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Abstract Thyroid hormone plays an important role in central
nervous system (CNS) development, including the myelination
of variable axonal calibers. It is well-established that thyroid
hormone is required for the terminal differentiation of oligoden-
drocyte precursor cells (OPCs) into myelinating oligodendro-
cytes by inducing rapid cell-cycle arrest and constant transcrip-
tion of pro-differentiation genes. This is well supported by the
hypomyelinating phenotypes exhibited by patients with con-
genital hypothyroidism, cretinism. During development,
myelinating oligodendrocytes only appear after the formation
of neural circuits, indicating that the timing of oligodendrocyte
differentiation is important. Since fetal and post-natal serum
thyroid hormone levels peak at the stage of active myelination,
it is suspected that the timing of oligodendrocyte development
is finely controlled by thyroid hormone. The essential machin-
ery for thyroid hormone signaling such as deiodinase activity
(utilized by cells to auto-regulate the level of thyroid hormone),
and nuclear thyroid hormone receptors (for gene transcription)
are expressed on oligodendrocytes. In this review, we discuss
the known and potential thyroid hormone signaling pathways
that may regulate oligodendrocyte development and CNS
myelination. Moreover, we evaluate the potential of targeting
thyroid hormone signaling for white matter injury or disease.
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Introduction

Thyroid hormone (TH) regulates neural development, differen-
tiation, and metabolism in mammals [1, 2]. The importance of
TH in regulating brain development is manifested in humans
under conditions of TH deficiency such as untreated congenital
hypothyroidism, or profoundmaternal hypothyroxinemia due to
iodine deficiency, clinically presenting as profoundmental retar-
dation and growth restriction [3]. THs including prohormone,
thyroxine (T4), and relatively minimal circulating amounts of
genomically active tri-iodothyronine (T3) are generated from
the thyroid gland [1]. SerumTH-binding proteins (such as albu-
min,T4-bindingglobulin,andpotentially transthyretin)bound to
T4,alongwith free-T3canbe transported into thecentralnervous
system(CNS)via transporters expressedonepithelial cells of the
choroid plexus, endothelial cells of the blood–brain barrier
(BBB) and astrocytic foot processes that are in contact with
microvessels.This transportmainlyoccurs through themonocar-
boxylate transporter (MCT)8 and organic anion-transporting
polypeptide 1c1 (OATP1C1) [4]. A low level of T3 in the brain
can be compensated by intracellular deiodination of T4 to pro-
duceT3by type2deiodinase (Dio2).On theother hand, in a case
of cellular hyperthyroidism, type 3 deiodinase (Dio3) deiodinize
THs into genomically inactive forms; T4 to reverse T3 andT3 to
di-iodothyronine (T2) [1].

One of the well-studied effects of TH during CNS develop-
ment ismyelination,which is a highly organizedprocess of axon
ensheathmentbyoligodendrocytes toestablishfast saltatorycon-
duction via both, facilitation of electrical capacitance (myelin
sheath) andmolecular clustering of sodium channels at the node
of Ranvier and potassium channels at the juxtaparanode (for
review, see [5]). It is widely accepted that THplays a crucial role
in oligodendrocyte development and subsequentlymyelination.
AddingT3 invitrohasbeenwidelyutilized topotentiate terminal
differentiation of both rodent and human oligodendrocytes

* Steven Petratos
steven.petratos@monash.edu

1 Department of Medicine, Central Clinical School, Monash
University, Prahran, Victoria 3004, Australia

2 ToolGen, Inc., #1204, Byucksan Digital Valley 6-cha, Seoul, South
Korea

Mol Neurobiol (2016) 53:6568–6583
DOI 10.1007/s12035-016-0013-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s12035-016-0013-1&domain=pdf


through rapid cell-cycle arrest in a non-genomic manner and
transcription of genes involved in their development upon bind-
ing to nuclear TH receptors in a genomic manner [6–9] (Fig. 1).
Furthermore, recent data suggest that TH is also involved in reg-
ulating early specification of neural precursors to derive oligo-
dendroglial lineage cells, indicating the involvement of TH
throughoutoligodendrogenesisalongwith time-dependentspec-
ification of oligodendrocyte developmental checkpoints.
Importantly, TH is also suspected to be a key player in the
context of white matter pathologies, affecting not only
oligodendrogenesis in a cell-autonomous manner but also
eliciting indirect effects to regulate the metabolism of oligoden-
drocytes via promoting angiogenesis under hypoxic conditions
critical for the maintenance of viable oligodendrocytes [10, 11].
In this review, we discuss how TH regulates oligodendrocyte
development and physiology from the extracellular transport to
intracellular signaling from both a genomic and potentially non-
genomic manner.

Thyroid Hormone Signaling in Oligodendrocytes

(i) Extracellular thyroid hormone transport

The cellular transport of THs has long been considered to
be mediated by a simple diffusion process across membrane
lipid bilayers because of their lipophilic properties. However,
the recent discovery of a specific TH transporter, MCT8,

suggests that the cellular transport of THs is indeed a physio-
logically relevant process. So far, MCT8, MCT10, large neu-
tral amino acid transporters (LATs), organic anion-
transporting polypeptides (OATPs), and the Na+/taurocholate
co-transporting polypeptide (NTCP) protein families were
identified to have the capacity to transport THs (for review,
see [4]). However, it is MCT8 that has been suggested to be
the most specific TH transporter [12], since the others also
transport alternate physiological molecules such as amino
acids and steroids [4]. In support of this, human mutations
of SLC16A2 (encoding MCT8) exhibit severe X-linked
inherited psychomotor retardation known as Allan-Herndon-
Dudley syndrome (AHDS), which present clinically with in-
creased serum T3 and either normal to reduced T4 levels in the
circulation of affected patients [13, 14].

