
Vasopressin Impairment During Sepsis Is Associated
with Hypothalamic Intrinsic Apoptotic Pathway and Microglial
Activation

Luis Henrique Angenendt da Costa1 & Nilton Nascimento dos Santos Júnior1 &

Carlos Henrique Rocha Catalão1 & Tarek Sharshar2 & Fabrice Chrétien2
&

Maria José Alves da Rocha3

Received: 21 March 2016 /Accepted: 1 September 2016 /Published online: 8 September 2016
# Springer Science+Business Media New York 2016

Abstract Previous studies have shown that in the early phase
of sepsis, the plasma concentration of arginine vasopressin
(AVP) is increased, but in the late phase, its levels remain
inadequately low, despite of persistent hypotension. One hy-
pothesis suggested for this relative deficiency is apoptosis of
vasopressinergic neurons. Here, we investigated apoptosis
pathways in the hypothalamus during sepsis, as well as mech-
anisms underlying this process. MaleWistar rats were submit-
ted to sepsis by cecal ligation and puncture (CLP) or
nonmanipulated (naive) as control. After 6 and 24 h, the ani-
mals were decapitated and brain and blood were collected to
assess hypothalamic apoptotic markers, IFN-γ plasma levels,
and evidence for breakdown of the blood-brain barrier (BBB).
Sepsis caused a decrease in mitochondrial antiapoptotic pro-
teins (Bcl-2, Bcl-xL) in the hypothalamus, but had no effect
on markers of cell death mediated by death receptors or im-
mune cells. In the supraoptic nuclei of these animals, microg-
lia morphology was consistent with activation, associatedwith
an increase in plasma IFN-γ. A transitory breakdown of BBB
in the hypothalamus was seen at 6 h following CLP. The
results indicate that the intrinsic but not extrinsic apoptosis
pathway is involved in the cell death observed in

vasopressinergic neurons, and that this condition is temporally
associated with microglial activation and BBB leaking.
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Introduction

The pathophysiology of sepsis comprises a complex immuno-
logical response that, although essential to combat the infection,
is also responsible for deleterious effects. The inflammatory
agents produced by immune cells in the infection site or in the
blood can directly or indirectly reach the central nervous system
(CNS). There they can lead to a cerebral dysfunction
denominated sepsis-associated encephalopathy (SAE), resulting
in cognitive, autonomic, and endocrine impairment [1–3].
Regarding neuroendocrine changes during sepsis, our group
has focused its investigation on arginine vasopressin (AVP) se-
cretion, an important vasopressor peptide synthetized in the su-
praoptic (SON) and paraventricular (PVN) nuclei of the hypo-
thalamus. By using cecal ligation and puncture as an experimen-
tal model of sepsis induction, we saw a drop in blood pressure
and increase in plasma vasopressin following 4–6 h of surgery.
However, 24 h after sepsis induction, the circulating levels of the
hormone remain low, despite of persistent hypotension [4–8].
Moreover, at this time, we saw an impairment in magnocellular
activation and increase in some markers of oxidative stress that
could result in apoptosis of AVP-producing neurons [7, 9, 10].

Apoptosis, a form of programmed cell death, is an ATP-
dependent highly complex process that comprises a sophisti-
cated cascade of molecular events [11]. The key elements in
apoptosis are caspases, a family of cystenil proteases that,
once cleaved, become activated and initiate a proteolytic
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cascade by activating other procaspases and amplifying the
death signal [11, 12]. Caspase-3 is considered the most impor-
tant effector caspase and is responsible for the final nuclear
and cytoskeletal alterations. The intrinsic pathway that initi-
ates apoptosis is essentially mitochondria-dependent. Several
stimuli (radiation, hypoxia, nitric oxide, cytokines, etc.) cause
an imbalance between proapoptotic (Bax, Bak, Bid, Bad,
Bim) and antiapoptotic (Bcl-2, Bcl-xL, Bcl-w) proteins and
allow mitochondrial cytochrome-c extravasation into the cy-
tosol that, together with apoptotic protease activating factor 1
(Apaf-1), will activate caspase-9 to form the apoptosome and
consequently cleave caspase-3 [13–15]. In contrast, the extrin-
sic pathway is triggered by the sensitization of cell surface
death receptors (CD95, TNF-R1, TRAIL-R) by death ligands
[16]. This binding results in the formation of a complex able to
activate procaspase-8 and procaspase-10 that then can cleave
caspase-3 [16, 17]. Cleaved caspase-8 can mediate a crosstalk
with the intrinsic pathway by cleaving BH3 interacting-
domain death agonist protein (Bid) and forming truncated
Bid (tBID), which transduces apoptotic signals in mitochon-
dria [18, 19]. Cell death can also be mediated by immune cells
(cytotoxic CD8 T lymphocytes and natural killer cells)
through exocytosis of perforin and granzymes that synergisti-
cally induce apoptosis in the target cell [20].

