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Abstract Unwarranted exposure due to liberal use of metals
for maintaining the lavish life and to achieve the food demand
for escalating population along with an incredible boost in the
average human life span owing to orchestrated progress in
rejuvenation therapy have gradually increased the occurrence
of Parkinson’s disease (PD). Etiology is albeit elusive; associ-
ation of PD with metal accumulation has never been
overlooked due to noteworthy similitude between metal-
exposure symptoms and a few cardinal features of disease.
Even though metals are entailed in the vital functions, a hys-
terical shift, primarily augmentation, escorts the stern
nigrostriatal dopaminergic neurodegeneration. An increase in
the passage of metals through the blood brain barrier and
impaired metabolic activity and elimination system could lead
to metal accumulation in the brain, which eventually makes
dopaminergic neurons quite susceptible. In the present article,
an update on implication of metal accumulation in PD/
Parkinsonism has been provided. Moreover, encouraging
and paradoxical facts and fictions associated with metal accu-
mulation in PD/Parkinsonism have also been compiled.
Systematic literature survey of PD is performed to describe

updated information if metal accumulation is an epicenter or
merely an outcome. Finally, a perspective on the association
of metal accumulation with pesticide-induced Parkinsonism
has been explained to unveil the likely impact of the former
in the latter.

Keywords Parkinson’s disease . Parkinsonism .Metals .

Rodent models . Pesticides

Introduction

Metals are indispensable component of several biologically
active proteins, which play decisive roles in the metabolic
activity of the central nervous system [1]. Although deficiency
of metals is associated with a few behavioral and phenotypic
abnormalities, accumulation is highly toxic to the central ner-
vous system. Overexpression and aggregation of α-synuclein,
oxidative stress, mitochondrial dysfunction, inflammation,
and impaired class I and class II programmed cell death are
major wrongdoers of Parkinson’s disease (PD) and metals are
known to regulate such biological processes [1–6].
Accumulation of metals in the striatum and substantia nigra,
two terribly affected areas of the brain in PD patients, is wide-
ly reported [1, 7]. Metals are reported to increase the defense-
lessness in experimental rodents and are associated with in-
creased incidences of PD [8, 9, 20]. Imaging techniques have
also demonstrated an accumulation of high level of metals in a
toxin model of PD [10]. Like pesticides, natal metal exposure
could exert lifelong effect in rodents owing to imprinting ep-
isode that intensifies the prevalence and severity of
Parkinsonism upon adulthood [11, 12]. Oxidative stress is also
contributed by metal accumulation. Naturally occurring
agents encounter metal accumulation-mediated oxidative
stress. Silymarin, resveratrol, melatonin, and their metabolites
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provide protection owing to their antioxidant, free radical
scavenging and metal chelating properties [13–15] also show-
ing the role of metal accumulation in PD.

Metal accumulation theory possibly came into the glare of
publicity after emergence of the information showing inci-
dences of gradual increase in the deposition of redox-
reactive essential metals in the brain of PD patients [2, 11].
Perhaps, the theory got impetus after the development of ro-
dent models employing individual, dual, or multiple metal
combinations [1, 5]. Ample support to metal accumulation
theory has come from adherence of inverse relationship be-
tween metal accumulation in PD brain and ameliorative strat-
egies used to encounter it. Agents that encounter, scavenge,
remediate, or reduce free radicals are found to lessen metal
accumulation in the brain further strengthen the idea of metal
accumulation theory [1, 8, 11, 16]. Furthermore, chelating
agents and metal binding modulators, which reduce the sever-
ity of symptomatic disease features, also corroborate metal
accumulation belief [17, 18].

Unforeseen metal accumulation possibly happens when
people are exposed to metal-rich pollutants, diets, and thera-
pies [2, 11, 19, 20]. Buildup in dopaminergic neurons is also
feasible, if there is disturbance in the metabolism, uptake,
removal, and transport of metals or nutritional deprivation
[11, 19, 21]. Despite a few confounding observations, epide-
miological and experimental investigations unambiguously
discourse that metal accumulation leads to phenotypic anom-
alies mimicking a few fundamental characteristics of PD [1, 2,
8, 9, 20]. Accumulation in the brain is regulated by the blood
brain barrier (BBB) depending on the nature of metals and
their ability to cross it. Once a metal enters the brain through
specific transporters, it regulates the functional activity of per-
tinent enzyme. Therefore, metal accumulation is expected to
alter the metabolic fate of dopaminergic neurons that are lo-
cated in the substantia nigra and projected to the striatum.
While timely elimination regulates the entry and deposition,
unfortunately, the elimination system is not yet explicitly
understood.

The growing evidence, which proves the role of metals in
sporadic and rodent models of PD, impelled to hoard and
discuss updated information in the current article. Three
schools of thought prevail in the scientific arena about metal
accumulation and PD. The followers of the first thought firmly
accept that metal accumulation is an epicenter and believe that
accumulation is a prerequisite of PD onset [9, 22]. The second
camp deems that PD progression leads to metal accumulation,
which is an outcome, and therefore, the concept of metal ac-
cumulation leading to PD could not be true [22]. Another
thought, albeit with less supporters, disapproves any positive
or negative impact of metal accumulation per se in PD. In the
current article, we explicitly emphasized and scrutinized the
major perspectives of metal accumulation and its relevance in
PD pathogenesis. Literature testimonies on evaluated metal

content in PD and toxin(s)-induced Parkinsonism have been
discussed to pinpoint the merits of metal accumulation theory
in the primary (sporadic/idiopathic) and secondary (causative
factor(s)-induced) PD.Moreover, an attempt has beenmade to
assess, if metal accumulation theory bears a clear-cut proof or
an abstemious flaw or is simply a propagated myth. Finally, a
perspective is presented to show how an evaluation of metal
accumulation in the nigrostriatal region of the brain of
pesticides-induced Parkinsonism could help in validating or
ruling out the hypothesis “metal buildup is a prerequisite for
PD pathogenesis”.

Iron Accumulation and PD

Iron deficiency is linked with diverse anomalies and clinical
syndromes, such as anemia and respiratory problem. Unlike a
few metals to be discussed in the latter part of the article, iron
deficiency is not at all associatedwith the increased incidences
of PD, but rather buildup is associated with neurodegenera-
tion. Postmortem brain of patients and genetic and toxin
models of PD have indicated noteworthy and selective accu-
mulation of iron in the substantia nigra region suggesting a
link of iron accumulation with PD risk [23–27]. Despite an
age-dependent increase in the iron content in the adjacent
tissues, buildup of iron in the substantia nigra is projected to
be the main causative factor for the selective demise of dopa-
minergic neurons [24]. Multiple observations from in vivo
iron imaging techniques, association studies of iron accumu-
lation regulating genes, and 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), rotenone, 6-hydroxydopamine
(6-OHDA) and lipopolysaccharide-based models have sup-
ported the decisive role of iron in PD pathogenesis [10, 23,
25, 27–33]. Mutants of regulatory genes and their link with
iron accumulation or iron supplementation and exposure-
dependent animal experimentations and their association with
disease susceptibility or increased vulnerability in adults,
which were prior exposed to iron during critical period of
development altogether narrate the magnitude of accumula-
tion [11, 23, 28, 30–32, 34, 35]. Accumulation is also associ-
ated with non-depression-linked PD demonstrating the ad-
verse effect of iron in all forms of this movement disorder
[36].

