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Abstract Glucose transporters (GLUTs) at the blood-brain
barrier maintain the continuous high glucose and energy de-
mands of the brain. They also act as therapeutic targets and
provide routes of entry for drug delivery to the brain and
central nervous system for treatment of neurological and
neurovascular conditions and brain tumours. This article first
describes the distribution, function and regulation of glucose
transporters at the blood-brain barrier, the major ones being
the sodium-independent facilitative transporters GLUT1 and
GLUT3. Other GLUTs and sodium-dependent transporters
(SGLTs) have also been identified at lower levels and under
various physiological conditions. It then considers the effects
on glucose transporter expression and distribution of hypogly-
cemia and hyperglycemia associated with diabetes and
oxygen/glucose deprivation associated with cerebral ische-
mia. A reduction in glucose transporters at the blood-brain
barrier that occurs before the onset of the main pathophysio-
logical changes and symptoms of Alzheimer’s disease is a
potential causative effect in the vascular hypothesis of the
disease. Mutations in glucose transporters, notably those iden-
tified in GLUT1 deficiency syndrome, and some recreational
drug compounds also alter the expression and/or activity of
glucose transporters at the blood-brain barrier. Approaches for
drug delivery across the blood-brain barrier include the pro-
drug strategy whereby drug molecules are conjugated to glu-
cose transporter substrates or encapsulated in nano-enabled
delivery systems (e.g. liposomes, micelles, nanoparticles) that
are functionalised to target glucose transporters. Finally, the

continuous development of blood-brain barrier in vitro models
is important for studying glucose transporter function, effects
of disease conditions and interactions with drugs and
xenobiotics.
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Introduction

The blood-brain barrier is a structural and chemical barrier
between the brain and the systemic circulation that tightly
regulates the transport of substances between the blood and
brain. This protects the brain from exposure to variations in
blood composition and to toxic compounds. Indeed, some
molecules that are harmless to peripheral organs and tissues
may be toxic to neurons in the brain. At the capillary level, the
neurovascular unit at the blood-brain barrier (Fig. 1) contains
a network of specialised endothelial cells that are lined by the
basal lamina (basement membrane). The overall permeability
of the blood-brain barrier is regulated by these endothelial
cells and their junctional complexes, which consist of
adherens junctions and tight junctions. The end feet of astro-
cytes encase the large majority of the capillary wall and the
astrocytes communicate with the neurons. Pericytes are also in
contact with the capillary wall and they communicate with
endothelial cells through synapse-like contacts. Resting or
‘ramified’ microglia are also present for sensing neuronal in-
jury and for detecting and fighting infection, whilst maintain-
ing an immunologically silent environment. Together, this unit
regulates blood-brain barrier permeability and protects the in-
tegrity and function of the brain and central nervous system.
The human brain is comprised of about 100 billion neurons
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and a similar number of glial cells. The neurons, pericytes,
astrocytes and microglia account for almost 80 % of the brain
volume; the extracellular space occupies 15–30 % and the
brain vasculature about 3 % [1]. Under normal physiological
conditions, the neurovascular unit prevents bacteria, ions,
large molecules and most small molecules crossing from the
blood into the brain.Water molecules and small ions (e.g. Na+,
K+, Cl−) cross the blood-brain barrier via channels. Small
gaseous molecules (e.g. oxygen, carbon dioxide) and small
lipophilic molecules (less than 500 Da, logPoct 2–4, less than
5 hydrogen bond donors) [2, 3] and that are not substrates of
active efflux transporters (e.g. anaesthetics, ethanol, nicotine,
caffeine) can cross the endothelial cells by passive diffusion.
Other molecules can only cross into the brain if they are car-
ried by transport proteins or by receptor- or adsorptive-
mediated transport processes. Similarly, most waste products
have to leave the brain by the way of active efflux transporters.
Under conditions where the integrity of the blood-brain barrier
is compromised (e.g. inflammation, traumatic brain injury,
ischemic stroke), then larger and hydrophilic substances may
be able to pass. A number of comprehensive reviews/
descriptions of the structure and functions of the blood-brain
barrier and neurovascular unit are available [4–11].

It has been estimated that 10–15 % of all proteins in the
neurovascular unit are transporters [12]. Transport proteins on
the endothelial cells are found in both the luminal (blood-
facing) and abluminal (brain-facing) membranes to allow the
passage of nutrients, peptides and ions and the efflux of drugs
and waste or harmful compounds, examples of which are
shown in Fig. 2. Some of the proteins function through a
mechanism of facilitated diffusion that allows bi-directional
transport, whilst others are sodium-dependent active trans-
porters that achieve unidirectional concentrative transport.
Some of the examples shown in Fig. 2 have a mechanism of
receptor-mediated transcytosis. The majority of the proteins

are expressed at both the luminal and abluminal membranes,
whilst some are found only at one side of the endothelial cell.
The full complement of transport mechanisms at the blood-
brain barrier in humans is yet to be clarified, but those that
transport glucose are especially important. The human brain is
almost entirely dependent upon glucose as an energy source,
taking in around 100–150 g of glucose per day [21]. Indeed,
the normal adult brain constitutes around 2 % of the body
weight yet consumes around 20 % of glucose in the body
[22], and it has been estimated that endothelial cells at the
blood-brain barrier transport around ten times their weight of
glucose per minute to support the glucose requirements of the
brain [23]. Glucose transport to the brain involves numerous
interactions of solutes, transporters, enzymes and cell signal-
ling processes within the complex architecture of the
neurovascular unit at the blood-brain barrier. The transport
of the highly hydrophilic glucose molecule across the blood-
brain barrier is principally achieved by the sodium-
independent facilitative transporter GLUT1, which is shown
at the top of Fig. 2 in both the luminal and abluminal mem-
branes. The brain rapidly catabolises glucose and this creates a
downhill gradient for transport of glucose by GLUT1 from the
blood towards the brain interstitial fluid. Given the highly
important role of GLUT1 in feeding energy to the brain, it is
clear that GLUT1 is essential for maintaining normal neuro-
logical functions and anything affecting the normal expression
or functioning of GLUT1 can have severe consequences on
human health. Other glucose transporter (GLUT) and sodium-
dependent transporters (SGLTs) are also involved in glucose
transport at the neurovascular unit of the blood-brain barrier.
Transport proteins for glucose at the neurovascular unit of the
blood-brain barrier will be the main focus of this article.

Whilst mutations and the binding of chemical inhibitors
can affect the structure, function and activity of glucose trans-
porters, conditions such as hypoglycemia, hyperglycemia,

Fig. 1 Major components of the neurovascular unit at the blood-brain
barrier. a This figure was reproduced fromWong et al. (2013) [9], which
was originally published in Frontiers in Neuroengineering. Copyright by
Wong, Ye, Levy, Rothstein, Bergles and Searson 2013. b This figure was

reproduced with permission from Abbott et al. (2010) [7], which was
originally published in Neurobiology of Disease. Copyright by Elsevier
Inc. 2009
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diabetes, neurodegenerative disorders (e.g. Alzheimer’s dis-
ease), traumatic brain injury and cerebral ischemia can alter
their expression, distribution and activity at the blood-brain
barrier. Some of these are of course interlinked, and there are
potential benefits from intervening with therapeutic drugs that
use glucose transporters at the blood-brain barrier as their
molecular target. Along with other solute carriers, glucose
transporters at the blood-brain barrier are also potential routes
of entry for delivering drugs and pro-drugs to the brain for

preventing or treating neurological disorders and central ner-
vous system diseases including mental disorders, migraine,
epilepsy, neurodegenerative diseases such as Alzheimer’s
and Parkinson’s, cerebrovascular diseases such as cerebral
ischemia and stroke, cancer, inflammatory diseases such as
multiple sclerosis, brain trauma and infections such as menin-
gitis. It is generally not feasible to perform in vivo studies on
human glucose transporters at the blood-brain barrier, so in
vitro models have to be used, which is an ongoing theme of
development. These topics will be covered in this article.

Glucose Transporters at the Blood-Brain Barrier

Two different types of glucose transporter are found in the
neurovascular unit at the blood-brain barrier. By far the most
prevalent are sodium-independent bi-directional facilitative
transporters from the solute carrier 2 (SLC2) family of which
14 isoforms (GLUTs 1–14) have been identified and reviewed
extensively [24–33]. The GLUT family proteins are members
of the sugar porter sub-family of the large and widespread
major facilitator superfamily (MFS) of secondary transport
proteins [34–36]. They share a high-sequence similarity (19–
65 % identity, 39–81 % homology) [37] and a number of
structural features including 12 putative transmembrane-
spanning α-helices and a single-site of N-linked glycosyla-
tion. The others are sodium-dependent unidirectional concen-
trative transporters from the solute carrier 5 family (SLC5)
family of which 12 isoforms (SGLTs 1–12) have been identi-
fied [38, 39]. The SGLT family sugar transporters have 14
putative transmembrane-spanning α-helices and a single-site
of N-linked glycosylation. Under normal circumstances, glu-
cose crosses the endothelial cells of the blood-brain barrier by
way of GLUT1, as already described. Once in the brain, ex-
tracellular space glucose is rapidly taken up by the different
types of brain cells including astrocytes, microglia and neu-
rons. The distribution and expression levels of different iso-
forms of both the GLUT and SGLT transporters is cell type-
specific and also dependent on developmental and physiolog-
ical conditions. GLUTs 1–8 and SGLTs 1 and 2 in the cells of
the neurovascular unit at the blood-brain barrier have been
identified at various locations and levels of expression
(Table 1), where GLUT1 and GLUT3 are the major glucose
transporters (Fig. 3).

Facilitative Glucose Transporter GLUT1

Given the widespread distribution of GLUT1 and its crucial
roles in the human body, not least in the blood-brain barrier,
GLUT1 has become one of the most extensively studied of all
membrane transport proteins. GLUT1 was the first equilibra-
tive glucose transporter to be identified, purified and cloned
[40–43]; and a recent X-ray crystal structure of human
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Fig. 2 Transport proteins on endothelial cells of the blood-brain barrier.
Examples of major transport proteins found in the luminal and abluminal
membranes of endothelial cells are illustrated by ovals and grouped based
on the nature of their substrates as follows. Transporters of nutrients
(green): facilitative bi-directional transporters GLUT1 (glucose), MCT1
(lactate), L1 (large essential neutral amino acids) and Y+ (cationic essen-
tial amino acids) and sodium-dependent concentrative transporters A
(small non-essential neutral amino acids), ASC (non-essential amino
acids) and EAATs 1–3 (glutamate). Transporters of peptides (yellow):
receptor-mediated transcytosis of insulin and transferrin by the insulin
receptor (IR) and the transferring receptor (TFR), respectively, unidirec-
tional transport of amyloid-β by LRP1 and facilitative bi-directional
transport of encephalins by PTS1. ABC transporters (pink): active drug
efflux proteins ABCB1 (P-glycoprotein) and ABCG2 and unidirectional
thyroid transporters MCT8 and OATP1C1. Transporters of ions (blue):
Na+,K+-ATPase. The arrows indicate the direction(s) of transport. This
diagram was constructed based on information given in Kido et al.
(2000), Hawkins et al. (2006), Deane et al. (2009), Zlokovic (2011),
Pardridge (2012), Banks et al. (2012), Bien-Ly et al. (2014), Strazielle
and Ghersi-Egea (2015), Wittmann et al. (2015) [4, 13–20]
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Table 1 Locations and
expression of glucose transporters
at the blood-brain barrier. Details
are given about the locations and
expression of facilitative glucose
transporters (GLUTs) and
sodium-dependent glucose
transporters (SGLTs) that have
been identified in the
neurovascular unit at the blood-
brain barrier. The major glucose
transporters are GLUT1 (55 kDa
form) in endothelial cells, GLUT1
(45 kDa form) in astrocytes and
GLUT3 in neurons