Previous studies from our laboratory showed that during
sepsis, there is an augmented expression of cleaved caspase-3
and annexin-Vaffinity accompanied by a decrease in copeptin
(a component of the AVP precursor) in SON and PVN, strong-
ly suggesting that AVP-producing magnocellular neurons un-
dergo apoptosis [9, 10]. With this in mind, we aimed to inves-
tigate which of the different apoptotic pathways plays a role in
the hypothalamus of septic animals, and which mechanisms
could be associated with the cell death process.

Material and Methods

Animals

Male Wistar rats (250–350 g) were used in the experiments.
The animals were obtained from the Central Animal Facility
at the University of São Paulo, Campus at Ribeirão Preto, and
they were housed under temperature-controlled (25 ± 2 °C),
and light-controlled (06:00–18:00) conditions, with free ac-
cess to filtered water and a commercial balanced rodent diet.
The experiments were carried out according to an Institutional
Ethics Committee-approved protocol (CEUA protocol num-
ber 13.1.337.53.0).

Sepsis Induction

Sepsis was induced by cecal ligation and puncture (CLP) as
described elsewhere [8–10]. Briefly, after deep sedation with

tribromoethanol (250 mg/kg), the animals were submitted to a
laparotomy. The cecum was exposed and ligated below the
ileocecal valve and then punctured ten times with a 16-gauge
needle. After a gentle squeeze for extravasation of feces, the
cecum was returned to the peritoneal cavity and the incision
was closed. Rats were given a subcutaneous injection of NaCl
0.9 % (5 mL/250 g body weight) for fluid resuscitation imme-
diately after surgery. After the procedure, the animals were
monitored for the presence of signs of infection (piloerection,
tachypnea, lethargy). A mortality rate of around 60 % was
observed 24 h after CLP. Nonmanipulated animals (naive)
were used as control. Sixty-nine rats were used in this study.

Experimental Protocol

Control and septic rats were divided into three different groups
at 6 h (early phase of sepsis) and 24 h (late phase of sepsis)
following surgery. In the first one, the animals were decapitat-
ed for blood and brain collections. Blood was used for plasma
INF-γ analysis and the brain for detection of apoptosis-related
proteins expression in whole hypothalamus or in its supraoptic
and paraventricular nuclei by western blot. The second group
was perfused, and the brains were collected for immunofluo-
rescence detection of cell death-related proteins and microglia
analysis. The third group was separated for the investigation
of blood-brain barrier permeability.

Western Blot

Whole hypothalamus or SON and PVN punches were homog-
enized in RIPA buffer (Sigma-Aldrich) containing a 10 %
protease inhibitor cocktail (Sigma-Aldrich) and 0.5 % of
phenylmethylsulfonyl fluoride (Sigma-Aldrich). Equal
amounts (40 μg) of total protein were separated by SDS-
PAGE in a 12 % polyacrylamide gel (125 V, 90 min).
Following electrophoresis, proteins were blotted onto a nitro-
cellulose membrane (0.45 μm pore size; Millipore) in a tank
blotting system (100 V, 120 min). The membranes were then
kept in a blocking solution (BSA 5 % in PBS, with 0.2 %
Tween 20) for 1 h and incubated overnight at 4 °C with pri-
mary antibodies targeting cleaved caspase-8 (IMGNEX,
1:2000), tBID (Millipore, 1:1500), CD8 (Santa Cruz,
1:2000), perforin (Santa Cruz, 1:500), granzyme B (Abcam,
1:1000), Bcl-2 (Santa Cruz, 1:1000), Bcl-xL (Abcam,
1:2000), and β-actin (Santa Cruz, 1:2000). Appropriate sec-
ondary HRP-conjugated antibodies (1:10,000 dilution) were
incubated under agitation for 2 h at 4 °C. A chemilumines-
cence reaction kit (enhanced chemiluminescence [ECL], GE
Healthcare) was used for detection of these proteins, which
were visualized in a ChemiDoc MP System (BioRad) and
analyzed by its respective software (ImageLab 5.2.1). The
results were normalized against β-actin levels (internal con-
trol) of the samples.
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Immunofluorescence