Although THs are trophic during oligodendrocyte develop-
ment, the import/export of THs in these cells has not been
defined. However, indirect evidence implicates MCT8 in oli-
godendrocyte plasma membrane transport since AHDS pa-
tients exhibit delayed myelination measured by longitudinal
T2-weighted magnetic resonance imaging (MRI) [15–18]. To
study the exact pathophysiological role of MCT8, the slc16a2
knockout mouse was generated [19]. However, despite the
matching serum with those of AHDS patients, as well as the
altered brain TH profiles (high T3 and low T4 in the
circulation/low T3 and low T4 in the brain), no discernable
neurological phenotypes were demonstrated in these mutant
mice [19]. This species variation in the dependency of the

Fig. 1 Non-genomically and genomically regulated genes by thyroid
hormone during oligodendrocyte development. The schematic shows
elevation of brain thyroid hormone (TH) levels during oligodendrocyte
differentiation. Developmental regulation of oligodendrocyte-associated
genes by TH in a non-genomic and genomic expression pattern at
different stages of lineage progression. Non-genomic TH signaling is

thought to be mediated through putative cytoplasmic thyroid hormone
receptor (TR), or αvβ3 integrin dimer, which is tightly regulated to be
expressed in pre-myelinating oligodendrocytes. Genomic thyroid
hormone signaling is mediated through nucleus TRα1 (expressed
throughout oligodendrocyte development) and TRβ1 (increases in
expression as oligodendrocytes differentiate)
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slc16a2 gene suggests that other transporters may indeed
compensate for its loss in the knockout mice. Indeed,
OATP1C1 enriched in the mouse choroid plexus but not in
human [20, 21] was suggested to function in response to
MCT8 deficiency facilitating the passage of T4 from the cir-
culation into the brain. This hypothesis was confirmed once
p rominen t neu ro log i ca l pheno types , i n c lud ing
hypomyelination, were detected in the slc16a2/slco1c1 (the
latter encodes OATP1C1) double knockout mice [22].
Interestingly, it has been shown that zebrafish lacking slc16a2
exhibit similar neurological deficits that resemble the locomo-
tor developmental abnormalities seen in AHDS patients [23].
Molecular analyses revealed significant reductions in myelin
basic protein (mbp) and myelin protein zero (mpz; a critical
gene for oligodendrocyte differentiation in zebrafish [24])
genes in this mutant, indicating that in humans and zebrafish,
there exists no compensational expression of OATP1C1 in the
brain oligodendrocyte development [23]. However, it is un-
clear whether the neurodevelopmental defects are caused by
the dysregulation of MCT8-dependent TH transport at the
BBB or at the CNS-specific cells. Therefore, it remains to be
confirmed whether the cellular MCT8 of CNS-residing cells,
including oligodendrocytes, is responsible for regulating their
development. To address this question, a conditional deletion
strategy must now be adopted to dissect out the direct role of
MCT8 during oligodendrocyte development in vivo.

A recent study has identified that a reduction in the expres-
sion ofMCT8 in the ventricular zone and sub-ventricular zone
(SVZ) cells is observed in post-mortem brains from human
fetuses with intra-uterine growth restriction (IUGR) [25].
IUGR is a condition of complicated growth potential most
commonly due to the lack of energy supply from
uteroplacental failure leading to congenital white matter pa-
thology related to periventricular leukomalacia ultimately
causing cerebral palsy (for review, see [26] and hypoxic
condition and cytokines have been linked to dysregulation
of TH signaling (see ‘Thyroid Hormone as a Treatment for
DemyelinatingDisease’). This is not surprising asmyelination
and oligodendrocyte differentiation requires high metabolic
support such as oxygen, glucose, and THs from the pre-
formed vasculature (for review, see [27]). Furthermore, both
guinea pig [28] and rat [29] models of IUGR were shown to
exhibit delayed myelination as shown in children with prena-
tal brain injury [30]. One interpretation of these data could be
that the reduction in MCT8 in the germinal zone-derived cells
may be limiting the potential to derive appropriate numbers of
oligodendroglial lineage cells, thereby stalling or delaying the
development of these glial cells and by extension
myelinogenesis under IUGR conditions. Moreover, we have
recently identified MCT8 expression in oligodendroglial cells
derived from human embryonic stem cells that plays an active
role in their derivation [31], implicating an important role of
MCT8 during oligodendrogenesis (Fig. 2). However, a more

sophisticated model of in vivo cell-specific conditional dele-
tion of MCT8 is now required to differentiate the importance
of MCT8 during oligodendrogenesis during development and
disease. Suchmodels may help identify the howMCT8 down-
regulation or ablation can modulate the maturation of oligo-
dendrocytes and what effect the BBB plays in this process.

One of the most widely studied genes transcribed under
hypoxic conditions is hypoxia-inducible factors (HIFs).
Interestingly, a recent report has identified that the persistent
stabilization of HIF1/2α in OPCs through Cre-mediated abla-
tion of von Hippel Lindau (VHL; degrades HIF1/2α under
normoxia) in Sox10+, Olig1+, or PLP+ oligodendroglia in-
hibits their differentiation through autocrine activation of
Wnt7α/7β [11]. However, the same group also reported that
the conditional ablation of HIF1/2α in the abovementioned
oligodendroglial cells resulted in reduced angiogenesis, a con-
sequence of reduced paracrine release ofWnt7α/7β (shown to
be essential in CNS angiogenesis [32, 33]), leading to axonal
injury in the corpus callosum [11].

As HIF1αwas also shown to associate with Dio3 to reduce
TH signaling, at least in SK-N-AS neuroblastomas under hyp-
oxia [34], it is speculated that under hypoxia-associated de-
velopmental injury conditions (such as IUGR-mediated white
matter disorders and neonatal brain injuries), reduced MCT8
expression and the active HIF1α in SVZ-derived neural pre-
cu r so r s , may r educe TH s igna l i ng l e ad i ng t o
oligodendrogliopathy and subsequently delayed myelination
(Fig. 3). In fact, in humans, post-mortem brain sections of pre-
term infants show intra-ventricular hemorrhage (IVH) as se-
quelae associated with increased Dio3 and reduced Dio2 ex-
pression within the germinal zone [35].