Transporter Location(s) Expression/conditions Reference

GLUT1 (SLC2A1,
55 kDa)

Endothelial cells Major [65–74,
104]

GLUT1 (SLC2A1,
45 kDa)

Astrocytes Major [70, 97, 98]

Microglia Low levels [104, 105]

Neurons Foetal brain [93, 106]

GLUT2 (SLC2A2) Astrocytes Low levels [124, 125]

Neurons Low levels [126–128]

GLUT3 (SLC2A3) Neurons (high affinity, high capacity) Major [108–110]

Endothelial cells Low levels [108]

GLUT4 (SLC2A4) Astrocytes Low levels [130]

Endothelial cells Low levels [131, 132]

Neurons Low levels [133–135]

GLUT5 (SLC2A5) Microglia (fructose, low affinity for
glucose)

Major [116, 117]

Endothelial cells Low levels [118]

GLUT6 (SLC2A6) Neurons Low levels [140, 141]

GLUT7 (SLC2A7) Astrocytes Low levels [104, 112]

GLUT8 (SLC2A8) Endothelial cells Low levels [136–138]

Neurons Low levels [136, 137]

SGLT1 (SLC5A1) Endothelial cells Oxygen/glucose
deprivation

[142–145]

Neurons [146–148]
Ischemia

SGLT2 (SLC5A2) Endothelial cells Low levels [12]
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Fig. 3 Movement of glucose molecules across the neurovascular unit at
the blood-brain barrier. Under normal physiological conditions, glucose
molecules (black dots) move from a higher concentration in the blood
flow (4–6 mM) across endothelial cells and the basal membrane to a
lower concentration (1–2 mM, [80–85]) in the brain extracellular
(interstitial) fluid and then into astrocytes, neurons and microglia. Glu-
cose is constantly being ‘pulled’ in this direction by the high-energy
demands of brain cells and its metabolism by the action of hexokinase.
Facilitative glucose transporters (GLUTs, ovals) and sodium-dependent
glucose transporters (SGLTs, oblongs) are responsible for transporting
glucose across membranes as shown. The most abundant glucose

transporter is GLUT1 (red), which is present in red blood cells and en-
dothelial cells in heavily glycosylated form (55 kDa, thick border) and in
astrocytes, neurons and microglia in low glycosylated form (45 kDa, thin
border). In neurons, GLUT3 (pink) is the major glucose transporter. In
microglia, GLUT5 (green) is the major GLUT transporter, which trans-
ports fructose and only has a low affinity for glucose. Other glucose
transporters have been detected on cells at the neurovascular unit of the
blood-brain barrier (Table 1) as indicated: GLUT2 (purple), GLUT4
(blue), GLUT6 (gold), GLUT7 (pale green), GLUT8 (cyan), SGLT1
(yellow), SGLT2 (orange)
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GLUT1 at 3.2 Å resolution has been determined with the
protein in an inward-open conformation (PDB 4PYP) [44].
The structure constitutes an overall MFS and predicted GLUT
protein fold with 12 transmembrane-spanning α-helices ar-
ranged in two distinct N- and C-terminal domains of six heli-
ces, cytoplasmic N- and C-terminal ends, a large intracellular
loop between helices 6 and 7 and a single-site of N-linked
glycosylation on one of the extracellular loops (Fig. 4a). It
also has an intracellular helical bundle comprised of four short
α-helices that connects the N- and C-terminal domains, which
was also seen in structures of the homologous proton-coupled
active bacterial sugar porter proteins XylE [45] and GlcP [37].
The structure of GLUT1 has allowed an accurate mapping of
disease-associated mutations and provided further insight into
the alternating access mechanism of transport in GLUT pro-
teins and its relation to the transport mechanism in homolo-
gous active sugar porters [44]. The preferred substrates of
GLUT1 are hexose and pentose sugars that adopt a pyranose
conformation including D-glucose in both its α- and β-
pyranose forms [46] (Fig. 4a), which are recognised with
equal affinity [47]. GLUT1 transports D-glucose with apparent
affinities (Kmapp values) of around 1.5 mM, 1–2 and 3 mM

when examined in erythrocytes [48], reconstituted in lipo-
somes [49, 50] and when expressed in Xenopus laevis oocytes
[51–54], respectively. In addition to D-glucose, GLUT1 trans-
ports glucose analogues including 2-deoxy-D-glucose and 3-
O-methyl-D-glucose (Fig. 4b), other hexoses including galac-
tose, mannose and glucosamine and it also transports the
oxidised form of vitamin C, dehydroascorbic acid (Fig. 4b),
in order to confer mitochondrial protection against oxidative
injury [55–57]. Interestingly, GLUT1 has been identified as a
facilitator for the uptake of trivalent arsenicals such as arsenite
[As(OH)3] and methylarsenite [CH3As(OH)2], which have a
different translocation pathway in GLUT1 compared with that
of glucose transport [58]. Transport of the radiolabelled glu-
cose analogue 2-deoxy-2-[18F]fluoro-D-glucose (Fig. 4b) by
GLUT1 provides the basis for measuring glycolytic activity in
cells and tissues by the nuclear medicine technique of positron
emission tomography (PET), which allows the diagnosis and
monitoring of a wide range of human diseases [59]. The trans-
port activity of GLUT1 is inhibited by a number of different
compounds including cytochalasin B, forskolin, phloretin and
other flavonoids, maltose and mercuric chloride, which all
have low micromolar affinities [60–64], and these have been
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A B (i)
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Fig. 4 The human facilitative
glucose transport protein GLUT1.
a Crystal structure of GLUT1
illustrated in a cell membrane
catalysing the bi-directional
transport of D-glucose. The
transported glucose can be
metabolised by the glycolytic
pathway, the first step being
conversion to glucose-6-
phosphate catalysed by
hexokinase. The structure of
GLUT1 is coloured with the N-
terminus in blue and the C-
terminus in red, which was drawn
using PDB file 4PYP and PDB
Protein Workshop 3.9. b
Structures of transported glucose
analogues (i) 2-deoxy-D-glucose,
(ii) 3-O-methyl-D-glucose and
(iii) 2-deoxy-2-fluoro-D-glucose
and the structure of
dehydroascorbic acid (iv), which
is also transported by GLUT1
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used in a range of experimental studies of GLUT1 sugar trans-
port and function.

At the blood-brain barrier, a high density of GLUT1 is
found in both luminal and abluminal membranes of endothe-
lial cells in heavily glycosylated, high molecular weight form
(55 kDa). This isoform of GLUT1 is also found in human
erythrocytes (Fig. 3). Quantitative measurements suggest an
asymmetric distribution of GLUT1 at the luminal and
abluminal membranes and up to 40 % of the GLUT1 protein
may be sequestered within the cell cytoplasm at any given
time [65, 66] (Fig. 3). A number of other studies have quan-
tified the relative amounts of GLUT1 in luminal and
abluminal membranes and cytoplasm from humans and from
other mammals with variable results [67–74]. A change in
these ratios for the distribution of GLUT1 is a probable mech-
anism for achieving a change in the rate of glucose transport
across the blood-brain barrier in response to changes in energy
demand and other physiological conditions. An increased lu-
minal to abluminal ratio is likely to favour an increase in
glucose transport to the brain. Some studies have suggested
that the conformations of GLUT1 are different in the luminal
and abluminal membranes of brain endothelial cells. One of
these studies demonstrated that the different conformations
originate from differential phosphorylation of GLUT1 and
not from alternative splicing or altered glycosylation [75].

GLUT1 provides steady transport for the high demand of
glucose required to supply the high rate of aerobic metabolism
in the brain and for maintaining neuronal homeostasis. There
are a number of saturable and unsaturable components that
regulate the transport of glucose from the blood to the brain.
The facilitated transport of glucose by GLUT1 is saturable,
whilst there are also unsaturable intra- and inter-cellular
unsaturable diffusion processes that have to occur (Fig. 3).
The half-saturation constant of glucose uptake into the brain
(Kt) is around 8 mM [76]. The diffusion coefficient of D-glu-
cose in the cytosol of a single astrocyte has been measured
with an apparent value (Dapp) of 2.38±0.41×10

−10 m2 s−1 at
22–24 °C compared with a Dapp value for D-glucose in water
of 6.7×10−10 m2 s−1 at 24 °C [77]. Although diffusion of D-
glucose in the cytoplasm is hindered by around threefold com-
pared with that in aqueous solution, cytosolic diffusion is like-
ly to contribute to the movement of glucose across endothelial
cells and from endothelial cells to astrocytes and neurons at
the blood-brain barrier. Hexokinase I (brain hexokinase), the
enzyme involved in the first step of glycolysis, which cataly-
ses the conversion of glucose to glucose-6-phosphate
(Fig. 4a), has a Km for glucose of around 40–50 μM [78,
79]. In the extracellular (interstitial) fluid of the healthy human
brain, glucose levels are around 1–2 mM [80–85], so the ca-
pacity of hexokinase for glucose is significantly greater than
the transport by GLUT1 [86]. Under normal circumstances, it
is generally considered that brain glycolysis is not limited by
glucose transport, but by phosphorylation of glucose to

glucose-6-phosphate. Some studies using in vitro models of
the blood-brain barrier have suggested that the location and
concentration of hexokinase can alter the ratio of GLUT1 at
the luminal and abluminal membranes [71]. The concentration
and expression of GLUT1 in endothelial cells, which appears
to be under both transcriptional and post-transcriptional con-
trol [87, 88], is regulated by the circulating concentrations of
glucose, variations in energy demands during different stages
of brain development and changes in physiological conditions
[89–91]. For example, GLUT1 plays crucial roles in the de-
velopment of the blood-brain barrier and in other early stages
of brain development, during which there are increased levels
of GLUT1 expression associated with increases in cerebral
glucose utilisation and energy demands [91–95]. In contrast,
a decrease in the efficiency of GLUT1 upregulation has been
associated with hot flashes during menopause. A decline in
oestrogen levels at menopause causes the upregulation of
GLUT1 to be less efficient, and it is proposed that there is a
consequent overcompensation in neurobarrier coupling with
an excess neurovascular response, or a hot flash [96].

Elsewhere in the neurovascular unit at the blood-brain bar-
rier, GLUT1 is also the major glucose transporter in the mem-
branes of astrocytes, but here it is present in its less glycosyl-
ated, lower molecular weight form (45 kDa) [70, 97, 98]
(Table 1 and Fig. 3). Whilst some studies suggest that the
different forms of GLUT1 do not appear to differ in their
protein structure or kinetic characteristics [99], others suggest
that the different levels of glycosylation have implications for
transport activity [100], intracellular targeting and protein sta-
bility [101], substrate affinity [102] and GLUT1 trafficking
[103]. The 45 kDa form of GLUT1 has also been detected at
low levels in microglia [104, 105] and in neurons, especially
in the foetal brain [93, 106].