Free-floating sections (30 μm) were washed three times in
PBS (0.01 M, 7, pH 7.4) and submitted to an antigen retrieval
protocol. This included an incubation in Tris/EDTA (10 mM/
1 mM, pH 9.0) solution for 5 min, followed by heating for
30min in a water bath at 70 °C in 10mM sodium citrate buffer
(pH 6.0). After three new rinses with PBS, nonspecific bind-
ing sites were blocked for 60 min in PBS containing 5 %
normal goat serum and 0.3 % Triton X-100. Subsequently,
the sections were incubated for 24 h at 4 °C with specific
antibodies: Iba-1 (WAKO, 1:1000), AVP (Peninsula,
1:10,000), HIF-1α (Santa Cruz, 1:50), cleaved caspase-3
(Cell Signaling, 1:400), and cytochrome-c (1:50, Santa Cruz
Biotechnology). After rinsing again, the sections were incu-
bated for 2 h at 4 °C with fluorescent conjugated antibodies
(1:1000, goat anti-rabbit Alexa Fluor 594 conjugate or goat
anti-mouse Alexa Fluor 488 conjugate, Life Technologies).
Finally, the sections were mounted on gelatin-coated slides
and covered with antifade mounting medium (ProLong®
Gold Antifade Mountant, ThermoFisher Scientific) with
DAPI, for nuclear staining. Images were captured using a
Leica TCS-SP5 confocal microscope (Leica Microsystems).

Plasma Interferon-Gamma

Interferon-gamma (IFN-γ) plasma levels were measured by
using a kit for specific enzyme-linked immunosorbent assay
(ELISA) (ThermoFisher Scientific). The assays were per-
formed following the manufacturer’s instructions, and the de-
tection limit was 2 pg/ml.

Blood-Brain Barrier Permeability

The integrity of the blood-brain barrier (BBB) was investigat-
ed using Evans blue dye extravasation 6 and 24 h after the
CLP. Following sedation with TBE (250 mg/kg), the animals
received an intravenous injection of 1 ml of Evan’s blue solu-
tion (2 % w/v diluted in saline solution 0.9 %). After 1 h, the
rats were perfused with 200 ml of 0.9 % saline solution and
the brain was collected for hypothalamus dissection. Brain
hemispheres or hypothalamic samples were homogenized in
50 % trichloroacetic acid, centrifuged at 3000× g at 4 °C dur-
ing 20 min, and the supernatant was diluted in ethanol 1:1 (v/
v). Evans blue content was measured by spectrophotometry
(Synergy H1, Biotek) at 630 nm and quantified according to a
standard curve. The results are presented as (ng of Evans blue
stain/g of tissue).

Statistical Analysis

The data are presented as mean ± SEM. Cleaved caspase-8
and tBID data were analyzed using an unpaired Student’s t

test. Other variables with normal distribution were analyzed
by one-way analysis of variance (ANOVA), followed by post
hoc Tukey test. For those with nonparametrical distribution, a
Kruskal-Wallis test was performed, followed by Dunn’s post
hoc test. Values of p ≤ 0.05 were considered as significant.

Results

Hypothalamic Expression of Apoptosis Markers

Here, an evaluation of the different apoptosis pathways was
performed. The analysis of the death receptor-mediated path-
way in SON and PVN punches after 24 h following CLP did
not show any significant difference in tBID and cleaved
caspase-8 levels between the groups (Fig. 1). We also did
not observe any effect on the levels of markers of immune
cell-mediated cell death, such as CD8, granzyme B, and
perforin in the hypothalamus of septic animals (Fig. 2).
Regarding the mitochondrial pathway, protein levels of Bcl-
xL were significantly decreased in the hypothalamus at 6 and
24 h (p ≤ 0.05 in each group) and Bcl-2 levels at 24 h
(p ≤ 0.05) following sepsis (Fig. 3).

Immunostaining for HIF-1α, Cytochrome-c, and Cleaved
Caspase-3 in Vasopressinergic Neurons

Immunolabeling for AVP and HIF-1α, cytochrome-c, and
cleaved caspase-3 done in serial independent experiments
showed increased s ta ining for these markers in
vasopressinergic neurons in the SON of septic animals at
24 h after surgery (Fig. 4). Labeling in control rats was absent
or weak.

Glial Cell Analysis

Morphological evaluation of microglial cells (Fig. 5) by Iba-1
staining in the SON of control animals showed that these cells
are ramified, with an oval and small cell body and long thin
processes (Fig. 5a, b). In septic animals, these cells assumed
an ameboid shape, with shortened processes and thick ramifi-
cations (Fig. 5c–e).