Unquestionably, iron gets accumulated in the substantia
nigra and other target tissues; its role is said to be elusive
owing to lack of entire mechanism of disease pathogenesis
[26]. However, iron buildup in the substantia nigra induces
oxidative stress, formation of intracellular α-synuclein aggre-
gates, motor impairment, disturbed iron homeostasis, cellular
disintegration, intrinsic apoptosis, microglial activation, and
neuronal death [27, 33, 35, 37]. Iron chelator reduces the
extent of anomalies along with reduction in the nigral iron
content confirming its role in PD pathogenesis [25, 37].
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Moreover, iron chelator also shrinks the cellular iron pool and
offers protection from 6-OHDA, MPTP, and rotenone-
induced Parkinsonism, which are exemplified with iron accu-
mulation [29, 33]. Involvement of ceruloplasmin in iron accu-
mulation has come from a knockout study in which ferric
ammonium citrate administration-mediated iron deposition
in the brain of MPTP-treated rodents and its reversal by de-
feroxamine, a metal chelator, were found [27]. Iron accumu-
lation is seen, if ceruloplasmin along with ferroportin 1, which
helps in iron export, is reduced in 6-OHDA-induced degener-
ation showing that accumulation starts immediately after tox-
icant exposure [32]. Oxidation of ceruloplasmin in PD pa-
tients changes its chemical nature from basic to acidic and
reduces ferroxidase activity that subsequently augments intra-
cellular iron retention [30]. Elevated level of iron and overex-
pression of divalent metal transporter 1(DMT1) in affected
tissue of Parkinsonian rats have shown the value of latter in
the former process [34]. Moreover, reduction in Nedd4
family-interacting protein 1 (Ndfip1) is found to contribute
to 6-OHDA-induced iron deposition through DMT1
degradation-dependent pathway [34]. P-type ATPase/
ATP13A2 causes an enlargement of lysosome and late endo-
some and reduces iron-induced membrane permeabilization
and thereby protects from iron-induced cell damage.
However, defects in ATP13A2 gene leads to PD, which is
characterized with the brain iron accumulation [31]. It indi-
cates the role of iron in the regulation of clearance mechanism
of defective proteins and organelles as well as its own through
the action of a few selected proteins. Combination of a natu-
rally occurring antioxidant and an iron-chelator is found be to
rescued from impaired antioxidant defense system, α-
synuclein accumulation, and aggregation, inhibits monoamine
oxidase, and activates hypoxia-inducible factor-1 signaling
pathway along with its downstream mediators viewing that
iron buildup leads to oxidative stress and thereby PD [37].
Overexpression of human α-synuclein increases the intracel-
lular iron content and its redistribution from the cytoplasm to
the perinuclear region within α-synuclein-rich inclusions fur-
ther indicate the role of iron in PD [38]. Microglial activation
releases inflammatory cytokines under iron overload that sub-
sequently leads to its accumulation by increasing the level of
regulatory protein 1 and hepcidin through free radical produc-
tion, which shows that microglia aggravates iron-induced PD
pathogenesis [35].

Despite all supportive evidences, iron alone is not a culprit
of sporadic PD. This is evident from a study in which patients
were found to atypically possess iron accumulation with neu-
rodegeneration along with dystonia and orofacial stereotypes.
The study shows that symptoms of iron alone-induced
Parkinsonism are different from sporadic PD [28].
Moreover, a link between age and iron accumulation in dif-
ferent brain regions is reported; heterogeneity of phase value
of accumulation and overstressed propensity in the nigra

indicate the need of further assessment for commenting upon
the relationship between iron accumulation and PD [24].

Manganese Accumulation and PD

Manganism was diagnosed approximately two hundred years
ago; epidemiological studies correlating manganese exposure
with PD came into limelight during the last few decades [7].
Like other micronutrients, it is required for catalytic activity of
a few enzymes and biological function of some proteins but
excessive accumulation is reported to be extremely toxic [39].
Age, gender, genetics, environmental/endogenous exposure,
and ethnicity altogether determine the fate of manganese-
induced toxicity. In general, manganese exposure is less than
the toxic level in the general population; but mostly, its accu-
mulation is reported in PD patients of Chinese population [40,
41]. Augmented exposure or reduced excretion leads to its
accumulation in the basal ganglion that could induce
Parkinsonian symptom or manganism [42]. Manganese accu-
mulation leads to aberrant dopaminergic neurotransmission
by increasing oxidative stress, mitochondrial dysfunction, in-
flammation, and synaptodendritic degeneration, which are re-
duced by the specific remedial agents (such as antioxidants,
anti-inflammatory agents, mitochondrial function regulators,
neuroprotective agents, etc.) further showing its role in
eliciting PD-like symptoms [43].

Manganese is accumulated in the Golgi apparatus where it
gets detoxified. Moreover, manganese accumulation reduces
total iron content that adds to neuronal injury [44].Manganese
activates the nuclear factor erythroid-2 related factor 2 and
heme oxygenase-1 pathways through free radicals and
ubiquitin-proteasome pathway-dependent mechanisms [45].
Sub-acute low-level manganese exposure disrupts the release
and function of dopamine, gamma amino butyric acid, and
glutamate neurotransmitter, which subsequently lead to neu-
robehavioral anomaly [46]. Rampant exposure to manganese
has long-term impact on the regulation of extracellular dopa-
mine release in the striatum [47]. Continuing exposure to
manganese during critical periods of development causes ox-
idative stress and impaired motor coordination [48].