Other GLUT-Facilitative Glucose Transporters

GLUT3 is the major glucose transporter in neurons (Fig. 3). In
the brain GLUT3 is localised almost exclusively to neurons;
hence, it was originally referred to as the ‘neuronal glucose
transporter’, and GLUT3 localisation shows good correlation
with neuron function along both dendrites and axons
[107–110]. The concentrations of total GLUT1 (55 and
45 kDa) and GLUT3 in whole brain samples have been cal-
culated to be approximately equal [111, 112]. Compared with
GLUT1, GLUT3 is considered to be a higher affinity and
higher capacity glucose transporter to supply the high-
energy demands of neurons. A combination of a lower Km

value and higher capacity of GLUT3 provides neurons with
preferential access to the available glucose [113]. Indeed,
brain tumour-initiating cells adapt to restricted nutrition
through preferential glucose uptake via GLUT3 so that they
can outcompete for the available glucose. Hence, GLUT3, but
not GLUT1, correlates with poor survival in brain tumours
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and other cancers [114]. Like GLUT1, GLUT3 also transports
the glucose analogues 2-deoxy-D-glucose and 3-O-methyl-D-
glucose, other hexoses including galactose and mannose, and
transport activity is inhibited by cytochalasin B, forskolin and
phloretin with low micromolar affinities [109]. GLUT3 also
has important glucose transport roles in other types of cells
including sperm, preimplantation embryos and circulating
white blood cells [113]. Crystal structures of human GLUT3
have recently been determined in complex with D-glucose at
1.5 Å resolution in an outward-occluded conformation (PDB
4ZW9) and in complex with the exofacial inhibitor maltose at
2.6 Å in an outward-open conformation (PDB 4ZWC) and at
2.4 Å in an outward-occluded conformation (PDB 4ZWB)
[115].

GLUT5 is the major GLUT transporter found in microglia
[116, 117] and the only other place that it has been detected in
the neurovascular unit at the blood-brain barrier is at low
levels in endothelial cells [118] (Table 1 and Fig. 3). Interest-
ingly, GLUT5 principally functions as a fructose transporter
with an apparent Km value of around 6 mM for fructose and it
has very low capacity to transport glucose [119]. GLUT5 is
also insensitive to cytochalasin B and phloretin [27, 120]. The
main functions of GLUT5 in the body include direct absorp-
tion of fructose in the small intestine and recovery of fructose
from glomerular filtration in the kidney [121, 122], whilst its
roles and mechanisms of regulation in the brain are not yet
understood. Crystal structures of rat and bovine GLUT5 have
recently been determined at 3.3 Å resolution in an open out-
ward conformation (PDB 4YBQ) and at 3.2 Å resolution in an
open inward conformation (PDB 4YB9), respectively [123].

The remaining GLUT transporters identified in the
neurovascular unit at the blood-brain barrier are found at
much lower levels than those of GLUTs 1, 3 and 5 (Table 1
and Fig. 3). GLUT2 is abundantly expressed in the pancreas
and liver, where it serves as glucose sensor, and it is also found
in the brain at low levels in astrocytes [124, 125] and in neu-
rons [126–128] suggesting that it has glucose sensing roles in
these regions of the blood-brain barrier. GLUT2 is a low-
affinity transporter for glucose (Km~17 mM) and also for
fructose, mannose and galactose, whilst it is a high-affinity
transporter for glucosamine (Km~0.8 mM) [32]. Recent re-
sults have demonstrated the physiological importance of
GLUT2 in glucose uptake and availability during brain devel-
opment and confirm the involvement of GLUT2 in brain glu-
cose sensing [129]. The insulin-responsive glucose trans-
porters GLUT4 and GLUT8 have both been detected at low
levels in the neurovascular unit of the blood-brain barrier,
GLUT4 in astrocytes [130], endothelial cells [131, 132] and
neurons [133–135] and GLUT8 in endothelial cells and neu-
rons [136–138] (Table 1 and Fig. 3). Both GLUT4 and
GLUT8 have shown increased expression in the developing
mammalian brain [137]. It also appears that insulin translo-
cates GLUT4 from the cytosol to the plasma membrane to

transport glucose into cells and GLUT8 from the cytosol to
rough endoplasmic reticulum to recover redundant glucose to
the cytosol after protein glycosylation [128]. Indeed, GLUT8
appears to have a preference for catalysing transport of sugars
through intracellular membranes [139]. GLUT6 (formerly
called GLUT9) has been detected in the brain, specifically in
neurons [140, 141], and GLUT7 has been detected in astro-
cytes [111, 112] (Table 1 and Fig. 3). The physiological func-
tions of GLUTs 4, 6, 7 and 8 in the brain are not yet
understood.

Sodium-Dependent Glucose Transporters

In the neurovascular unit at the blood-brain barrier, the
sodium-dependent glucose transporter SGLT1 has been de-
tected in endothelial cells [142–145] and in neurons
[146–148] and SGLT2 has also been detected in endothelial
cells [12] (Table 1 and Fig. 3). In most cases, this appears to be
under conditions of stress such as oxygen/glucose deprivation
or ischemia. SGLT1 and SGLT2 use the sodium electrochem-
ical gradient to drive the transport of glucose uphill against its
concentration gradient across membranes [149]. Both the so-
dium ions and glucose molecules pass through the protein in
the same direction and it is the Na+, K+-ATPase pump that
provides the sodium electrochemical gradient. SGLT1 has a
coupling ratio of 2 Na+ ions/1 glucose molecule, has a high
affinity but a low capacity for transporting glucose and is also
capable of transporting galactose [150, 151]. One study iden-
tified SGLT1 at just the abluminal side of endothelial cells
where it may be positioned to transport glucose from the brain
extracellular fluid into the endothelial cells [66, 152]. SGLT2
has a coupling ratio of 1 Na+ ion/1 glucose molecule, a lower
affinity for transporting glucose than SGLT1 and does not
transport galactose [153, 154]. Given the energy demands of
the SGLT glucose transporters, a question remains as to why
they are needed at the blood-brain barrier along with the more
abundant facilitative glucose transporters. Indeed, a number of
studies have detected no expression or transport activity of
SGLTs in the endothelial cells of the blood-brain barrier under
normal physiological conditions. As mentioned above, one of
the most sensitive methods for measuring the uptake of glu-
cose into the brain is to monitor the uptake of the radiolabelled
glucose analogue 2-deoxy-2-[18F]fluoro-D-glucose
([18F]FDG) using PET [59]. Because FDG is only transported
by GLUTs and not SGLTs, its accumulation reflects only fa-
cilitated glucose transport. Two new glucose radiotracers were
developed that allowed SGLT transport activity to be mea-
sured. α-Methyl-4-[18F]fluoro-4-deoxy-D-glucose ([18F]Me-
4FDG) is highly specific for SGLTs and not transported by
GLUTs, whilst 4-[18F]fluoro-4-deoxy-D-glucose ([18F]4-
FDG) is transported by both SGLTs and GLUTs (Fig. 5a)
[155]. The use of these tracers to measure SGLT activity in
specific regions of rat brain showed that uptake was consistent
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with the distribution of SGLT proteins detected by immuno-
histochemical assays (Fig. 5b). These measurements proved
the presence of functional SGLTs in a number of brain struc-
tures under normal physiological conditions, which included
neurons but not endothelial cells at the blood-brain barrier
[155]. The physiological roles and regulation of the sodium-
dependent glucose transporters in the brain are not yet under-
stood, not least at the blood-brain barrier. The apparent pres-
ence of SGLTs under stress conditions (e.g. oxygen/glucose
deprivation or ischemia) at the blood-brain barrier may serve
as a mechanism to protect neurons.

Effects of Conditions, Diseases and Mutations
on Glucose Transporters at the Blood-Brain Barrier

Conditions such as hypoglycemia and hyperglycemia, espe-
cially associated with diabetes, and oxygen/glucose depriva-
tion associated with cerebral ischemia have effects on the reg-
ulation, expression and distribution of glucose transporters at
the blood-brain barrier. In contrast, a reduction in glucose
transporters at the blood-brain barrier is one of the pathophys-
iological changes that occurs before the onset of the other
events and symptoms in Alzheimer’s disease and is also a
potential causative effect in the vascular hypothesis of the
disease. Mutations in glucose transporters can affect their
transport activity at the blood-brain barrier, notably those
identified in GLUT1 deficiency syndrome. Some recreational
drug compounds affect the expression and/or activity of glu-
cose transporters at the blood-brain barrier. These topics will
be considered in this section of the article, some of which are
interlinked.

Effects of Hypoglycemia

Hypoglycemia, or low blood glucose, can be caused by a
number of factors and conditions such as starvation, kidney
failure, liver disease, some tumours, severe infections, inborn
errors of metabolism and certain drugs including alcohol. The
most common incidences of hypoglycemia occur in diabetics,

which is often due to the medications used to treat diabetes
such as insulin, sulfonylureas and biguanides along with eat-
ing less than usual, exercising more than usual or drinking
alcohol. As already discussed, the brain requires a constant
supply of glucose moving from the bloodstream into the in-
terstitial fluid and neurons in order to maintain essential neu-
rological functions and metabolic processes. When glucose
levels fall below normal (typically at 65 mg/dl or 3.6 mM),
initial effects are usually subtle reductions in mental efficiency
followed by impairments of action and judgement. Other ini-
tial symptoms include hunger, sweating, shakiness and weak-
ness. If there is no intervention and glucose levels continue to
fall, then effects become more severe including cognitive im-
pairments, seizures, coma (typically at 10 mg/dl or 0.55 mM)
and death. All of these responses are defensive or adaptive
mechanisms that aim to raise the blood sugar by way of gly-
cogenolysis and gluconeogenesis or the provision of alterna-
tive energy sources. An expected pathophysiological result of
hypoglycemia would be an upregulation and increased ex-
pression and activity of glucose transporters at the blood-
brain barrier in order to maintain the supply of glucose for
neurological functions. Indeed, this is the prevailing observa-
tion resulting from a number of experimental studies.

Using rat in vivo models of insulin-induced chronic hypo-
glycemia, an increase in expression of GLUT1 messenger
RNA (mRNA) and protein (around 50 % in both cases) in
endothelial cells at the blood-brain barrier has been demon-
strated [156]. Experiments using isolated rat brain
microvessels demonstrated a 23 % increase in total GLUT1
protein and a 52 % increase in luminal GLUT1 protein in
insulin-induced hypoglycemic animals [157]. Hence, these
results suggested both an increase in GLUT1 synthesis at the
blood-brain barrier and a redistribution of GLUT1 to the lu-
minal membrane for achieving enhanced glucose uptake into
the brain under hypoglycemic conditions. The same study
showed no effects of hypoglycemia on GLUT3 mRNA or
protein expression [157]. A recent in vitro study using the
human brain microvascular endothelial cell line hCMEC/D3
demonstrated that cultures exposed to hypoglycemic condi-
tions for 3 h had a significant decrease in expression of

[18F]4-FDG [18F]Me-4-FDG

18 18
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Fig. 5 Glucose analogue PET radiotracers transported by SGLTs. a
Structures of 4-[18F]fluoro-4-deoxy-D-glucose ([18F]4-FDG) and α-
methyl-4-[18F]fluoro-4-deoxy-D-glucose ([18F]Me-4-FDG). b
MicroPET image of SGLT activity in the midbrain of rat shown by the
accumulation of [18F]4-FDG 1 h after intravenous injection (left)
compared with a cryosection (right) to define the brain substructure:

cortex (CX), hippocampus (HP), amygdala (AP), hypothalamus (HTH)
and thalamus (TH). The picture in (b) was reproduced with permission
from Yu et al. (2010) [155], which was originally published in American
Journal of Physiology-Cell Physiology. Copyright by the American
Physiological Society 2010
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GLUT1 and this was returned to normal or marginally in-
creased levels after 24 h of exposure [158]. By contrast, the
expression level of SGLT1 was unchanged at 3 h and signif-
icantly increased after 24 h of exposure to hypoglycemia. The
expression level of GLUT4 remained unchanged. A previous
study had demonstrated that low cytosolic glucose levels en-
hance the activity of an SGLT-like transporter in bovine brain
endothelial cells [143], and a later study using confluent brain
endothelial cells co-cultured with astrocytes demonstrated a
combined role for both GLUT1 and SGLT1 transporters at the
blood-brain barrier during oxygen/glucose deprivation [145].
A number of other studies have demonstrated an upregulation
or increased expression of GLUT1 and/or GLUT3 in brain
under hypoglycemic conditions [159–162], therefore
confirming their roles in correcting the glucose levels required
for maintaining neurological functions.