Impaired TH signaling is also suspected in adult acquired
diseases with demyelination such as multiple sclerosis
(MS). Largely, MS can be sub-divided into two forms,
acute (relapsing-remitting) and chronic (progressive).
Remyelination upon demyelination can occur and is largely
responsible for partial recovery of neurological deficits in
relapsing-remitting MS whereas this largely fails in progres-
sive MS [36]. In experimental autoimmune encephalomyelitis
(EAE)-induced Dark Agouti rats by immunization with re-
combinant myelin oligodendrocyte glycoprotein, hypoxia
was a definitive finding, measured from both in vivo
oxygen-sensitive probe and the tissue expression of HIF1α
within the inflamed spinal cords, which indeed correlated with
neurological deficits [37]. This induction of HIF1α was fur-
ther ratified through the findings of enlarged microvasculature
within the inflamed spinal cords [37]. One plausible hypoth-
esis is that neuroinflammation-driven hypoxia can mediate the
induction of HIF1α in oligodendroglial cells, thereby
inhibiting their differentiation in autocrine manner via persis-
tent Wnt signaling and local hypothyroidism [11].
Furthermore, increasing evidence suggest for pro-
inflammatory cytokine-driven hypothyroidism (see ‘Thyroid
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Hormone as a Treatment for Demyelinating Disease’), indi-
cating local CNS hypothyroidism driven by multiple factors
(Fig. 3).

(ii) Deiodination of thyroid hormone

Intracellular level of THs can be controlled by deiodinases
(for review, see [38]). The amount of T3 transported into the

CNS is relatively less than T4 during fetal development, and
therefore, the majority of T3 in the CNS is generated by the
activity of cellular Dio2 during fetal development [39]. In
hypothyroidism, the activity of Dio2 increases to compensate
reduced T3 availability in the brain [40]. On the other hand, in
a hyperthyroidism state, the activity of Dio3 increases to con-
vert excess T3 into T2 and prevent further generation of T3
from T4 [41]. Therefore, deiodination is crucial to maintain

Fig. 2 Non-genomic and genomic action of thyroid hormone in
oligodendrocytes. Genomic effects of TH: oligodendroglial
monocarboxylate transporter 8 (MCT8) may transport T4 and T3 into
the cytoplasm where either can be deiodinized into genomically
inactive rT3 and T2 or bind to the nuclear TR dimeric complex. Un-
liganded TRs can recruit the nucleus co-repressor (Ncor) to repress
transcription of genes within the TH response element (TRE). T3
binding of TRs can recruit co-activator (CoA) to regulate TRE-
associated genes. Non-genomic effects of TH: THs may signal in a
non-genomic manner either via binding to αvβ3 integrin dimeric

receptor or cytoplasmic TRβ. Only T3 binds to the S1 site of αvβ3
integrin, and this can phosphorylate and activate phosphatidylinositol 3-
kinase (PI3K) and extracellular signal-regulated kinase 1/2 (Erk1/2).
Whereas T4 and to a lesser extent T3 binds to the S2 site of αvβ3
integrin and this can phosphorylate and activate Erk1/2 via
Src-homology 2 domain containing tyrosine phosphatase (SHP2).
Phosphorylated PI3K and Erk1/2 may potentiate the phosphorylation of
p85 domain of PI3K and Lyn to dissociate cytoplasmic TRβ, which
mediates nucleus trafficking of TRβ for genomic signaling. Activated
PI3K and Erk1/2 can also induce p53-dependent cell-cycle arrest
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the level of T3. However, one should note that this theory is
solely based on genomic effects of T3. It is largely unknown
whether deiodinases are also involved in regulation of non-
genomic effects of TH.

It has been assumed that Dio2 activity in glial cells includ-
ing astrocytes or tanycytes is a major source of T3 for neurons
or oligodendrocytes [42]. This hypothesis is supported by lo-
calized messenger RNA (mRNA) expression of dio2 in
astroglia and dio3 in neurons [43–45]. Similarly, it is plausible
to suggest that oligodendrocytes may receive T3 from astro-
cytic foot processes as localized expression of Dio3 but not
Dio2 has been reported in Olig2-positive oligodendroglia in
the human embryonic germinal matrix [35]. However, which
transporter regulates the astrocyte-neuron or astrocyte-
oligodendrocyte transfer of T3 remains undefined.

(iii) Intracellular thyroid hormone signaling

Role of Co-repressors

The un-liganded TH receptors (TRs) may act as a repressor for
T3-responsive genes [46]. In fact, the co-repressors for T3
signaling such as the nuclear receptor co-repressor (Ncor),
and silencing mediator of retinoic acid and TH receptors
(Smrt), are all essential regulators of embryonic brain devel-
opment, exerting their effect by repressing genes that are

involved in neural lineage specification [47, 48]. As T3 sig-
naling is important in oligodendrocyte development, it is
suspected that in hypothyroidism, un-liganded TRs in oligo-
dendrocytes may recruit Ncor to repress genes that are in-
volved in oligodendrocyte differentiation. A recent microarray
analysis revealed that in cortical embryonic neural stem cell
(NSC) cultures from ncor−/− not smrt−/− mice, significant up-
regulation of mbp, plp (encoding proteolipid protein), and
nkx2.2 were achieved without altering neuronal genes [49].
As Ncor was shown to enhance deacetylase activity of class
I histone deacetylases (HDACs) including HDAC1, HDAC2,
HDAC3, and HDAC8 [50], neural stem cells without ncor
may have reduced the activity of class I HDAC. Indeed, small
interfering RNA (siRNA)-mediated knockdown of hdac2 but
not hdac3 in the presence of T3, increased mRNA levels of
mbp and plp in rat cortical embryonic NSC cultures, the im-
mortalized oligodendrocyte cell line, CG4, and cultures
consisting of embryonic oligodendrocytes and neurons, Oli-
Neu [49]. Interestingly, this increase in myelin genes by hdac2
knockdown and T3 treatment was greater than T3 treatment
alone and hdac2 knockdown without T3 treatment did not
show any up-regulation in these genes [49]. Further studies
revealed that HDAC2 was enriched in the U2 enhancer region
of an important oligodendroglial gene Sox10, by chromatin
immunoprecipitation (ChiP) analysis [49]. This is somewhat
in line with previous data which shows histone acetyltransfer-
ase activity is required for oligodendrocyte differentiation

Fig. 3 Putative cellular
hypothyroidism in
oligodendrocytes during intra-
uterine growth restriction (IUGR)
or inflammation-mediated
hypoxia. Under normoxic
conditions, internalized T3 binds
to nuclear TRs to transcribe pro-
differentiation genes, thereby
mediating oligodendrocyte
differentiation. However, under
hypoxic conditions such as IUGR
and inflammation, persistent
HIF1α transcription induces Dio3
and along with a reduced
expression of MCT8, results in
cellular hypothyroidism.
Furthermore, pro-inflammatory
cytokines such as TNF-α, IL-1β,
and IFN-γ may contribute to
dysregulation of thyroid hormone
signaling. Un-liganded TRs may
repress pro-differentiation genes
thereby resulting in stalled
oligodendrocyte maturation
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[51]. Paradoxically, by using Cre-loxP conditional knockout
mice of hdac1 and hdac2 in Olig1+ oligodendroglia, the
activity of HDAC1/2 was shown to indirectly promote
oligodendrocyte differentiation by competing with β-catenin
for the transcription of T cell factor (TCF7L2/TCF4;
oligodendrocyte-restricted transcription factor) [52].
Although these contradicting results require clear verification
with regard to HDAC activity in oligodendrocytes, it seems
that in the absence of T3, Ncor negatively regulates early
oligodendrocyte differentiation fromNSC via HDAC activity.

