a family of microRNA precursors found
in mammals, belongs to the miRNA379-410 cluster and
it is specifically expressed in brain tissues [79, 135]. In
rats, it is localized specifically in hippocampal neurons
and may indirectly regulate synaptic development [136,
137]. High expression of miRNA-134 could result in
the apoptosis of neuronal cells, and the expression level
of miRNA-134 has been shown to be significantly ele-
vated in the rat brain after ischemia/reperfusion [138].
Depending on the stage of neural differentiation process,
th is miRNA has different targets and effec ts .
Overexpression of miRNA-134 in cultured cortical neu-
ral precursor cells enhances their proliferation and coun-
teracts apoptosis through regulating Chrdl-1 and Dcx
[139]. HSPA12B was validated to be a target of miR-
134, downregulation of miRNA-134 could induce neu-
roprotection against ischemic injury in vitro and in vivo
by negatively upregulating HSPA12B protein expression
[140]. Additionally, other members of miRNA379-410
cluster miR-369-3p, miR-496, and miR-543 have been
shown to regulate cell proliferation in the developing
CNS [135]. These miRNAs negatively regulates N-
cadherin, leading to premature neuronal migration
[141]. This trio of miRNA fine-tunes their target levels
to control cell proliferation and achieve other cell type-
specific functions in the biological process. The summa-
rized functions and targets of miRNA-134 are shown in
Table 1.

miRNA-200

The miR-200 family consists of miR-200a, miR-200b,
miR-200c, miR-141, and miR-429, which form two dif-
ferent clusters located in two genomic regions, respec-
tively. Among them miR-200a, miR-200b, and miR-429
are found in one cluster, and miR-200c and miR-141 in
another cluster [142, 143]. Members of the miR-200
family are highly enriched in epithelial tissues, play an
essential role in tumorigenesis, development, progres-
sion, and intravasation through targeting a variety of
important proteins. MiRNA-200 targets the E-cadherin
transcriptional repressors zinc finger e-box bind homeo-
box 1 (Zeb1) and 2 (Zeb2), increasing cell motility and

inducing EMT [142, 144, 145]. In nerve system, miR-
200 family (in particular, miR-200c) has been shown to
promote cell cycle exit and neuronal differentiation of
ventral midbrain/hindbrain (vMH) neural progenitors by
downregulating Sox2 and E2F3 expression and that
miR-200c directly targets the Sox2 and E2F3 mRNAs
via specific binding sequences (BSs) in their 3′-UTRs
[146]. Sox2 is required in a dose-dependent manner for
maintaining the multipotency of neural stem/progenitor
cells and inhibiting their cell cycle exit and differentia-
tion into neurons or glial cells (Table 1) [147–149].
Moreover, Choi and colleagues found that the miR-200
family, which is among the most highly and most spe-
cifically miRNA subset expressed in the developing ol-
factory system, has potential functions mediating differ-
entiation and cell fate determinant of progenitor cells in
the olfactory system [150]. Knocking down the expres-
sion of mature miR-200 family members led to impair-
ment of mature olfactory marker expression and expan-
sion of the early marker foxg1 in the olfactory primor-
dium, suggesting that the loss of miR-200 family func-
tion disrupts terminal differentiation of olfactory progen-
itor cells [150]. In addition, the expression of the miR-
200 family initiates neuronal differentiation by downreg-
ulating Sox2 and Klf4 genes [151], and regulates the
reprogramming of neuroepithelial cells into NSCs
[152]. More interestingly, the miR-200 family, by
targeting Zebs, affects ESC differentiation choices be-
tween ectodermal fate and meso-endodermal fate at an
early stage. These reports show complexity of miRNAs
regulatory network for modulating neural specification
and/or reprogramming.