Effects of Hyperglycemia

Hyperglycemia, or high blood glucose, is most commonly
caused by untreated diabetic conditions due to an insufficient
production of insulin or response to insulin. Other conditions
that can cause hyperglycemia include pancreatitis and pancre-
atic cancer, certain hormone-secreting tumours, Cushing’s
syndrome, acute events such as stroke or myocardial infarc-
tion and also certain drugs. Whilst normal blood glucose
levels are typically 80 to 110 mg/dl or 4 to 6 mM, hypergly-
cemia is defined as levels of greater than 126 mg/dl or 7.0 mM
when fasting and greater than 200 mg/dl or 11.0 mM 2 h after
meals [163]. The initial main symptoms of hyperglycemia are
increased thirst, increased frequency of urination and in-
creased hunger. Chronic and long-term periods of hypergly-
cemia can lead to a number of serious complications including
damage to the kidneys, nervous and circulatory systems, ret-
ina, feet and legs. An expected pathophysiological result of
hyperglycemia would be a downregulation and decreased ex-
pression and activity of glucose transporters at the blood-brain
barrier in order to avoid neuronal damage. There have been
conflicting results obtained from experimental studies on the
effects of hyperglycemia on glucose transporters, however.

Some studies have reported a downregulation of glucose
transporter expression and/or activity at the blood-brain barri-
er under conditions of hyperglycemia. A study examining
both glucose transporter activity and microvessel glucose
transporter concentration at the blood-brain barrier demon-
strated a 44 % decrease in transporter activity in parallel with
a 44% decrease in cerebral blood flow and a 77% decrease in
transporter concentration under conditions of experimental
diabetes. It was suggested that the primary mechanism under-
lying the downregulation is a post-transcriptional inhibition of
glucose transporter mRNA translation [164]. A further study
demonstrated that under conditions of chronic hyperglycemia
in rat brain, the average density of GLUT1 was decreased by

7.5 % and local densities of GLUT1 were decreased in 12 out
of 28 brain structures. Positive correlations were found be-
tween levels of local cerebral glucose utilisation and local
GLUT1 densities during control conditions and during chron-
ic hyperglycemia. Densities of GLUT3 were unchanged [69].
A more recent study investigated the influence of blood glu-
cose levels on the mRNA and protein levels of GLUT1 and
GLUT3 in the brain of diabetic rats. Compared with normal
controls, those with chronic hyperglycemia showed reduc-
tions of 46 and 75 % in GLUT1 and GLUT3 mRNA, respec-
tively, and the abundance of GLUT1 and GLUT3 proteins had
a negative correlation with the blood glucose level. Further-
more, the density of microvessels in the brain of diabetic rats
was not changed significantly compared with normal controls
[165].

In contrast, a number of studies have reported no change in
the expression and/or activity of glucose transporters at the
blood-brain barrier under conditions of hyperglycemia. The
study using isolated rat brain microvessels described above
that showed an increase and redistribution of GLUT1 during
hypoglycemia also showed no significant changes in regional
brain glucose uptake and no changes in total microvessel
GLUT1 or luminal GLUT1 concentrations under conditions
of hyperglycemia. Levels of GLUT3 mRNA or protein ex-
pression were also unchanged [157]. A study of blood-brain
barrier glucose permeability and regional brain glucose me-
tabolism (CMR(glc)) under conditions of acute hyperglyce-
mia in normal human subjects was performed using [18F]FDG
PET, and the Kety-Schmidt technique was used for measure-
ment of cerebral blood flow (CBF). The results demonstrated
no major adaptational changes in the maximal transport ve-
locity or affinity to blood-brain barrier glucose transporters
under hyperglycemia. Furthermore, hyperglycemia did not
change the global CBF or CMR(glc) [166]. Brain extracellular
fluid glucose levels in diabetic and control awake/freely mov-
ing rats were measured under conditions of normal glycaemia
and acute hyperglycemia using a microdialysis technique. The
extracellular fluid/plasma glucose ratio (0.27 to 0.34) was re-
markably similar in all groups, resulting in proportional ele-
vations of brain extracellular fluid glucose in the
hyperglycaemic groups. It was concluded that there is no sig-
nificant protective adaptation of the blood-brain barrier to the
transfer of glucose during chronic hyperglycemia [167].
Hence, the brain tissue may be chronically exposed to elevat-
ed levels of glucose in poorly controlled diabetes and there-
fore may be subject to the same long-term adverse effects of
hyperglycemia seen in peripheral tissues. The same study also
showed that brain extracellular fluid levels of lactate and β-
hydroxybutyrate were increased in diabetic rats as compared
with controls [167]. In a study that used proton magnetic res-
onance spectroscopy to measure glucose concentration in the
occipital cortex of patients with poorly controlled diabetes and
healthy volunteers at the same levels of plasma glucose, brain
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glucose concentrations of patients with poorly controlled dia-
betes were lower but not statistically different from those of
healthy subjects. The authors concluded that chronic hyper-
glycemia in diabetes does not alter brain glucose concentra-
tions in human subjects [168], hence suggesting no changes in
glucose transport properties of the blood-brain barrier. The
study described above using the human brain microvascular
endothelial cell line hCMEC/D3 that showed an increase in
SGLT1 during hypoglycemia also showed no changes in
GLUT1 or SGLT1 expression in cultures exposed to
hyperglycaemic conditions. The expression level of GLUT4
was upregulated by hyperglycemia, however [158].

The conflicting results obtained from experimental studies
on the effects of hyperglycemia on glucose permeability of the
blood-brain barrier and on the expression levels of glucose
transporters may be due to the different experimental tech-
niques, animal and in vitro models and methods of analysis
that have been used. It is desirable that a consensus is reached
about the effects of hyperglycemia (and hypoglycemia) on
glucose permeability of the human blood-brain barrier and
on the regulation and expression of its constituent glucose
transporters. This may require the use of common experimen-
tal methods and models, for example, development of robust
in vitro models using human cell lines since in vivo measure-
ments on human subjects are generally not feasible.

Effects on Alzheimer’s Disease

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder that causes deterioration of memory and other cogni-
tive functions. It is the most common cause of dementia in the
elderly, accounting for an estimated 60–80 % of dementia
cases (www.alz.org/downloads/ facts_Fig.s_2012.pdf) [169],
and is a major cause of morbidity and mortality in modern
westernised societies. The main neuropathological
characteristics associated with the disease are extracellular
neuritic plaques containing β-amyloid peptide (Aβ) derived
from β-amyloid precursor protein (β-APP) and intracellular
neurofibrillary tangles (containing hyperphosphorylated tau
protein). There are a number of complex interactions between
vascular and neuronal factors that come together to produce
the pathology of AD, but a detailed description of these is
beyond the scope of this review. In addition to the link be-
tween stroke and dementia, there are clear links between car-
diovascular risk factors and heart disease with the onset and
development of AD. These include atherosclerosis, hyperten-
sion, diabetes and obesity [170–176]. In the classical amyloid
hypothesis of AD, accumulation of Aβ in the brain is the
primary driving force for AD pathogenesis [177]. It is now
becoming apparent that amyloid deposition is the downstream
result and not the cause of AD and that therapeutic develop-
ments for AD should be also be targeting other factors
[178–182]. An alternative vascular hypothesis of AD, also

known as the two-hit vascular hypothesis (Fig. 6), has
emerged in which the pathological accumulation of Aβ in
the brain is secondary to primary vascular damage [15,
183–188]. In this hypothesis, there is an initial disturbance
in the microcirculation of the brain including reduced CBF,
hypoxia and blood-brain barrier dysfunction. This activates a
cascade of events leading to neuronal damage, neurodegener-
ation, cognitive decline and dementia. Of particular relevance
to this current review is that pathophysiological changes asso-
ciated with AD include reduced brain glucose metabolism and
reduced expression of glucose transporters at the blood-brain
barrier [188]. Indeed, reduction in glucose transporters at the
blood-brain barrier has been detected before the onset of other
AD pathophysiological events and symptoms. Glucose trans-
porters are therefore molecular markers for the onset of AD,
and restoration or increase in GLUT1 is a possible approach
for preventing, delaying or treating AD.

A decrease in brain glucose metabolism [189–195] and a
decrease in brain glucose transport activity [196–199] associ-
ated with AD have both been recognised for some time. As a
consequence, the nuclear medicine tool of [18F]FDG PET,
which can measure glucose uptake and glycolytic activity in
the brain [59], has become routine for the early detection and
monitoring of AD before the onset of AD pathophysiological
changes and progression [200–205]. A number of studies
have demonstrated that the reduction in glucose transport ac-
tivity at the blood-brain barrier and in the brain associatedwith
AD is due to a decrease in the levels of GLUT1 and GLUT3
proteins [5, 206–211]. In the case of GLUT1, it appears that a
significant decrease in protein expression levels is accompa-
nied by no significant changes in GLUT1 mRNA levels,
which suggests a post-transcriptional mechanism for the de-
cline [209]. A number of studies have reported a direct corre-
lation between a decrease in brain glucose metabolism and in
expression levels of GLUT1 and GLUT3 with a decrease in
O-GlcNAcylation of nucleocytoplasmic proteins and with
hyperphosphorylation of tau in AD pathogenesis and progres-
sion [211–218]. The question remains as to whether the
reduced glucose metabolism and reduced glucose trans-
porter expression are causative factors in the progression
of AD or a response to reduced neuronal activity in
AD. Evidence so far suggests that the former is more
likely to be the case. In a further demonstration of how
GLUT1 reductions influence the pathogenesis of AD, a
recent study has shown that a GLUT1 deficiency in
mice overexpressing β-APP leads to early cerebral mi-
crovascular degeneration, reduced blood flow and
blood-brain barrier breakdown along with accelerated
Aβ pathology and reduced Aβ clearance leading to di-
minished neuronal activity and cognitive behaviour, neu-
ronal loss and neurodegeneration [219]. This confirms
GLUT1 as a potential therapeutic target for preventing,
delaying or treating AD.
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There is an emerging consensus in the evidence that links
type 2 diabetes with dementia and neurodegenerative disor-
ders such as AD and that type 2 diabetes contributes signifi-
cantly to the onset or progression of AD [220–227]. Indeed,
the links between AD and diabetes are so strong that AD has
been referred to as ‘type 3 diabetes’, which has been justified
by the fact that AD appears to represent a form of diabetes that
selectively affects the brain and involves molecular and bio-
chemical features that are commonwith both type 1 and type 2
diabetes [228–231]. Biological mechanisms that are associat-
ed with both type 2 diabetes and AD include insulin resis-
tance, impaired glucose uptake and metabolism, amyloidosis,
oxidative stress, brain atrophy and the formation of advanced
glycation end products and tau phosphorylation. As we have
already seen, a reduction in glucose transporter expression at
the blood-brain barrier plays an important role in the cascade
of events for the onset and progression of both diabetes and
AD [232].

Effects of Cerebral Ischemia

Cerebral ischemia occurs when blood flow to the brain is
insufficient to meet metabolic demand. This can result from
cerebral artery occlusion that interrupts blood flow and results
in oxygen/glucose deprivation to the brain (cerebral hypoxia/
hypoglycemia) and ultimately to the death of brain tissue or
cerebral infarction/ischemic stroke. The ischemia can be

confined to a specific region of the brain (focal ischemia) or
be more widespread in the brain (global ischemia). Cerebral
ischemia initiates a cascade of molecular events in the neurons
and in cerebrovascular endothelial cells including energy de-
pletion, dissipation of ion gradients, calcium overload,
excitotoxicity, oxidative stress, inflammation and accumula-
tion of ions and fluid [233, 234]. These events are associated
with a disruption of the blood-brain barrier, which can lead to
vasogenic cerebral edema [235], a primary cause of stroke-
associated mortality. Glucose transporters at the blood-brain
barrier are involved in the cascade of events resulting from
cerebral ischemia and are potential therapeutic targets for
post-ischemia treatment.