The co-repressors for T3 signaling not only regulate T3-
target gene expression during embryonic development but
also exert similar effects in adulthood as experimental induc-
tion of hypothyroidism in adult mice resulted in a reduction of
mitotic cells and increased the number of cells in interphase
G2, in the SVZ [53, 54]. A subsequent mechanistic study
revealed that the T3-bound TRα1 expressed on type C
DLX2+ transient amplifying cells directly represses Sox2, a
gene involved in maintenance of neural stem cells, to promote
neurogenesis [53]. However, whether TH signaling plays a
similar role during adult OPC development as identified for
adult NPCs remains unanswered.

Nuclear Thyroid Hormone Receptors

The genomic effects of THs are mediated by nuclear TRs,
which have high affinity for T3 binding. Liganded (T3-
bound)-TRs can act as transcription factors by binding to spe-
cific TH response elements (TREs) to either activate or repress
gene transcriptions. Without T3, un-liganded TRs in the nu-
cleus can repress TH-responsive gene transcription by
recruiting co-repressors. Therefore, this balance between co-
activators (CoA) and co-repressors associated with TH signal-
ing is dependent on the concentration of T3.

It is well documented that TRα and TRβ are expressed on
oligodendrocytes, both in vitro and in vivo [55, 56] and play
an important role in their differentiation by gene transcription
upon binding to T3 [57, 58]. Early studies revealed that the
TRα gene is expressed from early oligodendrocyte develop-
ment (OPC); whereas, TRβ1 is expressed from later develop-
mental stages of oligodendrocytes (pre-oligodendrocytes), for
review, see [59] (Fig. 1). Importantly, during T3-induced oli-
godendrocyte differentiation, increased expression of TRβ1
not TRα1 in vitro occurs [60, 61]. In support of this, during
post-natal rat brain development, the number of oligodendro-
cytes expressing TRβ1 increases from P0 to P40 when differ-
entiation of oligodendrocytes and myelination occurs [62, 63].
On the other hand, OPCs lacking thra1 (encodes TRα1) failed
to differentiate upon TH treatment and thra1−/− mice showed
reduced number of oligodendrocytes in optic nerves at post-
natal days 7 and 14 [58]. These results indicate the importance
of TRα1 in initial cell-cycle exit upon T3 binding and TRβ1

in driving their terminal differentiation and post-natal
myelination.

The TRs are known to function as homodimers [1]. In the
optic nerves of 6-month-old mice (a time where OPCs nor-
mally disappear from 4 weeks after birth) which lacked all
TRβ isoforms showed BrdU+/NG2+ proliferating OPCs
whereas these were not found in mice lacking all TRα iso-
forms [64]. Importantly, mice that were ablated for both TRα
and TRβ isoforms exhibited more profound persistence of
proliferating OPCs in the optic nerves [64], suggesting that
both TRα and TRβ are required for T3-induced normal oli-
godendrocyte development. However, these knockout mice
did not phenocopy the effect of hypothyroidism that can in-
clude hypomyelination, quite possibly because of dampened
deleterious effects of un-liganded TRs as a physiological re-
sult of knocking out TRs. To overcome this, several TRα1
knock-in germline mutant mice were generated, such as
TRα1L400R, which targeted the conversion of the nuclear re-
ceptor to the transcription repressor. Indeed, the phenotype of
these mutants was very similar to mice with hypothyroidism,
including severe hypomyelination (for review, see [65]). In an
attempt to reveal whether defects in oligodendrocyte lineage
cells in these mutants are indirect or cell-autonomous, cnp-Cre
(2′,3′-cyclic-nucleotide 3′-phosphodiesterase; thought to tar-
get mature oligodendrocytes) and tamoxifen-inducible
pdgfra-Cre-ERT2 (thought to target OPCs) lines were crossed
with TRα1L400R floxed mice [66]. However, unexpectedly,
these conditional mutant models did not target only oligoden-
drocytes but also other cell types in the cerebellum (cnp-Cre/
loxP-TRα1L400R: purkinje cells and oligodendrocytes;
pdgfra-Cre/loxP-TRα1L400R: granular neurons, purkinje cells,
GABAergic inter-neurons, oligodendrocytes and astrocytes),
confounding data interpretation [66]. However, what seems
clear from these mutants was that TRα1 indirectly affects
cerebellar oligodendrocyte development as these conditional
transgenics, along with sycp1 (synaptonemal complex protein
1, targets all cerebellar cells)-Cre/loxP-TRα1L400R and ptf1a
(pancreas transcription factor 1a, targets purkinje cells and
GABAergic inter-neurons)-Cre/loxP-TRα1L400R mice, exhib-
ited increased numbers of Olig2+ oligodendroglia in the cer-
ebellar white matter at P15 but not in P21, when compared
with wild-type controls [66]. However, to reveal whether
TRα1 is directly involved in oligodendrocyte development
in a cell-autonomous manner, an oligodendrocyte-specific
Cre line such as sox10 (expressed throughout the whole oli-
godendrocyte lineage cells)-Cre may indeed be a more valu-
able model to uncover the importance of this TR’s influence
throughout the entire period of oligodendrogenesis.
Furthermore, without conditional deletion of thrb1 in oligo-
dendroglial cells, the direct role of TRβ1 on oligodendrocyte
development in vivo is not clear. At least, ChiP sequencing in
p15 mouse cerebellum using TRβ antibody revealed
oligodendrocyte-specific gene such as mbp and mag [67].
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However, it remains to be determined whether these two dif-
ferent isoforms of TRs can regulate common or separate sets
of genes during oligodendrocyte development. Although
ChiP sequencing of TRα- and TRβ-bound gene promoters
in oligodendrocytes may answer these questions, this ap-
proach is complicated by the sequence variety of TREs and
known non-specificity of commercially available TR antibod-
ies [68]. Strategies such as molecularly tagging TRs with fluo-
rescent reporter such as green fluorescent protein (GFP) [68]
or Flag may be useful to identify the TR target genes.