Hydrogen peroxide is the main culprit of oxidative stress in
manganese-induced toxicity that is produced by the mitochon-
drial complex II [49]. Owing to distinct distribution in trans-
portable state as compared with the rest of metals, it affects the
mitochondrial electron transport chain of neurons located in
the nigra and adjacent tissues [7]. Activity of the central his-
taminergic system is increased in PD and 6-OHDA-lesioned
rats that is further increased by manganese exposure showing
its contribution in sporadic as well as toxin(s)-induced PD
[50]. While periodic/regular exposure to welding fume in-
duces permanent change in dopaminergic neurons, it is am-
biguous to establish whether exposure to manganese from
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welding electrodes, ferroalloy, and other means produces be-
havioral anomalies leading to manganism or not [41, 51, 52].
Exposure induces a few symptomatic features mimicking dis-
ease and some that are not at all associated with PD leading to
the hypothesis that manganism is not identical to PD [46, 53].
Influence of manganese is reported to be quite high in the
individuals possessing genetic predisposition as well [54].
Both manganism and sporadic PD are regulated by PARK
genes in the similar way and oxidative stress, impaired mito-
chondrial function, α-synuclein aggregation, and aberrant
ubiquitin proteasome system direct the nigrostriatal dopami-
nergic neurodegeneration in both the conditions [55]. Even
very low concentration of manganese induces α-synuclein
fibril formation [56]. Accumulation of welding fumes/
manganese chloride impairs the mitochondrial function, de-
generates tyrosine hydroxylase (TH) containing neurons, and
alters the expression of PARK proteins showing that PARK
genes play important role in manganism similar to sporadic
PD [57]. Motor alterations and selective degeneration in the
nigra induced by the inhalation of manganese mixtures are
significantly reversed by levodopa indicating that manganism
is similar to PD and manganese can be used to develop an
appropriate disease model [58, 59]. Moreover, behavioral al-
terations and inflammation persist even after manganese gets
cleared off from the cortical brain compartment [60] showing
that the changes are irreversible similar to PD. Though the
highest concentration of manganese is achieved in the basal
ganglia, manganese-induced Parkinsonism is differentiated
from sporadic PD owing to noticeable inhibition of dopamine
release even in the absence of the loss of terminals of the
nigrostriatal dopaminergic neurons [53]. Manganese-induced
Parkinsonism does not involve the demise of midbrain dopa-
minergic neurons and levodopa is also not found to be effec-
tive according to a study [61], which further shows that
manganism is different from PD. Dynamic mode of transport
and detection and pharmacokinetic modeling of trafficking
also indicate variability between manganese-induced
Parkinsonism and sporadic PD [42]. Level of manganese is
not altered in the substantia nigra but 20 % reduction in the
striatum of PD patients is seen as compared with controls
pointing out that accumulation of manganese is not associated
with sporadic PD [62].

Copper Accumulation and PD

Long-term exposure or excessive accumulation increases dis-
ease occurrence owing to its free radical-generating property
[63–65]. Contrary to this, copper rescues from PD symptoms
in a study, which exhibited 34–45 % reduction in the
substantia nigra of PD patients [62, 66, 67]. Moreover, no
specific and straightforward relationship between copper in-
take and PD risk/protection has been observed in another

study [68]. Despite conflicting reports, an increased level of
copper-bound biologically active proteins has been consistent-
ly reported to be protective. It is supported by the verity that its
supplementation increases the activity of copper bound pro-
teins and ameliorates disease symptoms. Chelation reduces
availability of copper to bound proteins and aggravates PD
symptoms [69].

Neuroprotective properties of copper are partially contrib-
uted by its cofactor nature in antioxidant protein, superoxide
dismutase (SOD). SOD scavenges superoxide radical and reg-
ulates electron transport chain [69]. A study performed in the
cerebrospinal fluid of PD patients also indicated that free cop-
per is toxic, while protein bound copper is protective in nature
[70]. Neuroprotection is also mediated by its action against
toxic effects of iron deposits [71]. Copper also prevents
toxin-induced protein nitration and reduction in TH activity
and its inactivation [72, 73]. Copper regulates the function of
metallothioneins, ceruloplasmin, DJ-1, copper transporter 1,
and P-type ATPase B proteins. Reduced expression of cerulo-
plasmin in the nigrostriatal pathway also shows that reduction
of copper bound proteins is associated with PD [69, 74].

Copper induces the formation of oxidation products of cat-
echolamine, which are regulated by chloride concentration
and lead to DNA damage [75, 76]. Copper plays imperative
role in oxidation kinetics responsible for dopaminergic neuro-
degeneration [76]. Copper ion directly regulates α-synuclein
fibril formation and oligomerization [56, 77]. Copper-induced
dopamine oxidation increases mitophagy and caspase-3-
independent apoptotic degeneration [78]. While autophagy
does not play any role in metal elimination, removal of dam-
aged organelles and proteins could eliminate some metals.
Nigral α-synuclein aggregation augments neuronal cell death
if copper-dependent defense mechanism is impaired since its
interaction with α-synuclein triggers modification and aggre-
gation owing to the formation of reactive oxygen species [79,
80]. Although α-synuclein stimulates copper-mediated toxic-
ity even without aggregation, aggregated forms are found to
be more pathogenic [79, 81].

α-Synuclein increases the cellular sensitivity to copper
showing that pathological role of α-synuclein aggregates de-
pends on copper-binding capacity [82]. Copper also regulates
an interaction of herbicide with α-synuclein [83]. Depending
on pH, copper, and α-synuclein ratio, variable copper species
have been reported. Binding affinity of copper (1+) with N-
terminal and C-terminal regions of α-synuclein is found to be
uneven and interaction leads to site-specific oxidation of the
latter [84, 85]. Imbalance in the cellular copper homeostasis
preferentially targets oxidation of N-terminal region while
function and aggregation are regulated by C-terminal domain
[86, 87]. Physiological form of α-synuclein that interacts with
copper (1+) is found to be N-terminally acetylated, which
subsequently abolishes binding of copper at high affinity
[84, 88, 89]. Aggregation propensity and folding are regulated
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by remote histidine residue that regulates its binding with
copper (2+) [84]. Copper also binds to histidine residue at
position 50 of the carboxy terminal sequence that finally de-
termines the fate ofα-synuclein [69]. High-affinity form ofα-
synuclein undergoes fibrillation and partially folded confor-
mation [69, 90]. Although α-synuclein exists in soluble and
membrane-bound forms, copper exerts its effect mainly on the
soluble form [63]. Reduced cellular copper clears off larger
aggregates and oligomers that are intensely localized to the
plasma membrane [82]. Copper (2+) regulates protein/vesicle
coordination and extent of α-helix for the membrane-
associated area [91]. Deletion of any terminal results in a loss
of aggregation whereas deletion of C-terminal results in a loss
of membrane association [82]. Both copper and dopamine
interacts with both terminus and induce folding [87, 90].
Dopamine or dopamine/copper induces α-synuclein oligo-
merization and cross-linking more than that of free radical-
mediated covalent modification [92].