miRNA-302/367

MiRNA-302/367 is highly-richened in early embryonic
development and rapidly declines after differentiation
[153], and several lines of evidence demonstrated that
miRNA-302/367 serves as upstream pluripotency regu-
lator to modulate the expression of Oct4, Sox2, Nanog,
and other embryonic TFs [64, 154, 155]. MiRNA-302/
367 targets multiple epigenetic factors, leading to global
demethylation. Global DNA demethylation occurs at the
promoter binding site of several ESC-specific TFs dur-
ing the 1–8 cell stages of early zygotes. MiRNA-302
silences lysine-specific histone demethylases 1 and 2
(AOF1 and AOF2) and methyl CpG-binding proteins 1
and 2 (MECP1-p66 and MECP2), leading to co-
activation of pluripotency-promoting genes [48, 68]. Of
note, miR-302/367 also directly targets NR2F2, a mem-
ber of the nuclear orphan receptor family of TFs and a
negative regulator of Oct4 [73]. Remarkably, a number
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of studies have also shown that Oct4, Nanog, and Sox2
bind to the promoter regions of miR-302/367 and in-
crease its expression level [74]. miRNA-302/367 expres-
sion induces global demethylation and suppresses
NR2F2, two events that indirectly activate Oct4 expres-
sion, which in turn elevates miR-302/367 levels. This
reciprocal cycle increases cellular levels of miRNA-
302/367 and Oct4, which leads to the co-activation of
other transcription regulators, such as Sox2 and Nanog
[44, 156]. Overexpression of miRNA-302/367 can result
in global demethylation and coexpression of Oct4, Sox-
2, and Nanog contributing to human iPSCs (Table 1).
Consistently, overexpression of pluripotency stem cell-
specific miRNA-302/367 cluster, together with two oth-
er neuron-specific miRNAs (miRNA-9/9* and miRNA-
124) induced conversion of fibroblasts into neurons
[157]. Likewise, Ghasemi-Kasman found that adult hu-
man astrocytes could be reprogrammed to neuroblasts
by miRNA-302/367, both in vivo and in vitro. In the
presence of valproic acid (VPA), reprogramming via
miRNA-302/367 converts adult astrocytes to neuroblasts
by targeting epigenetic factor Oct4 [158]. Additionally,
targets of miRNA-302b and miRNA-372 include
transforming growth factor beta receptor II (TGFBR2)
and ras homolog gene family member C (RHOC),
which correlates with increased efficiency of iPSC in-
duction [159]. Also, miRNA-302/367 targets cell cycle
regulators cyclin E-CDK and cyclin D-CDK4/6, leading
to an inhibition of the G1 to S phase transition [160].
Taken together, miRNA-302/367 plays a pivotal role in
self-renewal and multiple differentiation potential main-
tenance in pluripotent stem cells, and also exert crucial
role in somatic cell reprogramming (Table 1). Moreover,
given that each miRNA of miRNA-302/367 owns a rel-
ative conserved region, miRNA-302/367 also promote
mesenchymal epithelial transition (MET) through
inhibiting target gene translation, inhibiting cell cycle,
regulating differentiation-associated gene expression
and epigenetic modification, finally acts well in somatic
cell reprogramming [161].

Future Perspectives

Rapidly accumulating data significantly broaden our knowl-
edge on miRNA regulation and function in somatic cell
reprogramming. Based on evidence of the successful genera-
tion of NSCs or neurons from somatic cells using a miRNA-
mediated strategy, it seems that the numerous diverse miRNA
families, especially neural cell-specific miRNAs, can effec-
tively induce reprogramming events similar to those of
Yamanaka factors or other small molecules. In comparison,
the primary advantage of miRNAs is that they directly and
efficiently alter the adult transcriptome and proteome, leading
to increased efficiency and decreased time-consumption for
cell reprogramming. More interestingly, NSC-specific
miRNAs target various cell cycle regulators and effectors that
not only induce the alteration of cell cycle, but also alter cell
growth and biochemical phenotypical features, leading to cell
reprogramming. Although the molecular mechanism by
which NSC-specific miRNAs re-direct somatic cells to ac-
quire pluripotency needs to be intensively explored,
miRNA-based reprogramming could prove useful for the re-
finement of current reprogramming techniques and may pro-
vide new strategies for future NSCs and neural cell generation
to treat neurodegenerative diseases and CNS injury.
Considering the importance of miRNAs in neuroregenerative
medicine, miRNAs have thereby become the focus in the ex-
ploration of regulating the spatial and temporal expression of
genes crucial for fine-tuning of signaling pathways during
reprogramming and/or development. Nevertheless, due to
the complexity of reprogramming process, miRNA-mediated
conversion of cell phenotype by targeting repression must rely
on coordination with other molecules such as TFs and
reprogramming factors. Meanwhile, a regulatory feedback
loop exists among miRNAs, target molecules, and TFs to
orchestrate the reprogramming. Efficient reprogramming of
somatic cells into NSCs including neurons may be performed
via several mechanisms (Fig. 2) but there is still a long way to
go for comprehensive understanding of miRNAs regulatory
mechanism as well as their applications in clinical therapy. In
summary, there is little doubt that the strategy of miRNA-

Fig. 2 Schematic illustration of
somatic cells into neural stem
cells mediated via miRNAs and
other regulators
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mediated reprogramming may provide a basis for future neu-
ral cell generation and drug screening for cell-based therapies
for SCI and neurodegenerative disorders.
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