The TRs are known to form heterodimers with other nucle-
ar receptor superfamilies, namely the vitamin D3 receptor
[69], the peroxisome proliferator-activated receptor PPARδ
[59], and the retinoid X receptor (RXR) [70]. All three of these
co-receptors for TRs have been shown to be expressed in
oligodendroglial cells [71–73]. Of these co-receptors to TRs,
RXR is of significant interest as RXR-TR heterodimerization
activity were shown to increase its binding to TRE and induce
TR-medicated gene transcription [74]. Furthermore, RXR-TR
heterodimer complex can be activated by T3 independently of
RXR ligands and even showed synergistic transcriptional ac-
tivity when both T3 and 9-cis-retinoic acid were applied [75].
RXR has been thought to be particularly important for oligo-
dendrocyte development as RXR signaling was shown to
modulate MBP transcript levels in a similar manner to THs
[71]. In support of this, Huang et al., recently suggested that
RXRγ signaling may play an important role in differentiation
of oligodendrocytes and myelination, as siRNA-mediated
rxrg (encodes RXRγ) knockdown or RXR-specific antago-
nists added to rat oligodendrocyte cultures prohibited the for-
mation of the characteristic spider-web-like complex mor-
phology of oligodendrocytes [76]. Moreover, administration
of RXR-specific antagonists in co-cultures of dorsal root gan-
glion neurons with OPCs significantly inhibited myelination.
However, the treatment of the RXR agonist, 9-cis-retinoic
acids without T3 or T4 showed no changes in oligodendrocyte
differentiation or myelination in vitro [76]. In their follow-up
study using human embryonic stem cells as a model of oligo-
dendrocyte differentiation, administration of the 9-cis-retinoic
acids in the presence of T3 supplied in the differentiation
medium significantly increased the yield of MBP+ pre-
myelinating oligodendrocytes [77]. These results suggest that
retinoic acids probably promote oligodendrocyte differentia-
tion and myelination in concert with THs. It seems that RXR
signaling is also important during remyelination (just like TH,
see ‘Thyroid Hormone as a Treatment for Demyelinating
Disease’) as intraperitoneal administration of 9-cis-retinoic
acids upon lysolecithin-induced focal demyelination in the
cerebellar peduncle significantly enhanced remyelination
[76].

The TRβ agonist, GC-1 or RXR agonist, along with 9-cis-
retinoic acids have all been shown to promote both human and
rodent oligodendrocyte differentiation in vitro [76–78].

However, their effects in vivo during development are yet to
be investigated robustly. Moreover, no in-depth investigation
has been performed to clearly delineate the differences and
under what circumstances TRβs homo- or hetero-dimerize
with RXRs. Simultaneous induction of both TRβ and RXR
during differentiation may be warranted to answer this
question.

Non-genomic Effects of Thyroid Hormones
in Oligodendrocytes

There are rapid metabolic changes (within ∼1 h) upon treat-
ment of oligodendrocytes with THs that cannot be explained
by genomic actions per se [6, 7]. These are called non-
genomic effects of THs, which regulate cellular proliferation,
development and metabolism via protein phosphorylation and
kinase activation [1]. For non-genomic effects to occur, THs
are required to bind either the membranous integrin αvβ3
dimeric receptor or cytoplasmic TRs [79, 80]. TH signaling
through αvβ3 integrin phosphorylates and activates phos-
phatidylinositol 3-kinase (PI3K)/Akt and Erk1/2 [81]. The
αvβ3 integrin has two binding sites for THs; only T3 binds
to the S1 site to activate Src and subsequently PI3K, whereas
T4 and to a lesser extent T3, binds to the S2 site, thereby
activating Erk1/2. Both of these non-genomic actions of
THs were shown to translocate TRs to the nucleus from the
cytosol [81]. In the absence of THs, TRβwas shown to form a
complex within the cytoplasm with the p85 subunit of PI3K
and the Src family tyrosine kinase, Lyn [82]. Upon adminis-
tration of either T3 or T4, dissociated TRβ from this complex
and mediated its nuclear translocation through phosphoryla-
tion of PI3K or Erk1/2, respectively [82, 83] (Fig. 2). The
activation of these two kinases in oligodendrocytes were
well-recognized for their role in CNS myelination without
altering the number of oligodendrocytes [84, 85]. Although
the direct evidence is lacking for oligodendroglial cells, data
exists for a potential role of TH in the regulation of non-
genomic signaling.

It has been shown that αvβ3 integrin expression is tightly
regulated during oligodendrocyte differentiation where its
peak express ion is a t the t rans i t ion s tage (pre-
oligodendrocyte) from O2-A progenitors to post-mitotic oli-
godendrocytes [86], indicating its role in rapid cell-cycle ar-
rest. Furthermore, as genomic effect of THs during oligoden-
drocyte development is essential for their differentiation (see
‘Regulation of OPC/NPC Differentiation by Thyroid
Hormone: Genomic Effect of TH’), it is suspected that TH
signaling through αvβ3 integrin in immature oligodendro-
cytes is an essential step for the accumulation of TRs, espe-
cially the β subunit isoform [60] in the nucleus (Fig. 2).
Indeed, transfection of human full-length αvβ3 integrin in
the CG-4 rat oligodendrocyte cell line showed a reduction of
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MBP+ mature oligodendrocytes during their differentiation
induced by both T4 and T3 [87]. As αvβ3 integrin is shown
to physically interact with PDGFRα, a receptor for the major
mitogen involved in oligodendrocyte proliferation, i.e.,
PDGF-AA [88], replacing this mitogen for THs may induce
oligodendrocyte differentiation. In fact, this experimental re-
placement was previously shown to be important for the tran-
sition of proliferating OPCs into post-mitotic oligodendro-
cytes [89, 90] and widely used in culture experiments for both
rodents and human oligodendrocyte differentiation (for re-
view, see [91]). Moreover, T3 administration in primary rat
OPCs increased phosphorylation of Erk1/2 and Akt within
30 min [92]. Importantly, an intracellular enzyme, Src-
homology 2 domain containing tyrosine phosphatase (SHP2)
was shown to be involved in this signal, as lentivirus-mediated
knockdown of ptpn11 (encodes SHP2) reduced the phosphor-
ylation of Erk1/2 and reduced MBP+ cells under T3-induced
differentiation conditions, whereas overexpression of SHP2
increased phosphorylation of Erk1/2 [92]. In addition, Cre-
loxP-mediated deletion of SHP2 in Olig2+ oligodendroglial
lineage cells in vivo resulted in reduced OPC generation in the
embryonic telencephalon and subsequently reduced
myelination in the corpus callosum [93]. The phosphorylation
of Erk1/2 was reduced in the ventricular zone of these ani-
mals. Gain of function mutation of SHP2 in Olig2+ cells in-
creased OPC numbers in the corpus callosum however, result-
ed in abnormal myelination measured by electron microscopy
[93]. Molecular studies revealed an increase of phosphoryla-
tion of Erk1/2 in the ventricular zone but not Akt in these
animals [93]. These results indicate that T3 binding to the
S2 site ofαvβ3 integrin and possibly through SHP2, activates
the Erk1/2 pathway to translocate TRβ from the cytoplasm to
the nucleus for T3-induced gene transcription. However, as
major substrates for αvβ3 integrin are extracellular matrix
proteins such as vitronectin and fibronectin, it is difficult to
interpret the exact role of αvβ3 integrin-dependent TH sig-
naling and more analytical experiments are warranted.

