Mol Neurobiol (2017) 54:200-211
DOI 10.1007/s12035-015-9625-0

@ CrossMark

GSK-3[3 and MMP-9 Cooperate in the Control of Dendritic

Spine Morphology

Tlona Kondratiuk' - Szymon L(;ski2 - Malgorzata Urbanska® - Przemyslaw Biecek* -
Herman Devijver5 - Benoit Lechat® - Fred Van Leuven® - Leszek Kaczmarek' -

Tomasz Jaworski'

Received: 26 October 2015 / Accepted: 8 December 2015 /Published online: 6 January 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Changes in the morphology of dendritic spines
are prominent during learning and in different neurolog-
ical and neuropsychiatric diseases, including those in
which glycogen synthase kinase-33 (GSK-3f3) has been
implicated. Despite much evidence of the involvement
of GSK-3f in functional synaptic plasticity, it is unclear
how GSK-3f3 controls structural synaptic plasticity (i.e.,
the number and shape of dendritic spines). In the pres-
ent study, we used two mouse models overexpressing
and lacking GSK-3f in neurons to investigate how
GSK-3f affects the structural plasticity of dendritic
spines. Following visualization of dendritic spines with
Dil dye, we found that increasing GSK-3f3 activity in-
creased the number of thin spines, whereas lacking
GSK-3f3 increased the number of stubby spines in the
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dentate gyrus. Under conditions of neuronal excitation,
increasing GSK-3f3 activity caused higher activity of
extracellularly acting matrix metalloproteinase-9 (MMP-
9), and MMP inhibition normalized thin spines in GSK-
33 overexpressing mice. Administration of the nonspe-
cific GSK-3f3 inhibitor lithium in animals with active
MMP-9 and animals lacking MMP-9 revealed that
GSK-33 and MMP-9 act in concert to control dendritic
spine morphology. Altogether, our data demonstrate that
the dysregulation of GSK-3f3 activity has dramatic con-
sequences on dendritic spine morphology, implicating
MMP-9 as a mediator of GSK-33-induced synaptic
alterations.

Keywords GSK-3f3 - MMP-9 - Imaging - Transgenic mice -
Dendritic spines - Synaptic plasticity

Introduction

Dendritic spines comprise the postsynaptic compartments of
excitatory inputs as the basic units of information processing
and storage [1]. Dynamic changes in dendritic spine morphol-
ogy, the growth of new spines, and the elimination of existing
spines can occur on very different time scales, reflecting ad-
justments of the synaptic strength that supports learning and
memory [2]. The regulation of dendritic spine morphology is
governed by the extracellular matrix (ECM), cell adhesion
molecules (CAMs), and the cytoskeleton that is controlled
by specific signaling networks [3]. Components of the
ECM, including matrix metalloproteinases (MMPs), have
been proposed to actively contribute to dendritic spine remod-
eling. Accumulating evidence suggests a specific role for
MMP-9 in regulating the structural plasticity of dendritic
spines [4].
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Glycogen synthase kinase-3 (GSK-3) is a serine/
threonine protein kinase that besides glycogen metabo-
lism also regulates many critical cellular processes in
most organs, including the central nervous system [5].
GSK-3 exists as two isozymes, GSK-3« and GSK-3f3,
that have similar structures but are not functionally
identical in neurons [6]. GSK-3[3 is the more essential
isozyme, because its genetic deletion is lethal in mouse
embryogenesis, in contrast to GSK-3a [7-11]. GSK-3f3
is ubiquitously present in the brain, including neurons
and synaptosomes [12] that essentially represent excit-
atory synapses [13]. At excitatory synapses, GSK-3f3
balances two major forms of synaptic plasticity: long-
term potentiation (LTP) and long-term depression
(LTD), which are both N-methyl-D-aspartate (NMDA)
receptor-dependent [14]. During LTP, NMDA receptor
activation inhibits GSK-3[3 activity through phosphory-
lation at Ser9 via the PI3K/Akt pathway, whereas during
LTD, GSK-3f activity increases [14]. This apparent du-
ality in molecular mechanisms that require the modula-
tion of GSK-33 phosphorylation at Ser9 during experi-
mental LTP or LTD is crucial for learning and memory
[12, 14, 15].