DJ-1 interacts with copper and is regulated and/or stabi-
lized by zinc [93]. DJ-1 changes the coordination geometry
of copper leading to failure of metal transfer to SOD [94]. DJ-
1 requires stable homodimer for mutation that weakens its
formation and compromises competency [95]. DJ-1 enhances
the cellular defense and mutations reduce its protective prop-
erty [96]. Even a small genetic change or concomitant addi-
tion of dopamine sensitizes copper-induced cytotoxicity [96].
Aberrant expression of Parkin also substantiates the role of
copper in PD [97].

Zinc Accumulation and PD

Maintenance of homeostatic relationship among essential
metals is required for the normal functioning of the brain
[98]. Zinc controls synaptic transmission along with iron and
copper and regulates elevation in an impaired compartmental-
ization leading to deregulation of homeostasis [99]. Zinc acts
as an antioxidant at the desired cellular concentration; deple-
tion or excess induces free radical generation [65].
Antioxidant nature of zinc is not because of metal per se, but
is rather due to zinc-containing proteins [100]. Alteration in
the intracellular zinc content is associated with functional
anomaly in neurons. Deficiency is implicated in growth prob-
lem, mental retardation, emotional disturbance, and physical
and immunological aberrations in children while it is not as-
sociated with any specific problem in adults [101]. Deficiency
also leads to excessive consumption of iron and copper, accu-
mulation of manganese, ingestion difference of vitamin
E/copper, and decreased consumption of vitamin B12 [102].

Higher concentration is even more toxic since metals oxi-
dize macromolecules and reduce the cellular antioxidant de-
fense system [103]. Zinc is profusely present in the hippocam-
pus, cerebral cortex, thalamus, and olfactory cortex [104] and

its accumulation in the nigrostriatal region leads to PD [62].
Although concentration of zinc in other brain regions of PD
patients remains the same, it increases by 50–54 % in the
substantia nigra and 18–35 % in the striatum indicating the
role of its accumulation in neurodegeneration [62]. Presence
of zinc-dependent matrix metalloproteinase-2 (MMP-2) in α-
synuclein inclusions and selective augmentation in expression
of MMP-2 in the striatum also indicate the same notion [105].
Since zinc is required for normal functioning of MMP-2, its
accumulation increases the susceptibility of degenerative dis-
eases that are characterized with α-synuclein aggregate for-
mation, inflammation, BBB dysfunction, and myelin deterio-
ration [105]. Zinc also increases an interaction of herbicide
with α-synuclein [83]. Accumulation of zinc is associated
with stern dopaminergic neuronal cell loss as evident from
the overexpression of metallothionein, an indicator of metal
homeostasis disturbance [74, 106]. A decrease in zinc-
dependent SOD and ferroxidase activity in the cerebrospinal
fluid of PD patients also indicates its relevance in the regula-
tion of antioxidant defense system [70]. A chelator that
crosses the BBB reduces the level of essential metals, such
as zinc, and reduces neurotoxicity [18] confirming the role of
zinc accumulation in PD.

Parkinsonian toxins that inhibit the mitochondrial complex
I, such as N-methyl-4-phenylpyridinium (MPP+) and 6-
OHDA, induce zinc accumulation in the substantia nigra pars
compacta showing that cytosolic labile zinc accumulation
could be an indicator of degenerating dopaminergic neurons
[107, 108]. Similarly, 3-morpholinosydnonimine mediates the
mitochondrial accumulation of metals, including zinc, and the
induction of metallothionein gene protects from it; this further
highlights the role of zinc in neurodegeneration [74, 109].
Zinc induces nicotinamide adenine dinucleotide phosphate-
oxidase-dependent free radical generation, dopamine and glu-
tathione depletion, apoptotic loss of TH-positive neurons, re-
duction in the expression of monoamine transporters, and
microglial activation after long-term exposure to high doses
showing its role in Parkinsonism [8]. Apocyanin, an antioxi-
dant, and/or N-acetyl cysteine, an anti-inflammatory agent,
are found to reduce zinc-induced alterations that validate the
role of zinc in oxidative stress-induced PD in experimental
models [16].

Zinc induces PD even in manganese-exposed population
since manganese is competently and effectively transported
by zinc transporters [110]. Two types of transporters are found
to be responsible for manganese transport and/or storage in the
brain; one is iron and another is zinc. But a stable relationship
between manganese and zinc at the tissue and cellular levels
suggests that zinc transport/storage is associated with manga-
nese transport and accumulation [111]. Since zinc is known to
induce its own transporters, little excess in its concentration
could promote uncontrolled passage ofmanganese in the brain
leading to PD-like symptoms in manganese exposed

4742 Mol Neurobiol (2017) 54:4738–4755



individuals. Moreover, zinc along with iron influences the
effect of lead and affects dopaminergic neurons [112]. It is
also supported by a study that has shown an increased expres-
sion of transporters and transferrin receptors owing to concur-
rent and altered level of metals [98].

Accumulation of zinc produces adverse effect on the BBB
as elevated level is found to be associated with barrier dys-
function [35]. Defective BBB could allow an entry of unwant-
ed molecules and radicals in the brain. Moreover, disturbance
in zinc homeostasis leads to the lysosomal impairment, α-
synuclein accumulation, and mitochondrial dysfunction
through PARK 9-dependent mechanism [113]. Interestingly,
higher intake of zinc is also reported to be protective against
PD in a study [68]. The interaction of DJ-1, a neuroprotective
and antioxidant protein, with copper is regulated and/or stabi-
lized by zinc showing that zinc regulates neurodegeneration/
protection even in familial PD [93].

Mercury Accumulation and PD

History of a possible association of mercury exposure with PD
is quite old as dental amalgam fillings have been used from the
ancient era and is projected to be associated with disease path-
ogenesis [114]. J.M. Charcot, who is appropriately referred to
as the father of modern neurobiology, primarily emphasized
the hereditary etiology of PD. But he never ruled out the
possibility of mercury exposure as an etiological factor even
in the absence of a clear cut association [115]. Mercury ab-
sorption occurs through the lungs; afterwards, it reaches to the
bloodstream and subsequently enters and accumulates in the
central nervous system [116]. Mercury exposure induces ad-
verse effect on dopamine transporters leading to a dose-
dependent depletion of the striatal dopamine [117].
Although an obvious monotonic dose–response association
between PD and blood mercury is seen, scalp hair mercury
is not found to be the first-rate disease predictor [118]. While
no significant association between occupational mercury ex-
posure and PD is seen in an epidemiological study, confidence
interval of odds ratio did not ignore the likelihood [119]. In
another epidemiological study, a rare clinical variant of mer-
cury intoxication was found to be associated with
Parkinsonism even in the absence of chronic exposure specific
neuropsychiatric signs [120]. PD subjects are found to be as-
sociated with detectable blood mercury level, but barely a few
controls are found to have the same, which substantiate that it
plays a role in disease etiology [121]. High urinary excretion,
which could be extrapolated as high mercury exposure, is also
found to be linked with increased average tremor intensity (a
hallmark of PD) within high-frequency window [122]. Higher
mercury exposure is also related to abnormal facial expression
[123] that is often reported to be a secondary characteristic of
PD. However, inadequate longitudinal exposure assessment,

negative confounding by better access to dental care in the
elite groups, inadequate epidemiological studies, insufficient
number of cases and controls for power statistics, and lack of
animal experimentations have been the major limitations.
Therefore, better designed studies are still needed to confirm
its association with PD [114].