Plasma IFN-γ and BBB Permeability

Following 24 h after sepsis induction, we observed an increase
(p ≤ 0.05) in the plasma levels of IFN-γ, as shown in Fig. 6.
While sepsis did not cause alterations in Evans blue perme-
ability in the whole brain hemisphere at the two time points, it
was clearly increased (p ≤ 0.05) in the hypothalamus at the 6 h
time point, but not at 24 h (Fig. 7).
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Discussion

The results here presented indicate that sepsis activated
the intrinsic apoptotic pathway in the hypothalamus of
CLP animals. This included increased immunolabeling
of cell death markers in vasopressinergic neurons, asso-
ciated with microglial activation and BBB disruption.
An increase for these markers (cleaved caspase-3, cyto-
chrome-c, HIF-1α) in the hypothalamus has previously
been reported [9, 10, 21], but here, we show for the

first time that this increase occurs specifically in AVP-
producing magnocellular neurons. Even though we did
not find evidence for the involvement of other apoptotic
pathways in our experiments, we cannot discard the
possibility that they may play a role posteriorly, as the
disease progresses. In fact, in previous work, we saw
that the increase in cleaved caspase-3 expression seen
here at 24 h was also present at 48 h, even though
there was no increase in cytochrome-c expression at that
time point [9]. Cytotoxic lymphocytes may take even

Fig. 1 Western blot analysis (a)
and quantification for cleaved
caspase-8 (b, c) and tBID (d, e) in
supraoptic (SON) and
paraventricular (PVN) nuclei.
There was no difference between
naive (white bar) and septic (dark
bar) animals at 24 h following
sepsis induction by CLP. The data
show means ± SEM of the ex-
pression ratio of cleaved caspase-
8 or tBID normalized against β-
actin. Statistical analysis was per-
formed by using an unpaired
Student’s t test. n = 4–7 animals
per group

Fig. 2 Western blot analysis (a)
and quantification for immune-
mediated cell death markers CD8
(b), granzyme B (c), and perforin
(d) in hypothalamus. There was
no difference in the levels of these
markers comparing naive and
septic (CLP) rats at 6 and 24 h
after sepsis induction byCLP. The
data show means ± SEM of the
expression ratios between target
proteins and β-actin. Statistical
analysis was performed by one-
way ANOVA followed by Tukey
post hoc test. n = 5–7 per group
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more time, as their action depends on antigen process-
ing and presentation by the major histocompatibility
complex class 1 (MCH-1) to initiate the release of
granzyme/perforin granules [22].

The decreased expression of hypothalamic Bcl-2 and
Bcl-xL indicates that the mitochondrial pathway is al-
ready going through modifications. These antiapoptotic
proteins act together in order to guarantee mitochondrial
homeostasis, maintaining a stable permeability of the
outer membrane. In fact, an overexpression of Bcl-2/
Bcl-xL inhibits the translocation and oligomerization of
the proapoptotic proteins Bax and Bak, preventing a
loss of mitochondrial membrane potential and release
of cytochrome-c into the cytosol [14, 23]. Bcl-xL is
even more potent than Bcl-2 to inhibit this perme-
abilization [24], and its levels were diminished already

in the early phase of sepsis, as we could show here.
Therefore, we infer that the hypothalamus may be vul-
nerable to cell death already in the initial stage of
sepsis.

Inflammatory mediators play an important role in
subsequent mechanisms of programmed death .
Cytokines, notably interleukin-1β (IL-1β), can trigger
the production of nitric oxide (NO) in the hypothalamus
via the inducible isoform of NO synthase (iNOS) [25,
26]. In fact, a central injection of IL-1 receptor antago-
nist during sepsis leads to a reduction in NO levels in
CSF and in hypothalamic NOS activity [8]. An increase
in NO levels can affect mitochondrial bioenergetics,
leading to a Bmetabolic hypoxia^ state, which induces
the expression and stability of the α subunit of hypoxia-
induced factor 1 (HIF-1α) [27, 28]. The increased

Fig. 4 Photomicrographs illustrating immunofluorescence for AVP and
HIF-1α (a), cytochrome-c (b), and cleaved caspase-3 (c) in coronal sec-
tions through the supraoptic nucleus (SON) of naive and septic (CLP)
animals at 6 and 24 h following surgery. Images were obtained by con-
focal laser microscopy. Original magnification ×60 + ×3 optical zoom.
Scale bar = 50 μm

Fig. 3 Western blot analysis (a) and quantification for anti-apoptotic
proteins showing difference in levels of Bcl-2 (b) and Bcl-xL (c) in the
hypothalamus of naive and septic (CLP) animals at 6 and 24 h after sepsis
induction. The data show means ± SEM of the expression ratios between
target proteins andβ-actin. Statistical analysis was performed by one-way
ANOVA test followed by Tukey post hoc test; *p ≤ 0.05 of CLP com-
pared to naive group. n = 6–7 animals per group
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immunostaining for HIF-1α in vasopressinergic neurons
during sepsis seen here indicates that they are under an
abnormal bioenergetics condition. HIF-1 can promote
gene activation and expression of Nip3, a proapoptotic

protein that has been shown to sequester Bcl-2 and Bcl-
xL and promote apoptosis [29].