One of the events that are regulated by fast non-genomic
actions of THs relates to the role played by TH to regulate the
cell cycle. It has been shown that cyclin D kinase inhibitors
(CdkI) that are involved in cell-cycle arrest such as p21 and
p27 was found to be up-regulated within an hour post-T3
treatment in purified OPCs pre-treated with a protein synthesis
inhibitor (to detect the immediate response) derived from P7
rat optic nerves [6]. Further studies revealed that the T3-
induced up-regulation of CdkIs are p53-dependent as trans-
duction of OPCs with retrovirus encoding a dominant-
negative form of p53 resulted in a significantly reduced ap-
pearance of GalC+ mature oligodendrocytes even in the pres-
ence of T3 [7]. These results indicate that T3 can induce p53-
dependent cell-cycle arrest in OPCs primarily through a non-
genomic manner to promote their differentiation. However, it
is yet to be determined whether this event is mediated by

integrins or cytoplasmic TRs. Pre-treating the OPCs with both
a protein synthesis inhibitor such as cycloheximide and
integrin αvβ3 antagonists such as tetraiodothyroacetic acid
(tetrac) [94], or Arg-Gly-Asp (RGD) peptide [95], may reveal
the mechanism of this non-genomic action further.

One of the strong morphogens that may regulate early ol-
igodendrocyte specification is Sonic hedgehog (Shh), a devel-
opmentally regulated protein that plays a significant role in
initial patterning and specification of both neurons and oligo-
dendrocytes. In the developing forebrain, Shh is required for
the maintenance of Nkx2.1+ medial ganglionic eminence pro-
genitors for the production of both inter-neurons and oligo-
dendrocytes. Similarly, Shh is important for the specification
of the cells of the ventral neural tube to motor neurons and
oligodendrocytes within the spinal cord, (for review, see [96]).
TH-induced regulation of Shh-dependent signaling was pro-
posed, since the shh gene expression was observed to be sig-
nificantly reduced during the development of the rat cerebel-
lum under hypothyroid conditions [97, 98]. At least in neuro-
nal cell culture, acute treatment of T3 induced a rapid increase
in histone acetylation within the shh gene promoter [98].
Intriguingly, at least in neuroblastoma and glioblastoma cul-
tures, Shh signaling has been suggested to modulate thyroid
hormone signaling by regulating the activity of Dio3 [99].
Therefore, although it requires validation, it seems that in ear-
ly CNS development, T3 may rapidly induce shh transcription
to promote oligodendrogenesis, then to prohibit precocious
differentiation of these newly generated oligodendrocytes,
via Shh-dependent induction of Dio3 to mediate local
hypothyroidism.

Regulation of OPC/NPC Proliferation by Thyroid
Hormone

TH can also act on both young and adult NPCs to regulate
their proliferation. Experimental models of hypothyroidism in
adult rat induced by thyrotoxicant, propyl-thio-uracil (PTU)
demonstrated that there is an increase in Ki-67+ and BrdU+
proliferating cells in the SVZ and olfactory bulb [100]. This
result was correlated with reductions in mRNA levels of
pdgfra and mbp in the optic nerve along with an observed
reduction in MBP protein levels [100]. The same group also
reported that upon T4 treatment following hypothyroidism,
they observed a reduced proliferation of germinal cells within
the SVZ and olfactory bulb [100]. Furthermore, ChiP assays
upon acute T3 administration in both early embryonic and
adult rat, indicated that there is an increase in histone acetyla-
tion at the shh promoter [101] in the forebrain of these animals
acutely treated with T3 [98]. These data suggest a role for TH
in the regulation of OPC proliferation within the germinal
matrix.

Mol Neurobiol (2016) 53:6568–6583 6575



In addition to the effects of TH regulating OPC prolif-
eration, the TH can promote differentiation of these cells.
Magnetic resonance imaging (MRI) and magnetic reso-
nance spectroscopy (MRS) studies showed that delayed
myelination is a common feature of children with congen-
ital hypothyroidism [102–104]. This hypothyroidism-
related phenotype was shown to be reversed by T4 treat-
ment [104]. This finding was then translated to oligoden-
drocyte culture where it can be used in vitro for OPCs to
exit the cell cycle and differentiate [105]. One plausible
explanation for T3 as an intrinsic timer for oligodendro-
cyte development would be that it may act to reduce
mRNA and protein levels of E2F-1, which is a key
transcription factor controlling G1 to S phase transition
during T3-induced differentiation of OPCs [106].
Furthermore, the binding of T3 to its nuclear receptor
can promote the myelination phenotype of oligodendrog-
lial cells through its direct interaction with the promoter
region of MBP [8]. Therefore, these results indicate that
TH can exert cell-cycle exit in mitotic OPCs to control
their differentiation in a timely manner.