Magnesium Accumulation and PD

Magnesium is the second most abundant divalent intracellular
metal cation involved in the intracellular processes [124].
Association of magnesium accumulation/dietary intake with
PD is hard to define since both accumulation and low level are
found to be associated with risk as well as protection in animal
and epidemiological investigations. A multicenter hospital-
based case–control study performed in Japan did not observe
any relationship between magnesium intake and disease risk
rather high intake was found to be neuroprotective [68]. Low
amount owing to decreased function of dopaminergic neurons
leads to catalepsy, which shows that low intake could be a
contributory factor in PD [125]. On the other hand, magne-
sium (2+) acts as a calcium (2+) channel antagonist and re-
duces the damaging consequence of calcium (2+)-induced
neuronal inflammation showing its protective efficacy [126].
Magnesium inhibits iron-induced α-synuclein aggregation
that further confirms the notion [127]. Cytosolic content is
regulated in the brain to equilibrate changes in rapidly avail-
able free energy and magnesium and to moderate cadmium/
aluminum-mediated effects illustrating that low magnesium
level could lead to neurodegeneration [128–130]. While mag-
nesium prevents the length of dopaminergic neuritis, it can
exacerbate MPTP-induced striatal dopamine depletion [131,
132]. Furthermore, low dose increases motor activity and la-
tency to heat stimuli, but medium and high doses decrease the
same and increase pole climbing time in MPTP-treated mice
[132]. Magnesium exerts imprinting effect since low magne-
sium intake (1/5th of desired value) over generations is found
to be associated with significant death of dopaminergic neu-
rons in the substantia nigra [133].

Regardless of the fact that the mitochondria maintain mag-
nesium homeostasis, its high level leads to dysfunction and
formation of protein aggregates in the brain mitochondria
[134]. Rotenone reduces magnesium-dependent block of N-
methyl-D-aspartate current in dopaminergic neurons of the
substantia nigra signifying that magnesium-mediated
excitotoxic mechanism participates in rotenone-induced
Parkinsonism [135]. Contrary to it, an increase in magnesium
content is found to inhibit the cellular free radical generation,
maintains energy production, and rescues from toxin-induced
Parkinsonism [136]. A gradual decrease in the magnesium (2+
) concentration in the mitochondria is seen in response to a
neurotoxin in differentiated PC12 cells viewing that its
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specific concentration is needed to maintain the normal neu-
ronal functions [137].

Association of magnesium deficiency or accumulation
is also reflected from the studies, which have shown the
presence/absence of association of ion channel protein
variants with PD risk. Human solute carrier family 41
(magnesium transporter), member 1 (SLC41A1) gene en-
codes for sodium (1+)/magnesium (2+) exchanger, which
is involved in magnesium (2+) efflux system [124].
SLC41A1 is found to be dysfunctional when magnesium
(2+) efflux is impaired. Moreover, long-term and chronic
intracellular magnesium (2+) deficiencies in PD patients
are found to increase magnesium (2+) efflux by SLC41A1
variant p.A350 V [138, 139]. PD is also associated with
reduced expression of transient receptor potential cation
channel, subfamily M, member 2 and 7 channel proteins
[140].

Studies available have shown no significant association of
magnesium with PD or neuroprotection. Although low mag-
nesium in the diet is associated with olfaction, magnesium
along with calcium, iron, silicon, and zinc are not correlated
with duration or severity of PD or anti-PD drugs [141, 142].
Mystifying observations across studies indicate that magne-
sium is associated with PD risk. Despite contradictory reports,
it is believed that measurement of brain magnesium (2+) could
help in differential disease diagnosis [128]. Overall, associa-
tion of PD with magnesium accumulation/deficiency has been
elusive and studies are still required to spell it out.

Lead Accumulation and PD

During recent years, chronic exposure to lead has been mini-
mized owing to complete ban on gasoline, but it remains to be
a major public health concern [143]. Limited studies are avail-
able showing an association between lead exposure and PD
[144]. PD risk gets elevated by >2-fold in people in the highest
quartile for lifetime lead exposure indicating that chronic ex-
posure could be a risk factor [145]. While lead alone is not
found to be associated with PD in a study, dual combination of
lead, iron, or copper increases the risk [64]. An increase in the
plasma lead level in urban PD subjects is found in a study
[146] pointing out the accumulation of lead in the brain. A
10-fold increase in radioactive lead in the lipid fraction is also
seen indicating that lead is primarily accumulated in the lipid
fraction [147]. An increase in bone lead content is not found to
be associated with risk but cumulative exposure augments PD
risk in the typical patients [148]. Similarly, the tibia bone lead
unlike the patella lead is seen to be associated with cognition
deficit and cumulative exposure aggravates the condition
[149]. Association of leadwith PD is also evident from a study
where a case was exposed to lead for 17 years in a car battery
industry and was diagnosed with high level of lead in the

blood. The person was initially characterized with the primary
disease symptoms, followed by the secondary symptoms and
later by the late stage disease symptoms.Moreover, the patient
was also found to be levodopa responsive [150]. Lead expo-
sure increases α-synuclein aggregation and aggresome forma-
tion and inhibits degradation and thereby supports the lead
accumulation theory of PD [151]. Although studies have
shown an association of lead accumulation/exposure, lead lev-
el is not found to be altered in the substantia nigra and striatum
of patients as compared with other regions of the brain, which
simply contradicts its adverse association with PD [62].

Aluminum Accumulation and PD

Except a few scattered contradictory observations, reports
have shown an association of aluminum accumulation in the
central nervous system and exposure to aluminum-containing
antacids with increased incidence of neurodegenerative dis-
eases [152–154]. Aluminum gets accumulated in the
substantia nigra and/or striatum, particularly in the gray mat-
ter, and is linkedwith PD pathogenesis [130, 155]. Presence of
aluminum in the Lewy bodies of the nigra of PD patients also
indicates its significance [156]. Aluminum increases mono-
amine oxidase-B (MAO-B) enzyme activity and is associated
with dopamine degradation and depletion thereby indicating
its etiological worth in PD [157]. Augmentation in aluminum
content in neuromelanin granules shows that it promotes ox-
idant formation, which accounts for the selective degeneration
of neuromelanin-positive neurons [158, 159]. Accumulation
of aluminum in hair and increase in urinary 8-hydroxy-2′-
deoxyguanosine, an indicator of oxidative stress, in
Mongolian patients further support the negative role of this
metal in PD [160]. Aluminum enhances 6-OHDA-induced
oxidative stress, reduces endogenous antioxidant defense en-
zymes, and increases nigrostriatal dopaminergic neurodegen-
eration, which additionally support the notion that this metal
adds on PD hallmarks induced by a Parkinsonian toxin [161].