A number of studies have investigated the effects of cere-
bral ischemia on the expression levels and regulation of brain
glucose transporters. In rat brain, GLUT1 overexpression oc-
curs rapidly and widely in microvessels and parenchyma fol-
lowing global cerebral ischemia, which may be associated
with an immediate early-gene form of response to cellular
stress [236]. Cerebral hypoxia-ischemia leads to overexpres-
sion of GLUT1 in cerebral microvessels of both damaged and
undamaged hemispheres during both early and late stages in
the recovery period, whilst expression of GLUT3 is enhanced
in penumbral regions, such as piriform cortex and amygdala
[237, 238]. Hypoxic conditions associatedwith cerebral ische-
mia promote the upregulation of GLUT1 in brain endothelial
cells and this is triggered by the production of vascular

Fig. 6 The ‘two-hit’ vascular
hypothesis of Alzheimer’s
disease. This figure was
reproduced with permission from
Zlokovic (2011) [15], which was
originally published in Nature
Reviews Neuroscience.
Copyright by Nature Publishing
Group 2011
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endothelial growth factor (VEGF) mediated by the
phosphoinositide-3 kinase/Akt pathway [239]. In mouse
brain, activation of the metabolic stress pathway results in
rapid stimulation of blood-brain barrier endothelial cell sugar
transport by acute upregulation of GLUT1 levels, possibly
involving AMP-activated kinase activity [240]. Diabetic con-
ditions combined with cerebral ischemia have produced even
higher overexpression of GLUT1 and of GLUT3 mRNA and
protein, although expression tended to decreasewith increased
blood glucose levels. Hence, it was considered that in the
treatment of diabetic patients with cerebral ischemia, blood
glucose control should not be too strict; otherwise, the upreg-
ulation of GLUT1 and GLUT3 induced by ischemia may not
meet the energy requirements of the cells [241]. A study ex-
amining the effects of hypoxic ischemia and hypoxia on sub-
strate transporter concentrations and function in postnatal mu-
rine brain detected a transient increase in neuronal GLUT3 in
response to hypoxic ischemia after 4 h of reoxygenation [242].
This increase was associated with no changes in GLUT1,
SGLT1 or SGLT2. At 24 h of reoxygenation, the increase in
GLUT3 disappeared. Hypoxia alone in the absence of ische-
mia was associated with a transient but modest increase in
GLUT3. It was concluded that hypoxic cerebral ischemia is
associated with a transient compensatory increase in GLUT3
that protects glucose delivery for maintaining neuronal energy
metabolism [242]. In a study using cultured astrocytes,
GLUT1 was expressed primarily and GLUT3 was detected
only at extremely low levels under normal physiological con-
ditions. Interestingly, exposure of the astrocytes to ischemic
stress increased the expression levels of both GLUT1 and
GLUT3. It was also observed that astrocytic GLUT3 was
responsible for the enhanced storage of intracellular glucose
during reperfusion, resulting in a protection to lethal ischemic
stress [243]. Based on current understanding, the upregulation
of cerebral GLUT1 and GLUT3 is considered as a potential
preventative neuroprotive therapy for ischemia [244]. Be-
cause hyperglycemia is an indicator of severe stroke and this
promotes further ischemia in the brain, cerebral GLUTs are
also considered as therapeutic targets for post-ischemic stroke
treatments [245]. Related to this, a recent study has demon-
strated that nicotine pre-exposure reduces ischemia
reperfusion-enhanced GLUT1 transporter function and ex-
pression at the blood-brain barrier in a focal brain ischemia
mouse model. This suggests that nicotine exposure prior to
stroke could create an enhanced glucose-deprived state at the
neurovascular unit, thus providing an additional vulnerability
to enhanced stroke injury [246].

As described earlier, a number of studies have demonstrat-
ed the detection and/or upregulation of SGLT1 in blood-brain
barrier endothelial cells and neurons. In the majority of cases,
this was under stress conditions, especially oxygen/glucose
deprivation and ischemia [143–146, 148]. Along with in-
creased expression of the facilitative glucose transporters

(GLUT1 and GLUT3), upregulation of SGLT1 is therefore a
further inborn mechanism that is switched on to increase the
supply of glucose for maintaining the energy demands of neu-
rons during cerebral ischemia. Upregulation of SGLT1 is
therefore a potential therapeutic strategy for post-ischemia
treatment, whilst inhibition of SGLT1 during stroke has the
potential to improve stroke outcome [145]. This is because
cerebral ischemia can be exacerbated by post-ischemic hyper-
glycemia, which may involve SGLTs [247]. SGLT3 does not
transport glucose, instead it depolarises the plasma membrane
when glucose is bound, suggesting that SGLT3 is a glucose
sensor. A study using a mouse model of focal cerebral ische-
mia (middle cerebral artery occlusion) suggested that cerebral
SGLT3 suppresses neuronal damage by activation of cholin-
ergic neurons, which are neuroprotective. In contrast, other
cerebral SGLTs may be involved in the development of ische-
mia [248]. A further study has indicated that SGLTs are not
involved in neuronal cell death under non-hyperglycaemic
conditions and that post-ischemic hyperglycaemic conditions
may be necessary for the SGLT-mediated exacerbation of ce-
rebral ischemic neuronal damage [249].

Effects of Mutations in Glucose Transporters

Mutations in GLUT1, and in other glucose transporters, that
have deleterious effects on proper expression, folding, struc-
ture and function of the protein have potential to disrupt glu-
cose transport across the blood-brain barrier and have severe
effects on neuronal function. The best-known example is the
relatively recently recognised GLUT1 deficiency syndrome
(G1DS) [250], which results from mutations in the gene that
expresses GLUT1. An impaired function of the GLUT1 pro-
tein at the blood-brain barrier reduces the amount of glucose
available to brain cells affecting brain development and func-
tion. This was originally identified in two children with per-
sistent hypoglycorrhachia (low concentrations of glucose in
cerebrospinal fluid), seizures and delayed development that
responded dramatically to treatment with a ketogenic diet
[250]. Further studies have demonstrated that the condition
is inherited in an autosomal dominant or autosomal recessive
manner [251–253] and neurological problems present in
young children, which include difficulties in movement and
speech and delay in development and intellectual disability
[254–262]. GLUT1 defects are also increasingly being
recognised as the cause of some genetic generalised epilepsies
and other neurological disorders including early-onset ab-
sence epilepsy [263–265], familial idiopathic generalised ep-
ilepsy [266, 267], paroxysmal exercise-induced dyskinesia
and paroxysmal choreoathetosis/spasticity [268–271].
Around 36 residue positions in the GLUT1 protein have been
identified with mutations (substitutions or deletions) in G1DS
of which the majority are charged or polar residues (Fig. 7).
The mutated residues are generally found in three distinct
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clusters at different locations within the crystal structure of
GLUT1: residues responsible for substrate binding, residues
located at the interface between the transmembrane domain
and the intracellular helical bundle and residues lining the
transport path [44]. Mutations at these positions may interfere
with the proper recognition of glucose or disrupt themolecular
mechanism of glucose transport and therefore compromise the
normal functioning of GLUT1.

The experimental diagnosis of G1DS is based on low
to normal lactate levels and low glucose levels
(hypoglycorrhachia) in the cerebrospinal fluid confirmed
by molecular analysis of the GLUT1 (SLC2A1) gene
and by glucose uptake studies and immunoreactivity in
human erythrocytes [272, 273]. GLUT1 function in
erythrocytes is assayed by measuring the uptake of
14C-labelled 3-O-methyl-D-glucose (0.5 mM, 1 μCi/ml,
4 °C, pH 7.4) with an uptake cut-off point of 60 %
(recently increased to 74 %) relative to controls for
defining abnormal glucose transport [274, 275]. Results
between 35 and 74 % of controls are typically diagnos-
tic [276]. [18F]FDG PET scans of the brain in individ-
uals with G1DS reveal some abnormalities including a
global reduction of glucose uptake with more severe
hypometabolism in the medial temporal lobes and the
thalami, where the thalamic hypometabolism is accentu-
ated by the relative uptake of glucose in the basal gan-
glia [277]. The primary treatment for G1DS is a keto-
genic diet, whereby ketone bodies use a different trans-
porter to cross the blood-brain barrier and provide the

brain with an alternative source of energy [254, 255,
257, 278–282]. G1DS has also been indicated as a
cause of permanent ketosis in which there is upregula-
tion of monocarboxylic acid transporters (MCT1) at the
blood-brain barrier provoked by neuroglycopenia
allowing ketone body utilisation by the brain [283].

Effects of Recreational Drugs

Some recreational drug compounds, including alcohol,
nicotine and methamphetamine, have been shown to af-
fect the expression and/or activity of GLUT1 and
GLUT3 at the blood-brain barrier. In cultured rat astro-
cytes, exposure to ethanol inhibited glucose uptake and
reduced the number of glucose transporters, as indicated
by binding studies with cytochalasin B [284]. A de-
crease in GLUT1 protein levels was confirmed by west-
ern blotting analysis. In contrast, GLUT1 mRNA levels
were increased by exposure to ethanol, so it was con-
cluded that ethanol acts at the post-transcriptional level
in reducing the expression and activity of GLUT1 in
astrocytes [284]. Similarly in cultured neurons, exposure
to ethanol reduced the expression levels and glucose
transport activities of both GLUT1 and GLUT3 [285].
Acute ethanol administration in rat brain resulted in de-
creased levels of both GLUT1 and GLUT3 expression
but no change in affinity [286]. More recently, it has
been demonstrated that the inhibitory effects of alcohol
on glucose transport across the blood-brain barrier lead

MEPSSKKLTGRLMLAVGGAVLGSLQFGYNTGVINAPQKVIEEFYNQTWVHRYGESILPTT 60
x

LTTLWSLSVAIFSVGGMIGSFSVGLFVNRFGRRNSMLMMNLLAFVSAVLMGFSKLGKSFE 120
x                        xxx xx

MLILGRFIIGVYCGLTTGFVPMYVGEVSPTALRGALGTLHQLGIVVGILIAQVFGLDSIM 180
x   x               x      x x         x   x

GNKDLWPLLLSIIFIPALLQCIVLPFCPESPRFLLINRNEENRAKSVLKKLRGTADVTHD 240
x          x        x

LQEMKEESRQMMREKKVTILELFRSPAYRQPILIAVVLQLSQQLSGINAVFYYSTSIFEK 300
x                  x      xxxx      x xx

AGVQQPVYATIGSGIVNTAFTVVSLFVVERAGRRTLHLIGLAGMAGCAILMTIALALLEQ 360
x    x   x         x    x   x

LPWMSYLSIVAIFGFVAFFEVGPGPIPWFIVAELFSQGPRPAAIAVAGFSNWTSNFIVGM 420
x                    x

CFQYVEQLCGPYVFIIFTVLLVLFFIFTYFKVPETKGRTFDEIASGFRQGGASQSDKTPE 480
x

ELFHPLGADSQV  492
x  

Grey Transmembrane helix in GLUT1
Green Extramembrane helix in GLUT1
Cyan Intramembrane helix in GLUT1
Red Residue putatively involved in direct interactions with glucose
x = Residue with mutations found in G1DS