Regulation of OPC/NPC Differentiation by Thyroid
Hormone: Genomic Effect of TH

As discussed above, TH can directly (cell-autonomous) or
indirectly regulate oligodendrocyte differentiation. In the fol-
lowing section, we discuss the cell-autonomous regulation of
oligodendrocyte differentiation by oligodendrocyte-specific
gene/TRE complexes activated by T3-bound TRs (Figs. 1
and 2).

Myelin Genes

As hypothyroidism leads to hypomyelination in the CNS, it is
not surprising that T3 regulates myelin genes. In fact, gene
expression studies have revealed that crucial myelin genes
such as mbp, plp, myelin-associated glycoprotein (mag), and
cnpwere reduced in rodent brains upon thyrotoxicant-induced
congenital hypothyroidism [107–109]. In early studies using
electrophoretic mobility shift assays, in the presence of T3,
both TRα and TRβ were found to bind specifically to the
promoter region of the mbp gene within the TREs [8, 110].
Of interest, the subsequent study by the same group found that
MBP-TRE complex preferentially binds to TRβ when com-
pared with TRα [110]. As oligodendroglial expression of
TRβ was found to be increased during their terminal differen-
tiation (see ‘Nuclear Thyroid Hormone Receptors’), TRβ not
TRα seems to be involved in transcription of genes that are
involved in maturation of oligodendrocytes.

KLF9

Kruppel-like factor 9 (KLF9) has been implicated as an
important member of the zinc finger family of transcrip-
tion factors regulating the CNS development (for review,
see [111]. Importantly, KLF9 is shown to be strongly in-
duced upon T3 treatment under both in vitro and in vivo
conditions [112, 113]. Furthermore, ChiP assays have re-
vealed the presence of KLF9 within the TREs and the
interaction with TRβ1 [114]. Therefore, it seems that
T3-bound TRβ1 may potentiate transcription of KLF9
during CNS development. A recent microarray-based
whole genome analysis revealed that KLF9 was strongly
induced by T3 treatment in purified OPCs derived from
P7 rat brains, indicating its role in oligodendrocyte differ-
entiation [9]. In support of this, siRNA-based knockdown
of klf9 in OPCs repressed oligodendrocyte differentiation
even in the presence of T3 [9]. However, despite its po-
tential role in driving oligodendrocyte differentiation
in vitro, developmental myelination was not altered in
the corpus callosum, cortical white matter, and optic
nerves of klf9−/− mice. Whereas, delayed remyelination
upon cuprizone-mediated demyelination was found in
the same mutants [9]. As KLF9 is expressed ubiquitously
in the CNS especially in neurons, as well as reported to
play a crucial role in neurite outgrowth inhibition and
axonal regeneration of both retinal ganglion cells and
Purkinje cells [115, 116], oligodendrocyte-specific knock-
out models are now required to clearly delineate the role
of KLF9 in oligodendrocyte differentiation. However,
from these data, it is plausible to suggest that during
CNS development, T3 signaling may halt the overgrowth
of axons upon establishment of neuritic synapses and
thereby promote oligodendrocyte differentiation via the
transcriptional activities of KLF9 within both cell types.

Enpp2, Autotaxin

Ectonucleotide pyrophosphatase/phosphodiesterase 2
(ENPP2), also known as autotaxin has been defined as
one of the T3-induced transcriptional targets [99, 117,
118] in neural cells. During development, autotaxin has
been shown to be expressed on cells that reside within
the choroid plexus and also within parenchymal oligo-
dendroglial cells. The oligodendroglial expression of
autotaxin in particular, has been correlated with the peri-
od of active myelination (post-natal day 8 in rat) [119,
120], where serum T3 levels are at their peak [63].
Autotaxin is an extracellular factor, which has been
shown to promote the adhesion and complex network
formation of pre-myelinating oligodendrocytes [120,
121]. In purified OPCs derived from the P2 rat brain,
upon T3 treatment, autotaxin was found to be up-
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regulated, suggesting that enpp2 may be a T3-responsive
gene in oligodendrocytes [122]. However, whether T3
can induce the transcription of enpp2 in oligodendrocytes
during active myelination remains unanswered.

Abcd2

The abcd1 gene encodes for the adenosine triphosphate
(ATP)-binding cassette transporter superfamily D member 1,
also known as adrenoleukodystrophy protein (ALDP) [123].
ALDP is responsible for the import of very long chain fatty
acids (VLCFA) into peroxisomes marked for degradation
through β-oxidation [123]. The expression of this protein
has been previously shown to be restricted to glial cells (oli-
godendrocytes, astrocytes, and microglia) [124]. The impor-
tance of this protein for lipid metabolism is emphasized by X-
linked adrenoleukodystrophy (X-ALD) caused by the human
loss-of-function mutation of abcd1 [125]. X-ALD is a perox-
isomal disorder characterized by inflammatory demyelination
in cerebral white matter due to the accumulation of VLCFA
[125]. Extracellular VLCFA administration in primary oligo-
dendrocytes has verified its cytotoxic effects through the
sustained elevation in intracellular [Ca2+] and potent oxida-
tive stress mechanisms [126], suggesting a primary
oligodendrocytopathy in X-ALD patients.

It has been shown that the ALDP-related protein (ALDRP;
encoded by abcd2), a protein sharing 63 % sequence homol-
ogy with ALDP, may be partially redundant leading to the
hypothesis that lipid metabolism may be therapeutically nor-
malized in X-ALD patients [127, 128]. Indeed, pharmacolog-
ical induction of abcd2 was shown to increase the rate of β-
oxidation rate of VLCFA in X-ALD patients to homeostatic
levels [127, 128] and importantly in oligodendrocytes derived
from induced pluripotent stem cells (iPSCs) from X-ALD
patients [129]. Interestingly, the abcd2 promoter was found
to contain a 4-base pair spacer (DR-4) motif of TRE that binds
to the TRβ1 and RXRα heterodimer [130]. Further study
revealed that T3 administration induced the expression of
abcd2 in the CG4 differentiated oligodendrocyte cell line
and increased β-oxidation of VLCFA in X-ALD patient-de-
rived fibroblasts [130]. On the other hand, un-liganded TRβ
but not TRα suppressed the transcription of abcd2 [131], im-
plying that the regulation of abcd2 is mediated through TRβ.
In support of this, treatment of cells with the TRβ-specific
agonists, GC-1 and CGS23425, showed marked increase in
abcd2 mRNA [132]. As expression levels of TRβ increase
upon oligodendrocyte maturation [59] and β-oxidation of
VLCFA is implicated in energy metabolism [133], TRβ-
dependent transcription of abcd2 is most likely required for
the maintenance of myelinating oligodendrocytes. As T3 may
compensate for the loss of abcd1, the severe phenotype ex-
hibited in X-ALD patients suggests dysregulation of TH me-
tabolism in oligodendrocytes. Furthermore, as conditional

deletion of the peroxisomal targeting signal type-1 receptor
(PEX5) in Cnp-expressing oligodendroglia (cnp-Cre/loxP-
pex5) resulted in primary axonopathy preceding inflammatory
demyelination [134], TH signaling in oligodendrocytes may
be required for the maintenance of axons via axo-glia
interactions.