Aluminum increases interaction between pesticides and α-
synuclein [83]. Exposure reduces TH-immunoreactivity, neu-
rotransmitter content, and motor functions and induces fibril
formation from aggregated α-synuclein leading to conforma-
tional change attributed to the development of a partially
folded intermediate [56, 155].While aggregation and structur-
al changes are reported, newer and specific tools are expected
to help in understanding the mechanism of aggregation [162].
It triggers phosphorus leading to homeostatic imbalance in the
serum of patients showing that aluminum indirectly regulates
PD pathogenesis [163]. Albeit most of the studies have shown
an association of aluminum accumulation with PD, it is found
to reduce lipid peroxidation and 6-OHDA-induced dopami-
nergic lesion in the striatum [100].
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Calcium Accumulation and PD

Several direct and indirect studies have highlighted that calci-
um (2+) homeostasis in the endoplasmic reticulum is a deci-
sive factor of neurodegeneration [164, 165]. Reticular calcium
(2+) and activation of calcium–calmodulin–calcineurin cas-
cade is regulated by α-synuclein showing that calcium ho-
meostatic disturbance could be associated with disease patho-
genesis [166]. Maintenance of calcium homeostasis owing to
an accumulation of lactoferrin (an iron-binding protein) is
required for protection against MPTP-induced neurodegener-
ation demonstrating its importance in the normal function of
dopaminergic neurons [167]. Excessive concentration, depo-
sition, or even slight changes in calcium content of dopami-
nergic neurons could lead to the onset of PD symptoms [154,
168]. Mitochondrial dysfunction and defective autophagy,
two critical events of degeneration, are also regulated by the
mitochondrial calcium influx [169, 170]. Attenuation in the
mitochondrial calcium capacity or augmentation in oxidative
stress lowers the threshold for opening of the mitochondrial
permeability transition pore [171]. Moreover, dopamine
transporter-1 receptor signal transduction pathway depends
on L-type calcium (2+) channel in order to mediate cyclic
adenosine monophosphate response element-binding protein
phosphorylation [172]. The impaired mitochondrial calcium
(2+) accumulation during agonist stimulation is a major con-
sequence of human complex I deficiency [173]. Calcium-
binding domain, which is located in the 15 amino acids at
the acidic C-terminal end of α-synuclein, induces filament
formation that continues through intermediate or proto-
fibrillar species leading to PD [174].

Cadmium Accumulation and PD

Indisputably, the central nervous system disorders are the sec-
ond most health risk associated with metal exposure [175].
Although cadmium accumulation is less studied as compared
with iron, manganese, and copper, a trend of increased disease
risk with its exposure is reported [176]. High cadmium level
along with manganese, iron, lead, and aluminum are also seen
in Mongolian PD subjects as compared with Japanese [160].
An old person, who was acutely exposed to cadmium, was
found to possess PD-like features showing that cadmium ex-
posure damages the basal ganglion, the most affected site in
PD [177]. Effects of cadmium on cognition, behavior, learn-
ing deficits, and altered dopaminergic function are also report-
ed [112] showing that cadmium accumulation could lead to
PD. Cadmium alters the interaction of Parkinsonian toxins
with α-synuclein that further shows its role in disease patho-
genesis [83]. Cadmium exposure also modulates ubiquitin
proteasome pathway, antioxidant enzymes, phase II enzymes,
and cell cycle regulators implicated in PD pathogenesis [178].

Besides, an auto-transplantation study has shown lack of any
change in cadmium along with a few other metals after oper-
ation showing that cadmium accumulation is significantly as-
sociated with PD pathogenesis [179]. Even though an associ-
ation between PD risk among nurses and exposure to cadmi-
um is reported, no explicit and unambiguous association be-
tween adulthood ambient exposure to cadmium and PD risk is
seen [144].

Arsenic Accumulation and PD

It is not yet clear if arsenic accumulation induces the
nigrostriatal dopaminergic neurodegeneration or not.
Undeniably, arsenic (3+) induces oxidative stress leading
to the activation of early transcription factors [180]. Clear
cut evidence is still not available that could have explic-
itly explained its role in PD. Arsenic (3+) synergistically
enhances dopamine toxicity in differentiated dopaminer-
gic neurons in culture [181] indicating that it aggravates
dopaminergic neuronal cell death. Moreover, glutathione
transferase-ω E155 deletion linked with abnormal arsenic
excretion and age-at-onset of PD, which further indicates
that arsenic could be a critical player [182]. Despite a few
supports, arsenic accumulation theory of PD gets jolted
owing to the presence of its low concentration in PD
patients in comparison with controls [183].

Cobalt Accumulation and PD

Association of cobalt accumulation is appraised; however, no
study has yet confirmed its substantial association with PD
[106]. While cobalt (2+) induces rapid formation of discrete
annular α-synuclein oligomeric species, cobalt (3+) causes
significant acceleration in α-synuclein fibril formation [56,
174]. Since fibril and oligomer formation are very much as-
sociated with PD, therefore, the role of cobalt in PD patho-
genesis needs to be explored further.

Is Metal Accumulation an Epicenter or Outcome
of PD?

Metals get accumulated owing to lack of fully operational
excretion machinery irrespective of their route of entry
[184–186]. Accumulation in the brain also happens due to
metal-mediated increase in the BBB permeability.
Accumulation leads to oxidative damage, metal–metal inter-
action, estrogen-like effects, and epigenetic modifications
[187]. Metal accumulation is contributed by both innate and
acquired factors, which are evident from the studies that have
shown accumulation of a specific metal in a fussy population
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[184–186]. For instance, iron gets accumulated in the brain of
the people of Irish, Scottish, British and Scandinavian ances-
try much more in comparison with the people of rest of the
world. It shows that hereditary/innate factors regulate metal
accumulation process [186]. Presence of higher accumulation
in males as compared with females indicates implicit role of
acquired factors in metal buildup [186].