Glial cells, which comprise microglia, astrocytes, ol-
igodendrocytes, and ependymal cells, are known to be
involved in several neurodegenerative conditions.
Microglia activation can be recognized by changes in
cell morphology: resting cells show long and thin ram-
ifications, while activated ones present an ameboid
shape, with short and thick processes [30, 31]. Our re-
sults showed that microglial cells in the SON of septic
rats display a morphology compatible with activation.
Interestingly, this was observed already at 6 h after
CLP, then followed by an increase in IFN-γ plasma
levels at 24 h. When stimulated by LPS or IFN-γ, mi-
croglia can assume a proinflammatory activated status
and secrete neurotoxic molecules, like cytokines and
NO [32]. Moreover, interleukin (IL)-1β, IL-6, and tu-
mor necrosis factor-α (TNF-α) together with IFN-γ can
promote a proinflammatory environment for microglia
[33], and indeed, the levels of these cytokines are in-
creased in this sepsis model [10]. There is evidence that
microglia-derived IL-1β is responsible for inflammation

Fig. 5 Photomicrographs
illustrating Iba-1 immunostaining
(green) in coronal sections
through the supraoptic (SON)
nucleus of naive and septic ani-
mals at 6 and 24 h. Cell nuclei
were stained with DAPI (blue).
Iba-1-positive cells in septic ani-
mals (c–f) showed larger cell
bodies and shorter cell processes
compared to the naive group (a,
b), this indicating cell activation.
Images were obtained by confocal
laser microscopy. Original mag-
nification ×60 (a, c, e); b, d, f
magnifications (×3) of the origi-
nal image. Scale bar = 50 μm

Fig. 6 Plasma levels of interferon-gamma in naive and septic (CLP) rats
measured by ELISA. The data show means ± SEM. Statistical analysis
was performed by one-way ANOVA followed by Tukey post hoc test;
*p ≤ 0.05 of CLP compared to naive group. n = 6–7 per group
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in the hippocampus and cerebral cortex and that this
can cause cognitive and synaptic impairment during
sepsis [34, 35]. Furthermore, in a previous work, we
saw that when blocking the IL-1β pathway in the
CNS, vasopressin secretion in the late phase of sepsis
is improved, associated with a decreased expression of
HIF-1 and procaspase-3 encoding genes, suggesting a
reduction of apoptosis in vasopressinergic neurons [8,
21]. Therefore, microglia could be a source of inflam-
matory agents that are harmful for the hypothalamic-
neurohypophyseal axis in systemic inflammation.
Astrocyte activation can also be deleterious, but in our
sepsis model, hypothalamus GFAP levels remained un-
altered until 24 h (data not shown). Although these cells
have an intimate crosstalk with microglia during
neuroinflammatory conditions, their activation tends to
be posterior [36].

Several experimental studies have shown impairment
of the blood-brain barrier during sepsis [37–40]. This
barrier represents a highly specialized structure that se-
lectively regulates the communication between brain and
systemic circulation, but under pathological conditions
its breakdown can be mediated by TNF-α [41] and ni-
tric oxide [42, 43]. Vasopressin is also associated with
BBB damage [44, 45]. Here, we saw an increased hy-
pothalamic Evans blue (EB) leakage at the same time
(early phase of sepsis) when high vasopressin levels are
detected. Even though it was not found any difference
in EB extravasation at 24 h, as observed in other stud-
ies with sepsis [46, 47], slight variations in the CLP
model (number of punctures, needle size) could induce
a different kinetic in our animals. We believe that BBB
breakdown permits circulating cytokines to reach the
hypothalamus and contribute to or promote further di-
rect or indirect (through microglial activation) neuronal
damage that can culminate in the impairment of vaso-
pressin secretion. Although we did not measure plasma
AVP levels in this study, we previously reported [5, 7,
8] that there is an increase at 6 h followed by a return
to basal levels at 24 h in the CLP-induced sepsis model.

Concluding, our results show that cell death of
vasopressinergic neurons is mediated by the intrinsic
but not extrinsic apoptosis pathway, and that this pro-
cess is associated with local microglial activation and
BBB damage.
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