Fig. 7 Mutations in GLUT1
deficiency syndrome. Amino acid
sequence of human GLUT1
(P11166, GTR1_HUMAN) taken
from theUniProt KnowledgeBase
(http://www.uniprot.org/) and
coloured to indicate helical
regions based on the crystal
structure of GLUT1 [44]:
transmembrane helix (grey),
extramembrane helix (green),
intramembrane helix (cyan).
Residues putatively involved in
direct interactions with glucose
based on the crystal structure of
the Escherichia coli xylose
transporter XylE with bound
glucose [45] are highlighted in
red. Residues in GLUT1 that have
shown mutations in GLUT1-
deficiency syndrome [44] are
indicated with a cross below the
sequence
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to neurodegeneration and that there is a preventive role
of acetyl-L-carnitine [286]. Using cultures of human
brain endothelial cells and neurons, ethanol exposure
resulted in a decrease in glucose uptake along with a
decrease in GLUT1 expression. In animal experiments,
a chronic alcohol intake suppressed the transport of glu-
cose into the frontal and occipital regions of the brain,
which was validated by a significant decrease in
GLUT1 protein expression in brain microvessels, whilst
other measurements showed a breakdown in the integri-
ty of the blood-brain barrier. Administration of the neu-
roprotective agent acetyl-L-carnitine prevented the ad-
verse effects of alcohol on glucose uptake, blood-brain
barrier damage and neuronal degeneration [287]. A
chronic administration of nicotine in rat brain causes a
general stimulation of brain metabolism along with dis-
tinct increases in protein densities for GLUT1 and
GLUT3 and in increase in local cerebral glucose
utilisation, whilst capillary densities remain unchanged
[288, 289]. It has already been mentioned how nicotine
exposure prior to stroke could create an enhanced
glucose-deprived state at the neurovascular unit, thus
providing an additional vulnerability to enhanced stroke
injury [246]. Studies have shown how the psycho-
stimulant drug methamphetamine impairs endothelial
GLUT1 transport and causes blood-brain barrier dys-
function. A low concentration of methamphetamine
(20 μM) increased the expression of GLUT1 in human
brain endothelial cells without affecting the uptake of
glucose, whilst a higher concentration (200 μM) de-
creased both the glucose uptake and GLUT1 protein
levels [290]. The methamphetamine-induced decrease
in GLUT1 protein was correlated with decreases in
levels of blood-brain barrier tight junction proteins,
and both of these effects were suppressed by addition
of the neuroprotective agent acetyl-L-carnitine [290]. A
decrease in neuronal glucose uptake by methamphet-
amine was associated with a decrease in levels of
GLUT3. In astrocytes, a low concentration of metham-
phetamine (20 μM) increased glucose uptake whilst a
higher concentration (200 μM) inhibited glucose uptake.
These dual effects of methamphetamine on glucose up-
take were correlated with changes in expression levels
of astrocytic GLUT1 [291]. The difference in sensitivity
between neurons and astrocytes to methamphetamine
exposure appears to be in the adaptability of the cells
to fatty acid oxidation as an alternative source of energy
during glucose limitation. The effect of acetyl-L-carni-
tine for enhanced production of ATP from fatty oxida-
tion in glucose-free culture conditions validated the
adaptive nature of the cells, and the results suggest that
deprivation of glucose-derived energy may contribute to
neurotoxicity in users of methamphetamine [291].

Glucose Transporters at the Blood-Brain Barrier
as Therapeutic Targets and Carriers for Drug
Delivery

Solute carrier proteins are increasingly being recognised as
important therapeutic drug targets [292] and this includes glu-
cose transporters at the blood-brain barrier. As already
discussed in the previous sections, the upregulation of glucose
transporters is a potential strategy for the treatment of hypo-
glycemic conditions and the downregulation or inhibition of
glucose transporters is a potential strategy for treatment under
hyperglycaemic conditions. The restoration or increase in the
expression levels of GLUT1 is a possible approach for
preventing, delaying or treating AD. Because glucose trans-
porters at the blood-brain barrier are involved in the cascade of
events resulting from cerebral ischemia, they are potential
therapeutic targets for post-ischemia treatment. Hyperglyce-
mia is an indicator of severe stroke and this promotes further
ischemia in the brain, so cerebral GLUTs are considered as
therapeutic targets for post-ischemic stroke treatments. The
upregulation of SGLT1 is a potential therapeutic strategy for
post-ischemia treatment, whilst inhibition of SGLT1 during
stroke has the potential to improve stroke outcome. GLUT1
is highly overexpressed in most types of cancer cells, includ-
ing brain tumours, in order to satisfy their greatly enhanced
uptake of glucose and rates of glycolysis [59]. A reduction in
the expression and/or activity of GLUT1 in tumour cells is
therefore a potential therapeutic strategy in cancer therapy.
In addition to being direct therapeutic targets, glucose trans-
porters at the blood-brain barrier are potential routes of entry
for the delivery of drugs to the brain and central nervous
system.

Drug Delivery via Glucose Transporters

Whilst the barrier function of the blood-brain barrier is critical
for regulating transport of metabolites to the brain and for
protecting the brain and central nervous system from harmful
substances, it also acts as a significant roadblock for delivering
drugs to the brain. There are a significant number of neuro-
logical disorders and central nervous system diseases includ-
ing mental disorders, migraine, epilepsy, neurodegenerative
diseases such as Alzheimer’s and Parkinson’s, cerebrovascu-
lar diseases such as cerebral ischemia and stroke, cancer, in-
flammatory diseases such as multiple sclerosis, brain trauma
and infections such as meningitis. Only a relatively few of
these are currently treatable with small molecule drug therapy,
which is largely due to the restrictions provided by the blood-
brain barrier. Hence, there are significant ongoing efforts to
develop strategies for enabling therapeutic drugs to cross the
blood-brain barrier and to reach their target sites in the brain
and central nervous system. A major approach, known as
carrier-mediated transport, is to target and make use of
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endogenous transport proteins for the delivery of drugs across
the blood-brain barrier [10, 16, 293–299]. Recent concepts
and strategies include nanoscale drug delivery systems
[300], improving brain penetration of anticancer drugs by
minimising drug efflux at the blood-brain barrier [301],
transporter-conscious drug design [302] and dual-track
screening of small molecule libraries for drug compounds that
have both an affinity for a neural cell drug receptor target and
an affinity for a blood-brain barrier transporter target [303].
Transport proteins are generally highly stereospecific for their
substrates, so neuroactive drugs themselves are often not
recognised or transported by endogenous transporters at the
blood-brain barrier. Hence, the pro-drug approach has been
used to overcome this [304–310], which has two main strate-
gies: (i) modification of a drug to give a ‘pseudonutrient’
structure that is able to be recognised and transported by an
endogenous transporter and (ii) conjugation of a drug with a
nutrient that is able to be transported by an endogenous trans-
porter (Fig. 8). Following transport, the drugs are released by
enzymatic cleavage from their pro-drugs after being targeted
into the brain or central nervous system [309]. Because the
capacity of glucose transporters at the blood-brain barrier is
around 15 and 50 times higher than those of monocarboxylic
acid and neutral amino acid transporters, respectively [311],
they are prime targets for the delivery of pro-drugs to the
brain, especially GLUT1 [312].

Conjugation of Drugs with GLUT1 Substrates

A number of neuroactive drugs have been conjugated with
glucose in order to target GLUT1 for transport across the
blood-brain barrier. Four derivatives of the chemotherapy
drug chlorambucil were conjugated with D-glucose and all
of the resultant compounds inhibited 14C-glucose uptake into
erythrocytes by GLUT1 in a concentration-dependent manner
[313] . One of these compounds , 6 -O -4 - [b i s (2 -

chloroethyl)amino]benzenebutanoyl-D-glucopyranose
(Fig. 9a), achieved a 160-fold higher inhibition of 14C-glucose
uptake by GLUT1 than did glucose itself and also inhibited
3H-cytochalasin B binding to erythrocytes with 1000-fold
higher efficiency than glucose. Whilst inhibition of glucose
uptake by this compound was reversible, uptake measure-
ments using the 14C-labelled compound led to the conclusion
that this compound is a non-transported inhibitor of GLUT1
[313] and therefore not suitable for drug delivery across the
blood-brain barrier. In an aim to achieve hydrophilic ana-
logues of the anticancer compound busulphan (1,4-
butanediol dimethanesulphonate) with enhanced selectivity
and brain penetration, a number of O-methylsulphonyl deriv-
atives of D-glucose were synthesised as potential alkylating
agents for targeted drug delivery to the brain (Fig. 9b) [314].
Compounds with mesylation at the 4-OH and 6-OH positions
of D-glucose had slightly diminished affinity for GLUT1,
whilst mesylation at the 3-OH position resulted in complete
loss of activity [314].

Conjugation of D-glucose to neuroactive enkephalin pep-
tides, which are opioid agonists used to treat pain, was suc-
cessful in decreasing their lipophilicity and in increasing their
penetration of the rat blood-brain barrier [315]. Similar glyco-
peptides administered to mice producedmore potent analgesic
properties than the unglycosylated peptides [316, 317]. It is
presumed that the increased penetration of the blood-brain
barrier and improved analgesic properties originates from
transport of the glycopeptides by GLUT1. The antidepressant
drug 7-chlorokynurenic acid is itself not able to cross the
blood-brain barrier so it was coupled with D-glucose and D-
galactose, and the resultant ester conjugates (Fig. 9c) were
tested for protective effects in mice against seizures induced
by N-methyl-D-aspartate (NMDA). It was found that the D-
glucopyranos-6′-yl ester was more potent than the D-
glucopyranos-3′-yl ester whilst the galactopyranos-6′-yl ester
was not protective at all. Based on these results, a role of

Drug

Pro-drug

Nutrient
conjuga�on

Enzyma�c
cleavage

Drug
target

Fig. 8 Pro-drug strategy for
delivering drugs across blood-
brain barrier membranes via
endogenous transport proteins
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GLUT1 was suggested for the brain uptake of the active
glucosyl conjugates considering that GLUT1 has a lower af-
finity for D-galactose than for D-glucose [318, 319]. In a sim-
ilar manner, glycosyl conjugates of dopamine and L-DOPA
were obtained using a succinyl linker as esters at the C-3
position of glucose and at the C-6 position of galactose as
potential anti-Parkinson pro-drugs. The dopamine derivatives
were more active in reversing reserpine-induced
hypolocomotion in rats than L-DOPA or its conjugates, whilst
all compounds reduced morphine-induced locomotion [320].
Based on these results, it was suggested that glycosyl conju-
gation of dopamine allowed this drug to cross the blood-brain
barrier via GLUT1 and it was later demonstrated that the C-3
glucose conjugate of dopamine (Fig. 9d) is a transportable
substrate of GLUT1 [321].

Conjugation of the nonsteroidal anti-inflammatory drugs
(NSAIDs) ketoprofen and indomethacin with glucose at the
6-OH position (Fig. 9e) produced pro-drugs that were able to
significantly inhibit the GLUT1-mediated uptake of glucose.