Thyroid Hormone as a Treatment for Demyelinating
Disease

The pro-myelinating properties of thyroid hormone has led to
its a promise as a physiological molecule capable of treating
demyelinating diseases such as MS. Laura Calza’s group has
pioneered this research by administering either T4 or T3 sub-
cutaneously into various experimental autoimmune encepha-
lomyelitis (EAE) models [10, 135–137] and from these exper-
iments has partially concluded that clinical EAE scores of
neurological impairment are reduced after onset of disease.
Molecular analyses of the post-mortem tissue from these ex-
perimental animals show increased immunoreactivity
against MBP measured by either western immunoblot or
immunohistochemistry. Similarly, subcutaneous [138], intra-
peritoneal [139], or intranasal [140] administration of T3 in
a neurotoxicant, cuprizone-mediated demyelination model,
all showed enhanced remyelination. In addition, co-
administration of HDAC inhibitor, valporic acid, and T4 into
dark agouti rat model of EAE increased myelin gene expres-
sions in brain O4+ pre-oligodendrocytes during the remission
stage of EAE [141]. Moreover, in other white matter injury
model characterized by inflammation and demyelination such
as intra-ventricular hemorrhage and hypoxic ischemia, T4
treatment increased myelination during early post-natal devel-
opments of rabbit and rat, respectively [35, 142]. Importantly,
T4 treatment also showed increased number of O4+/O1+ ma-
ture oligodendrocytes in pre-term infants with IVH when
compared with IVH alone control [35]. Although these results
seem promising, it is difficult to conclude whether the exoge-
nously administered THs are acting directly on the CNS oli-
godendroglia or indeed through the modulation of other cells
that affect the course of these demyelination models, which
may specifically include the innate and adaptive immune
arms. Regarding this concern, treatment of T3 into MBP-
specific T cell lines reduced IL-17+ Tcells and adoptive trans-
fer of these cells into naïve small rats but significantly reduced
EAE symptoms [141]. Furthermore, even though THs may be
beneficial in remyelination in the CNS, an excessive admin-
istration of THs may cause local hyperthyroidism in immune
organs. Hyperthyroidism may functionally modulate immune
cells, reflected in well-documented hyperthyroidism-mediated
autoimmune thyrotoxicosis, Grave’s disease. For example, the
function of regulatory T cells (Tregs), essential for the regula-
tion of a potential autoimmune response, has been shown to be
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impaired in patients with Grave’s disease (for review, see
[143]). Furthermore, Tregs isolated from the peripheral mono-
nuclear cells of patients with Grave’s disease were found to be
apoptotic [144], possibly through a T3-TRβ-dependent induc-
tion of precocious cell senescence [145]. Another important
aspect to note is that although there is no direct evidence, pro-
inflammatory cytokines released from peripheral immune
cells that were shown to inhibit oligodendrocyte differentia-
tion [146–149] such as tumor necrosis factor-α (TNF-α),
interleukin-1β (IL-1β), and interferon-γ (IFN-γ) can induce
local hypothyroidism as these cytokines secreted as a result of
lipopolysaccharide-induced inflammation caused dysregula-
tion of Dio2 [150], which may again cause modulation of
T3 signaling. Recently, T4 treatment failed to rescue white
matter injury including oligodendrocyte differentiation block-
ade induced by systemic administration of IL-1β [151], which
may indicate for the dysregulation of thyroid hormone signal-
ing by IL-1β. Therefore, to reduce side-effects from the pe-
ripheral immune arm, local rather than systemic administra-
tion of TH may be employed to promote remyelination.
Alternatively, innovative nanoparticle-coated THs seem
promising for better CNS-targeted drug delivery [152].

Another important point to note is that in a similar manner
seen under in vivo hypoxic conditions such as IUGR, which
can impair TH transport via a reduction in the expression of
MCT8 [25], dysregulation of TH transport is also speculated
to be a result of EAE-induced hypoxia [37], thereby further
complicating any proposed TH treatment regime during EAE
(Fig. 3). In light of this, future studies are required to uncover
the implications imposed upon oligodendrocyte development
and remyelination, as a consequence of dysregulation of the
TH transporters during neuroinflammation. Robust neurobio-
logical data may provide further insights on how treatments
targeting the TH signaling cascades can limit inflammatory-
mediated oligodendrocyte/myelin damage and further
neurodegeneration.

Conclusion

Development of mature, integrating cells within the CNS oc-
curs via a tightly controlled sequence of regionally specific
events. Only upon establishment of immature neuronal syn-
aptogenesis, is the emergence of profound oligodendrocyte
development. THs are fundamental to the regulation of the
timing of oligodendrogenesis proposed through their putative
effects upon mitosis and more specifically imposed following
the nuclear translocation of TRs (non-genomic) and transcrip-
tion of genes upon binding to nuclear localized TRs (geno-
mic). Emerging evidence now identifies that dysregulation of
TH signaling is a major hallmark of diseases with underlying
hypoxia-associated developmental hypomyelination and in-
flammatory demyelination. Therefore, the design of novel

therapeutics to directly enhance TH signaling may indeed
hold great potential to enhance developmental myelination
or remyelination of denuded axons. However, as hyperthy-
roidism may lead to pronounced metabolic rates as document-
ed during pathophysiological conditions, the induction of pre-
mature cell senescence may indeed be a contraindication of
such treatments. Hence, a more cautious and considered de-
sign of therapeutic options is required to take advantage of the
known TH signaling pathways that may be targeted for clin-
ical use.
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