Exposure to manganese, copper, lead, iron, mercury,
aluminum, zinc, and cadmium appears to be the main
environmental risk factors (Table 1) along with pesticides
[22, 100, 188, 189]. However, it is still a Demigod subject
if metal accumulation is an epicenter or merely an out-
come [9] (Table 2). Although a trend of increase in dis-
ease risk with metal exposure at work place is reported,
limited studies exist in this direction [144, 176]. One
school of thought believes that metal accumulation is nei-
ther an epicenter nor an outcome, but rather it is an

indispensable process, which has zilch contribution to
PD rather to keep healthy. The notion is reliant on the
plethora of information that demonstrate the protective
effect of metals or their essentiality for the catalytic activ-
ity of a few enzymes opposite to metal accumulation the-
ory that deems accumulation as a causative or contributo-
ry factor. For example, metal supplementation is needed
to maintain the normal physiology of dopaminergic neu-
rons of the substantia nigra, one of the most badly affect-
ed tissues, during metal deficiency [22]. Furthermore,
with the best of our knowledge, no scientific evidence is
available in the literature that could have explicitly dem-
onstrated an increased prevalence of PD in populations,
which are more prone to metal accumulation [186] as
compared with populations in which accumulation is
found to be less. Such proofs validate the hypothesis that
metal accumulation is not associated with PD or at least it

Table 1 Contribution of metals in PD pathogenesis based on epidemiological studies and animal experimentations: name of the metals, their
association with disease, and disease features are mentioned along with appropriate citations

S. no. Name of metal Association Parkinsonian features References

1 Iron Accumulation is associated with sporadic PD
and toxin-induced Parkinsonism

Aggregate formation, behavioral deficits,
selective degeneration, and levodopa
responsiveness

[23–27]

2 Manganese Accumulation is associated with the onset of
manganism, slightly similar to PD as observed
in epidemiological and experimental studies

Aggregate formation, behavioral
anomalies, and degeneration of
dopaminergic neurons
but divisive levodopa responsiveness

[39–41, 51, 57–59, 61]

3 Copper Accumulation of free form leads to Parkinsonism
while protein bound form leads to protection as
observed in the limited epidemiological studies

Aggregate formation, selective neuronal
loss, and mitochondrial dysfunction

[62, 63, 65–69, 80]

4 Zinc Accumulation leads to Parkinsonism as inferred
from the limited epidemiological studies and
protective effect is also reported

α-Synuclein aggregation, microglial
activation, behavioral deficits,
neurodegeneration, and mitochondrial
dysfunction

[8, 16, 62, 68, 104, 105,
107, 108]

4 Mercury Accumulation is associated with some minor
features of Parkinsonism but not yet explicitly
accepted as Parkinsonian metal

Dysfunction of dopamine transporters,
tremor, and abnormal facial expression

[115, 117, 119, 121–123]

5 Magnesium Accumulation also leads to a few minor changes
associated with Parkinsonism but often found
to be protective in nature

Loss of dopaminergic neurons [68, 125, 127, 131–133]

6 Lead Accumulation leads to a few selected Parkinsonian
features

Neuronal loss and levodopa responsiveness [64, 145, 146, 148, 150]

7 Aluminum Buildup in the brain induces neurotoxicity but
epidemiological evidences are rare

MAO-B activity augmentation [130, 152–155, 157]

8 Calcium Accumulation leads to secondary features
of PD/Parkinsonism

Mitochondrial permeability transition
pore opening, complex I deficiency
and α-synuclein filament formation

[154, 168, 171, 174]

9 Cadmium Accumulation induces a few features
but epidemiological and experimental studies
are limited

Basal ganglion affected, learning deficits,
and altered dopaminergic function

[112, 177]

10 Arsenic Accumulation leads to some changes, but still
lacks
proofs to ascertain its definite contribution in
PD/Parkinsonism

Higher dopamine toxicity [181–183]

11 Cobalt Buildup leads to a disease feature but inadequate
data to support its association with
PD/Parkinsonism

α-Synuclein fibril formation [56, 102]
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is not a causative factor. Moreover, a few population stud-
ies have also shown lack of relationship between the two
[22].

Campaigners of the jingle “causative factor theory”
contradict the tune of “no impact theory” or “outcome/
consequence theory”. Supporters of “causative factor the-
ory” believe that protection offered by metals is not be-
cause of metal per se rather it is an antioxidant property of
metal bound proteins that provides defense (Fig. 1).
Elevated level of metals in the substantia nigra of patients
in comparison with the rest of the brain indicates that
metal accumulation is a contributory factor [104, 107,
108]. Accumulation theory explains that higher oxidation
state of metals induces oxidation of macromolecules and
aggregation of α-synuclein [22]. High metal conjugates
lead to glutathione depletion in the substantia nigra of
PD patients showing that oxidative stress occurs owing
to metal accumulation and metal accumulation does not
occur because of oxidative stress. Higher level of metals
is seen in Mongolian PD patients (population that is not
genetically prone to metal accumulation like Irish) as
compared with Japanese further shows that accumulation
leads to oxidative stress and could be a causative factor

[160]. Excess dopamine, the main neurotransmitter, and
levodopa, the main PD therapy, are also known to in-
crease oxidative stress [188, 189] showing that stress
could be a secondary event. Moreover, presence of high
nitrate content in the cerebrospinal fluid in PD patients
treated with levodopa or with dopamine agonist vis-à-vis
their respective controls further supports it. However, ni-
trite (an end product of nitric oxide metabolism that is an
indicator of nitrosative stress/oxidative stress) is apparent-
ly unrelated with PD risk in another study [190] showing
that stress could be secondary to metal accumulation.
Activated microglial cells are reported to contain high
level of free metals, such as iron [22]. Since two major
events in PD pathogenesis, i.e., oxidative stress and
microglial activation occur in the nigrostriatal tissues ow-
ing to metal accumulation but not vice versa show that
metal accounts for the initiation of neurodegeneration.

Campaigners of the view, which considers metal accumu-
lation as an outcome of PD pathogenesis, provide substantial
evidences in their support. They believe that low level of
natural antioxidants, such as glutathione and SOD, and im-
paired activity of metal bound antioxidants are the major roots
of disease pathogenesis. Reduced antioxidant defense system

Table 2 Controversies over metal accumulation in PD pathogenesis: summary of clues, which support or contradict the contribution of metals in PD
pathogenesis

S.
no.

Clues to support epicenter theory Verities that contradict Clues that support
outcome theory

Verities that contradict References

1 Metal accumulation
leads to some
behavioral impairments
resembling PD

It also reduces
toxin-induced
behavioral
anomalies

PD occurs even without
metal accumulation
and metal-induced
behavioral anomalies
do not truly mimic
sporadic PD

Toxin(s)-induced
Parkinsonism
induce metal
accumulation
only after
neurodegeneration
begins

[10, 20, 24, 26, 40, 41,
48, 66, 67]