These conjugates were also able to cross the blood-brain bar-
rier in a temperature-dependent manner, suggesting that their
brain uptake is carrier-mediated, most likely via GLUT1
[322]. In order to improve the delivery of the NSAID ibupro-
fen across the blood-brain barrier, a number of conjugates to
D-glucose were prepared via ester bonds at positions C-2, C-3,
C-4 and C-6 [323]. All four pro-drug compounds were mod-
erately stable in pH 7.43 buffer solution, rat plasma and brain
tissue extracts. The feasibility of the compounds to undergo
enzymatic cleavage by esterase in biological samples to regen-
erate the original drug was also assessed. In vivo experiments
showed that the levels of ibuprofen in plasma after the injec-
tion of the pro-drugs was several times higher than after the
injection of ibuprofen and that the maximal concentration of
ibuprofen in brain after administration of the C-6 conjugate
(Fig. 9e) was threefold higher than that of the control group.
Futhermore, the concentration of ibuprofen was kept stable in
brain for around 4 h for all four conjugates and this was sug-
gested to be beneficial for treatment of AD [323]. It is
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Chlorambucil

7-Chlorokynurenic acid
Dopamine

Ketoprofen

Ibuprofen
Indomethacin

Fig. 9 Drugs conjugated with GLUT1 substrates: D-glucose
con juga t e s . a Ch lo r ambuc i l con juga t e 6 -O - 4 - [b i s ( 2 -
chloroethyl)amino]benzenebutanoyl-D-glucopyranose [313]. b O-
Methyl-sulphonyl derivatives with mesylation at the (i) 3-OH,
(ii) 4-OH and (iii) 6-OH positions [314]. c 7-Chlorokynurenic

acid conjugates [318, 319]: (i) D-glucopyranos-3′-yl ester, (ii) D-
glucopyranos-6′-yl ester, (iii) galactopyranos-6′-yl ester. d Dopa-
mine conjugate at the 3-OH position [321]. e 6-OH position con-
jugates with (i) ketoprofen, (ii) indomethacin and (iii) ibuprofen
[322, 323]
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presumed that delivery of these pro-drugs to the brain is via
GLUT1. In a different study, a number of L-ascorbic acid
derivatives of ibuprofen (Fig. 10a) were synthesised as pro-
drugs to improve delivery of ibuprofen to the brain via
GLUT1 and the sodium-dependent vitamin C transporter
SVCT2 [324]. In vivo distribution measurements following
intravenous administration of the pro-drugs and naked ibupro-
fen showed that the pro-drugs exhibited excellent transport-
ability across the blood-brain barrier and significantly in-
creased the level of ibuprofen in the brain. Biodistribution
and pharmacokinetic parameters suggested that an L-ascorbic
acid thiamine disulphide delivery system (Fig. 10b) is a prom-
ising carrier for enhancing drug delivery to the brain [324].

Nano-enabled Delivery Systems

Nano-enabled delivery systems are a promising approach for
improving the uptake and targeted delivery of drugs to the
brain. The various nanocarriers that can be used to encapsulate
drugs, either alone or in combination with targeting ligands,
include polymer-drug conjugates, liposomes, micelles,
bolaamphiphiles, microspheres, dendrimers, nanogels,
bionanocapsules and nanoparticles [297, 325–329]. Glucose
derivatives of cholesterol have been synthesised as a material
for preparing liposomes to encapsulate drugs and improve
their delivery to the brain by targeting GLUT1 at the blood-
brain barrier. Here, ethylene glycols of different chain lengths
were used as linkers between the glucose and cholesterol moi-
eties (Fig. 11a) [330, 331]. In one study, the fluorescent model
drug coumarin 6 was loaded into liposomes composed of
phospholipids and glucose-derived cholesterols with different
linker lengths (GLU200-LIP, GLU400-LIP, GLU1000-LIP,
GLU2000-LIP) prepared by a thin-film dispersion-ultrasound
method. An in vitro blood-brain barrier model was developed
to evaluate the transendothelial ability of the different lipo-
somes crossing the blood-brain barrier. The biodistribution
of the liposomes in mouse brain was also measured by in vivo
methods. The liposomes GLU400-LIP, GLU1000-LIP and

GLU2000-LIP all showed potential for brain targeting and
the one with intermediate chain length, GLU1000-LIP, exhib-
ited the strongest brain delivery capacity (Fig. 11b) [332].
Some multivalent glucosides with high affinity as ligands for
targeting liposomes to the brain via GLUT1 have recently
been synthesised. These liposomes loaded with the chemo-
therapy drug docetaxel significantly increased the level of
docetaxel in mouse brain compared to naked docetaxel and
empty liposomes as a control [333]. Liposomes modified with
p-aminophenyl-α-D-mannopyranoside have been investigated
as carriers for delivering encapsulated drugs across the blood-
brain barrier via GLUT1 and have also shown potential for
targeting various functional regions of the brain. Such lipo-
somes loaded with a fluorescent dye showed efficient pene-
tration through the blood-brain barrier and accumulation in
mouse brain with a distinct spatiotemporal pattern [334]. A
further investigation of the relationship between the brain dis-
tribution of these mannose-derivatised liposomes and glucose
transporters showed that cellular uptake was significantly im-
proved by GLUT1 and GLUT3 overexpression. The results
indicated that transcytosis by GLUT1 and GLUT3 is the likely
pathway for transport of the liposomes into brain and the spe-
cific brain distribution of the liposomes was closely related to
the non-homogeneous distribution of GLUT1 and GLUT3
[335]. A recent study using mannose-derivatised liposomes
encapsulating the antidepressant drug sertraline demonstrated
how optimisation of ultrasound parameters can maximise
mannosylation capacity, sertraline entrapment and vesicle
size. Also, transendothelial ability was increased by 2.5-fold
by mannosylation through binding with GLUT1 [336].

Nanoscale micelles functionalised with dehydroascorbic
acid have been developed for targeting GLUT1 to deliver
drugs across the blood-brain barrier [337]. The micelles were
also designed with a disulphide linkage that forms a bio-
responsive inner barrier. This maintains the stability of the
micelles in the blood circulation and prevents leakage of en-
capsulated drug molecules before reaching target cells in the
brain. Once within the cells, drug release is triggered by the
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Ibuprofen

Ibuprofen

Ibuprofen

Fig. 10 Drugs conjugated with GLUT1 substrates: L-ascorbic acid conjugates. a Conjugate with ibuprofen. b L-Ascorbic acid thiamine disulphide
system for delivering ibuprofen [324]
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high intracellular level of glutathione. Such micelles combine
the dual characteristics of GLUT1-targeting and selective con-
trol of drug deposition in the brain. Dehydroascorbic acid-
derivatised micelles containing the antifungal drug
itraconazole were highly effective against intracranial infec-
tion [337]. Similar dehydroascorbic acid-derivatised micelles
have been developed for treating the highly aggressive cancer
malignant glioma [338] and have shown a ‘one-way’ contin-
uous accumulation within tumour cells [339] and therefore
potential for delivering drugs to cancer sites in the brain and
central nervous system via GLUT1. Pluronic P105 polymeric
micelles, derivatised for targeting GLUT1 and the folic acid
receptor, and encapsulating the chemotherapy drug doxorubi-
cin have been prepared for enhancing blood-brain barrier
transport and accumulation of the drug in glioma cells. Intra-
venous injection of these micelles produced a high suppres-
sion ratio of tumour growth, and the results showed promise
for treating brain tumours [340].

Glucose-coated gold nanoparticles have been investigated
as potential carriers of drugs across the blood-brain barrier
endothelium and subsequently into astrocytes [341]. These

nanoparticles were 4 nm in size with a 2-nm gold core and
the coating with glucose was for targeting GLUT1. It was
found that the transport rate of these nanoparticles across the
human brain endothelium was at least three times faster than
across non-brain endothelia. The nanoparticles moved across
the apical and basal plasma membranes and through the cyto-
sol with relatively little vesicular or paracellular migration,
and antibiotics that interfere with vesicular transport did not
block their migration. In a culture system that included human
brain endothelial cells and primary human astrocytes, the
glucose-coated nanoparticles traversed the endothelium then
moved through the extracellular matrix and localised in the
astrocytes [341]. Because movement of the nanoparticles was
not blocked by antibiotics that interfere with endocytosis or by
cytochalasin B, it was concluded that transcytosis and GLUT1
are not responsible for transfer of the nanoparticles across the
membranes and that this transfer must be dependent on some
other biophysical property of the nanoparticles [341]. Nano-
particles of poly(ethylene glycol)-co-poly(trimethylene car-
bonate) functionalised with 2-deoxy-D-glucose were dual-
targeted to GLUT1 for drug delivery in glioma treatment.
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GLU200-LIP GLU400-LIP GLU1000-LIP GLU2000-LIP

2 h

Blank
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Fig. 11 Liposomes from glucose
derivatives of cholesterol for drug
delivery. a Structure of a glucose
derivative of cholesterol with
ethylene glycols of different chain
lengths used as the linker between
the glucose and cholesterol
moieties [328, 329]. b In vivo
imaging of mice anaesthetised at
2, 6 and 12 h after intravenous
injection of liposomes with
different linker lengths (GLU200-
LIP, GLU400-LIP, GLU1000-
LIP, GLU2000-LIP) loaded with
the fluorescent dye 1,1′-
dioctadecyl-3,3,3′,3′-
tetramethylindotricarbocyanine
(DIR). Ex vivo imaging in mouse
brain 1 h after the intravenous
injection of the different DIR-
loaded liposomes is also shown at
the bottom. The colour bar
indicates the intensity of the near-
infrared fluorescence signal. The
pictures in (b) were adapted from
Xie et al. (2012) [332], which was
originally published in
International Journal of
Nanomedicine. Copyright by Xie
et al. 2012
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Derivatisation with 2-deoxy-D-glucose was aimed at enhanc-
ing penetration of the blood-brain barrier via GLUT-mediated
transcytosis and improving drug accumulation in the glioma
via GLUT-mediated endocytosis [342]. These nanoparticles,
which had a size of 71 nm, were encapsulated with the anti-
cancer drug paclitaxel. Compared with non-glucosylated
nanoparticles, a significantly higher amount of the
glucosylated nanoparticles were internalised by glioma cells
through caveolae-mediated and clathrin-mediated endocyto-
sis. Transport ratios across an in vitro blood-brain barrier mod-
el and the cytotoxicity of glioma cells after crossing the blood-
brain barrier were significantly greater for the glucosylated
nanoparticles than for unglycosylated nanoparticles. In this
case, a role for GLUT1 in the enhanced transport of the gly-
cosylated nanoparticles across the blood-brain barrier was
confirmed. Furthermore, in vivo fluorescent imaging indicated
that glucosylated nanoparticles had high specificity and efficien-
cy in intracranial tumour accumulation, and the anti-
glioblastoma efficacy of the paclitaxel-loaded glucosylated
nanoparticles was significantly greater compared with that
of Taxol and paclitaxel-loaded unglycosylated nanoparticles
[342].

In Vitro Models of the Human Blood-Brain Barrier
for Investigating Glucose Transporters

Other than using relatively non-invasive imaging techniques
such as PET, it is generally not feasible to perform direct in
vivo studies on the expression, distribution and function of
glucose transporters and their interactions with drugs at the
blood-brain barrier in humans. In vivo measurements on the
blood-brain barriers from mice, rats, pigs, cows and primates
can be performed but these suffer from high costs and have
ethical implications. Hence, a large number of in vitro models
of the blood-brain barrier have been developed with varying
levels of complexity. The model should ideally mimic the in
vivo blood-brain barrier as closely as possible, but since this is
so complex, the in vitro models are generally much more
simplified. The in vitro models are therefore not able to
completely replicate the in vivo conditions of the blood-
brain barrier, so it is important to recognise their limitations
when designing experiments and interpreting the data. Func-
tional features that should be included in an ideal and com-
plete in vitro model of the blood-brain barrier include an abil-
ity to express tight junctions between endothelial cells, negli-
gible paracellular diffusion between endothelial cells, selec-
tive and asymmetric permeability to physiologically important
ions (Na+, K+, Cl−), functional expression of endogenous
transport and receptor proteins, responsiveness to stimuli
and an ability to reproduce the effects of a range of physio-
logical and pathophysiological conditions that affect the
blood-brain barrier in vivo [343]. The most basic in vitro

models are cell culture-based static systems, which can com-
prise just a monolayer of endothelial cells or this can be co-
cultured with astrocytes, pericytes, microglia or neurons
(Fig. 12a). The co-cultures provide an environment that more
closely mimics the in vivo neurovascular unit by introducing
interactions between the different cell types. These systems
can be adapted for measuring the transendothelial electrical
resistance (TEER) of the endothelial cell layers and for mea-
suring the flux of tracer compounds or drugs across the endo-
thelial cells (Fig. 12b, c). Whilst these systems are relatively
simple, their contents can be carefully controlled. Some in
vitro models use primary cultures from human, cow, pig,
mouse and rat, but in addition to brain endothelial cells, these
can contain contaminating cells including brain pericytes, fi-
broblasts, smooth muscle cells and leptomeningeal cells [344,
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Co-culture Triple cultureMono-culture

Endothelial cells Astrocytes

Fig. 12 Basic cell culture in vitro models of the blood-brain barrier. a
In vitro reconstituted static blood-brain barrier models using culture in-
serts: mono-culture of brain endothelial cell layer, co-culture of brain
endothelial cell layer with a second cell type (e.g. astrocytes) on the other
side of the porous filter or at the bottom of the culture well, triple culture
with brain endothelial cell layers in the upper side of the inserts with the
second cell type at the other side of filter and the third type in the culture
well. b Measurement of transendothelial electrical resistance (TEER) of
brain endothelial cell monolayers grown in cell culture inserts with a pair
of electrodes. c Flux of tracer compounds or drugs from the upper
(luminal) compartment to the lower (abluminal) compartment through a
brain endothelial monolayer can be measured during given time intervals
and endothelial permeability coefficients can be calculated. This figure
was adapted from Deli (2007) [362], which was originally published in
Handbook of Neurochemistry and Molecular Neurobiology. Copyright
by Springer-Verlag 2007
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345]. The contaminating cells disturb the development of tight
monolayers and overgrow the brain endothelial cells during
long‐term cultivation. The preparation of primary cultures is
also expensive, time-consuming and requires special expertise
[346]. Cell line-based models using immortalised brain endo-
thelial cell lines from human, cow, mouse or rat have more
recently been developed, and these overcome many of the
problems of primary cultures. The first stable and well‐
characterised human brain endothelial cell line was hCMEC/
D3, which shows many characteristics of the in vivo blood-
brain barrier [347]. In all of these systems, the matrix can be
modified to include chemical and other components to repli-
cate in vivo conditions at the blood-brain barrier, stress con-
ditions such as hypoglycemia, hyperglycemia and hypoxia,
disease states or to test the effects of drugs. A further factor
to consider in the development of an in vitro model is the shear
stress generated by blood flow under physiological condi-
tions, which affects transporter and tight junction protein ex-
pression as well as endothelial barrier function [348]. Dynam-
ic blood-brain barrier models, which include shear stress, have
therefore been developed of which there are three main types:
cone-plate apparatus [349], dynamic in vitro models
[350–354] and microfluidic in vitro models [355–359]. A de-
tailed description of in vitro models of the blood-brain barrier
is beyond the scope of this work, but numerous reviews on
this theme are available [343, 346, 360–373]. These demon-
strate that this is still a highly developmental area, and further
progress is needed to provide more sophisticated and robust in
vitro models of the blood-brain barrier.

Human Brain Endothelial Cell Line hCMEC/D3

The human brain endothelial cell line hCMEC/D3 [347] has
become one of the most abundantly used cell lines for in vitro
models of the blood-brain barrier [374], including for the
study of glucose transporters. Its popularity arises from its
stability and ease of growth and the fact that it retains the
expression of most metabolising enzymes, tight junction pro-
teins, transporters and receptors expressed in vivo at the
blood-brain barrier. Furthermore, it can be adapted for drug
uptake and active transport studies and for studying the brain
endothelium response to human pathogens and inflammatory
stimuli [374–377]. In order to validate the hCMEC/D3 cell
line as a blood-brain barrier model, transcriptomic profiles
of hCMEC/D3 cells and human brain microvascular endothe-
lial cells (BEC) have been compared with published transcrip-
tional data from freshly isolated mouse BECs [378]. The anal-
ysis revealed that some important types of proteins, including
tight junction proteins, transporters and receptors are
expressed at very low levels in the hCMEC/D3 and human
BEC cells compared with the fresh mouse BECs. For exam-
ple, GLUT1 was highly expressed in mouse BECs but present
at very low levels in both hCMEC/D3 and human BEC cells.

This trend was seen for a number of SLC and ABC trans-
porters that have crucial functions and are expressed at high
levels at the blood-brain barrier (Fig. 13). It was concluded
that the hCMEC/D3 and human BEC cells lose their unique
protein expression profile when outside of their native envi-
ronment at the neurovascular unit and display a more generic
endothelial cell phenotype [379]. A subsequent quantitative
proteomic analysis of transporters, receptors and junction pro-
teins in the hCMEC/D3 cell line has been performed [379].
From 91 target molecules, 12 transporters, 2 receptors, 1 junc-
tion protein and 1 membrane marker were present at quantifi-
able levels in plasma membranes of hCMEC/D3 cells. The
transport proteins included GLUT1. After normalisation
based on Na+/K+-ATPase expression, the differences in pro-
tein expression levels between the hCMEC/D3 cells and hu-
man brain microvessels were within fourfold for the large
majority of the proteins. GLUT1 expression was 15-fold
higher in the hCMEC/D3 cells than in human umbilical vein
endothelial cells (HUVECs) used as reference non-brain en-
dothelial cells [379]. The results of this proteomic analysis
suggest that the expression levels of some important trans-
porters in the hCMEC/D3 cell line, including GLUT1, may
be closer to the levels in the native blood-brain barrier than
suggested by the transcriptomic analysis.

Characterisation and modulation of glucose uptake in a
human blood-brain barrier model using the hCMEC/D3
cell line have been performed [380]. [3H]-2-deoxy-D-glu-
cose uptake was sodium- and energy-independent and
regulated by Ca2+ ions and calmodulin but not by MAPK
kinase pathways. This suggests that [3H]-2-deoxy-D-glu-
cose uptake is via facilitative GLUT proteins and this was
confirmed by a decrease in uptake by the known GLUT1
competitive inhibitor quercetin and the related compound
myricetin. Progesterone and estrone decreased [3H]-2-de-
oxy-D-glucose uptake, and protein kinases A and C and
protein tyrosine kinase also seemed to be involved in
modulating the uptake [380]. A study using the hCMEC/
D3 cell line to investigate the effects of altered glycaemia
on the blood-brain barrier endothelium [160] has already
been mentioned in previous sections. Parallel monolayers
of hCMEC/D3 cells were exposed to normal, hypo- or
hyperglycaemic conditions (5.5, 2.2 or 35 mM D-glucose,
respectively); and the expression levels and distribution of
a number of proteins, including glucose transporters, were
followed during exposure over 3–24 h. Cultures exposed
to hypoglycemic conditions for 3 h had a significant de-
crease in expression of GLUT1, which was returned to
normal or marginally increased levels after 24 h [160].
In contrast, SGLT1 levels were unchanged at 3 h and
significantly increased after 24 h. Hyperglycemic condi-
tions produced no changes in the expression levels of
GLUT1 or SGLT1, but they did produce an upregulation
of GLUT4 [160].
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Brain Endothelial Cells from Human Stem Cells

Human blood-brain barrier endothelial cells prepared
from human embryonic stem cells (hESCs) or induced
human pluripotent stem cells (iPSCs) have recently been
described that show similar characteristics compared
with the in vivo blood-brain barrier and therefore a
good promise as the basis for in vitro models [381].
The hESCs or iPSCs are first incubated with medium-
favouring neural differentiation and then with medium-
favouring endothelial differentiation to acquire the
blood-brain barrier properties. The resultant pure endo-
thelial cells have well-organised tight junctions, appro-
priate expression of nutrient transporters and polarised
efflux transporter activity, respond to astrocytes and
have a molecular permeability that correlates well with
an in vivo rodent blood-brain barrier [381]. Possible
limitations of this model may come from a low repro-
d u c i b i l i t y o f p a r a c e l l u l a r p e rme ab i l i t y a n d
transendothelial electrical resistance across replicates,
which may be affected by the type and history of the
stem cell lines; and the stability of the model for pe-
riods of up to only 7 days might preclude its general
use for drug screening and toxicology studies. As an
alternative, a human blood-brain barrier model using
human cord blood-derived haematopoietic stem cells
has been developed [382]. These stem cells were

initially differentiated into endothelial cells followed by
the induction of blood-brain barrier properties by co-
culture with pericytes. The resultant endothelial cells
express tight junction proteins and transporters typically
observed in brain endothelium and maintain the expres-
sion of most in vivo blood-brain barrier properties for at
least 20 days. This model also showed good reproduc-
ibility with similar paracellular permeability for cells
derived from three different donors and in three differ-
ent laboratories. Furthermore, results showed a good
correlation between the in vitro predicted ratio of con-
centrations of unbound drug in brain and plasma obtain-
ed with this model and the in vivo ratio of concentra-
tions of unbound drugs in cerebrospinal fluid and plas-
ma reported in humans [382].

Conclusions

Whilst much is known about the distribution, function
and regulation of glucose transporters at the blood-brain
barrier, a further understanding of their complex rela-
tionships with foremost disorders such as diabetes,
Alzheimer’s disease and cerebral ischemia is still neces-
sary. This will allow the roles of glucose transporters as
potential therapeutic targets and as routes of entry for
drug delivery to the brain and central nervous system to

Fig. 13 Expression levels of blood-brain barrier genes in human
hCMEC/D3 cells. The x-axis shows the ratio between expression levels
in mouse BECs and hCMEC/D3 cells, and the y-axis shows the ratio
between mouse BECs and hCMEC/D3 cells multiplied by the expression
levels in mouse BECs. Expression levels were first normalised against the
expression level of the ribosomal protein L4 (RBL4) in each cell type.
Genes in the upper right hand corner are therefore highly expressed in
mouse BECs and much more in comparison to the hCMEC/D3 cells. All

genes for mouse BECs versus hCMEC/D3 are displayed as grey dots.
Tight junction genes (red square), SLC members (blue dot), ABC mem-
bers (yellow triangle) and receptors (green diamond) are highlighted. All
crucial blood-brain barrier genes (enlarged symbols) are expressed at
much lower levels in the hCMEC/D3 cells than in the mouse BECs. This
figure was reproduced from Urich et al. (2012) [378], which was origi-
nally published in PLoS One. Copyright by Urich et al. 2012
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be exploited to their full potential in the prevention and/
or treatment of neurological and neurovascular disorders
and brain tumours. In vitro models of the human blood-
brain barrier will no doubt be required to achieve this.
Although there has been significant recent progress, it
appears that no perfect and robust in vitro model of the
human blood-brain barrier has yet been developed and
fully validated. Further developments and characterisa-
tion of in vitro models of the human blood-brain barrier
will open new opportunities to study the structure and
function of the blood-brain barrier, the effects of stress
and disease conditions and exposure to drugs and xeno-
biotics and to develop their use in drug screening and
discovery. This includes glucose transporters at the
blood-brain barrier. Development of such improved in
vitro models will bring together clinicians and re-
searchers with expertise in cell and tissue engineering
and in mechanical and electrical engineering. Structural
biology and chemistry also have important roles to play.
The crystal structure of GLUT1 could be employed in
docking and modelling experiments to assist the in
silico design of drugs, pro-drugs and drug delivery sys-
tems to target GLUT1. Compounds and drug delivery
systems that show potential as therapeutic agents can
then be chemically synthesised or produced and tested
for binding and/or transport activities in biochemical
and biophysical experiments with GLUT1 and in in
vitro models of the blood-brain barrier. The recent crys-
tal structures of GLUT3 and GLUT5 could be used in a
similar manner as targets for inhibitors or for drug de-
livery to brain tumours. Hence, a further understanding
and exploitation of glucose transporters at the blood-
brain barrier requires the consolidation of a number of
disparate clinical, scientific and engineering disciplines,
which also applies to blood-brain barrier research in
general.
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