2 Metal accumulation is
associated with the
selective cell loss,
dopamine depletion,
mitochondrial
dysfunction and
α-synuclein aggregation,
and levodopa responsiveness

Degeneration is
often vague
and non-selective
and studies have
repeatedly shown
lack of levodopa
responsiveness

Accumulation
happens
after significant
neurodegeneration
and metals also
reduce aggregation
and
neurodegeneration
in a few studies

Changes appear
after metal
accumulation
in toxin-induced
disease showing
that it is the
primary cause

[32, 40–42, 53, 56,
58, 59]

3 Metal-induced biochemical and
molecular features generally
mimic PD

Main cardinal
features of
sporadic PD are
usually absent in
metal-induced
Parkinsonism

Metals get accumulated
during disease
progression

No conclusive
meta-analysis
study have
shown association
or lack of it

[62, 83, 105, 110]

4 Some metals unequivocally
induce a few cardinal
disease features

Several metals
do not induce
even one cardinal
feature

Specific metal
accumulation
is reported in a
few epidemiological
studies

No significant
accumulation
of any metal
is seen in
sporadic PD
patients in a
few other studies

[62, 117, 122, 144]
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directs metal accumulation or availability of free metals in the
substantia nigra [22] leading to the hypothesis that accumula-
tion is an outcome and not the starting point. This theory is
also supported by the fact that dopamine and levodopa form
conjugates with glutathione in PD patients leading to oxida-
tive stress that ultimately leads to PD [188, 189, 191].
Moreover, believers of this theory simply disagree with “caus-
ative factor hypothesis” with a convincing logic “if metal ac-
cumulation is the main cause why low level of a few metals is
also associated with PD”. Moreover, neurotoxins mainly in-
hibit the mitochondrial complex I and lead to oxidative stress
and provoke the elimination of metals from metal bound pro-
teins that subsequently increase free metal content [107–109].
Therefore, availability of excessive free metals could be a
consequence and not a cause. However, exposure to metals
could induce hydrogen peroxide production by the inhibition
of the mitochondrial complex II suggesting that metal accu-
mulation leads to oxidative stress and could be the primary
event [49]. Moreover, population studies correlating metal
exposure and disease pathogenesis are still limited. With in-
adequate studies, it is hard to pin down a hypothesis that could
be near to reality. Animal experimentations performed till date
is either one metal centric or one parameter centric; therefore,
interpretation biasness could not be excluded. Moreover, most
of the experimental animals do not develop PD naturally and
disease needs to be induced by specific neurotoxin; therefore,
animal results, even if positive, could not be completely ex-
trapolated to humans and relied upon. Overall, the study
seems to be inconsistent and inconclusive owing to lack of
meta-analysis of genes that regulate the level of metals in the
brain of exposed populations and their association with PD
across the globe. Such studies need to be performed exten-
sively along with multiple contributory factor-based investi-
gations in order to reach up to a definite conclusion, if metal

accumulation is an epicenter or an outcome or none of the
above.

Does Exposure to Pesticides also Induce Metal
Accumulation in the Brain?

A few direct and indirect studies have shown a possibility
of metal accumulation in the substantia nigra of pesticides
and non-pesticides, such as MPP+, 6-OHDA, lipopolysac-
charide, and rotenone, models of Parkinsonism [10, 23,
25, 28–33, 107, 108]. Extent of exposure time to pesti-
cides and heavy metals has also been linked with the age
at onset in non-familial PD [192]. A number of studies
have shown an implication of metals and pesticides ei-
ther alone or in combination of two in PD pathogenesis
[1, 193]. However, in combinational exposure, the level
of metals is rarely measured to counter an uncertainty
“if pesticide or Parkinsonian toxin induces metal accu-
mulation in the nigrostriatal tissues of the brain”.
Moreover, metal containing pesticides are also found
to induce an additional degree of oxidative stress in
dopaminergic system of rodents that is exposed to a
non-metal containing Parkinsonian pesticide. Such ob-
servation directly indicates the existence of a possible
crosstalk between metal and Parkinsonian pesticide in
order to exert sternness of disease features [194].
Cypermethrin-induced changes in the non-neuronal sys-
tem of lower animals are found to be induced by cad-
mium showing that metals could induce toxic effects of
the pesticides [195]. The similar likelihood in non-human
primates and rodents could not be ignored until
disapproved in the pre-clinical studies. Presence of even
low level of pesticide in the diet is found to induce

Fig. 1 Metals in PD
pathogenesis: accumulation of
free form of metals, such as
copper, iron, or zinc, and metals
per se, such as aluminum,
cadmium, or arsenic, in the brain
cause/protect dopaminergic
neurodegeneration. Metal, if
bound to an antioxidant and free
form magnesium, per se rescue
from PD

4748 Mol Neurobiol (2017) 54:4738–4755



cadmium accumulation in the kidney irrespective of the
dietary content of zinc and copper [196] showing that
pesticide exposure leads to metal accumulation. All these
three metals are individually known to induce the symp-
tomatic features of Parkinsonism at some or the other
concentrations. Moreover, dietary deficiency of one metal
is also reported to lead an accumulation of other in the
brain [20]. Such postulations indicate a possibility that
during nutritional deprivation, pesticide exposure leads
to metal accumulation.

Despite extensive research employing various models
and research tools, it has still remained an unrequited
Demigod issue “if metal accumulation is an epicenter or
an outcome”. Pesticides are found to induce α-synuclein
aggregation and bound to metal-induced partially folded
α-synuclein [83]. High iron content in the brain of
toxin-induced rodent model of Parkinsonism [29] has
also indicated that toxins induce metal accumulation.
Parkinsonian toxins that inhibit the mitochondrial com-
plex I also induce metal accumulation in the substantia
nigra indicating that metal accumulation could be an
indicator of degenerating dopaminergic neurons [107,
108]. But detailed studies are not yet performed to as-
sess the accumulation level of all suspected metals in
the substantia nigra employing all pesticide and toxin
models of PD. Experimental evidences would be expect-
ed to narrate the appropriateness of suggested theories
more precisely. Therefore, such studies need to be per-
formed and a correlation between metal accumulation
and pesticide exposure needs to be established. Once
such correlation is established and is found to be affir-
mative, a clear cut wrapping up can be drawn whether
metal accumulation is an epicenter or an outcome. The
Demigod question that exists today in PD biology could
be answered agreeably if time- and dose-dependent ac-
cumulations of all suspected metals could be measured
in the target tissues of control and Parkinsonian toxin/
pesticide-treated animals and subsequently correlated
with behavioral and supplementary phenotypic disease
symptoms.

Conclusion

Despite a strong association between metal accumulation and
PD, it is not yet clear whether metal accumulation leads to PD
or PD leads to metal accumulation.
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