The dysregulation of signaling pathways that involve
GSK-3 is associated with the pathogenesis of several neuro-
logical and psychiatric disorders, including mental retardation,
schizophrenia, depression, and Alzheimer’s disease [16].
These disorders are also characterized by aberrant structural
changes in dendritic spines.

Mouse models that lack or overexpress either of the
GSK-3 isozymes mimic various pathological conditions
that are observed in different neuropsychiatric and neuro-
logical disorders [17]. Balancing GSK-3 activity in mice
by genetic or pharmacological manipulations can rescue
some of the functional defects in behavior and synaptic
transmission [12, 18-20]. Consequently, the pharmacolog-
ical inhibition of GSK-3 was proposed as an attractive
therapeutic strategy for mental illnesses. Psychoactive
drugs (e.g., lithium salts) that are used to treat bipolar
disorder, depression, and schizophrenia inhibit GSK-3,
among other enzymes [21].

Despite growing evidence of the role of GSK-3 in func-
tional synaptic plasticity [11, 12, 14, 15, 22-26], it is far from
clear how GSK-3f3 controls structural synaptic plasticity,
reflected by alterations in the number and shape of dendritic
spines [27-29]. In the present study, we analyzed mice either
overexpressing or lacking GSK-3f3 in neurons to clarify the
relationship between aberrant GSK-3 activity and the structur-
al plasticity of dendritic spines. We identified GSK-3f3 as a
critical regulator of dendritic spine architecture. Unexpectedly,
we also discovered that MMP-9, the extracellular MMP, acts
as a downstream regulator of GSK-3 3-induced dendritic spine
alterations.

Materials and Methods
Animals
GSK-3(3 Transgenic and Knockout Mice

GSK-3f3 transgenic (TG; GSK-33[S9A]) mice overexpress
the constitutively active form of GSK-33, with a mutation
of Ser9 to alanine, specifically in neurons under the control
of the mouse Thy-1 gene promoter. Heterozygous GSK-
33[S9A] mice were maintained on an FVB/N genetic back-
ground [30, 31]. GSK-3B[S9A] mice were compared with
wild-type (WT) littermates as controls.

Neuron-specific GSK-33-deficient (GSK-3""") mice
were obtained by crossing mice with floxed GSK-3(3 genes
with Thy-1-Cre recombinase transgenic mice. GSK-3p™""
mice were maintained on a mixed FVB-C57BL/6 genetic
background [9]. GSK-3B™" mice were compared with
GSK-3 Bloxp/ 1oXP Jittermates, which lack Cre recombinase, as
controls. For both genotypes, the Thyl-gene promoter has
been shown to yield postnatal expression of the respective
transgene in central neurons only [9, 11, 30, 31].

MMP-9 Transgenic and Knockout Animals

Transgenic Wistar rats overexpress autoactivating MMP-9 un-
der the control of the synapsin 1 promoter (MMP-9 TG rats)
[32]. MMP-9 homozygous knockout mice (MMP-9 KO mice)
were obtained from Dr. Z. Werb (University of California, San
Francisco) [33] and maintained on a C57B1/6 background.

All of the animal experiments were performed by certified
researchers in accordance with regional, national, and Euro-
pean regulations concerning animal welfare and animal exper-
imentation. The researchers were authorized and supervised
by the University Animal Welfare Commission (Ethische
Commissie Dierenwelzijn, KULeuven, Leuven, Belgium)
and the Ethical Committee on Animal Research of the Nencki
Institute (Warsaw, Poland).

Lithium Chloride Treatment

MMP-9 TG rats and MMP-9 KO mice were subjected to a
regimen of 4 weeks of lithium salt treatment [34]. The exper-
imental animals were divided into four groups (n=23/group):
WT animals that were fed a control diet (WT); KO and TG
animals that were fed a control diet (MMP-9 KO, MMP-9
TG); WT animals that were fed a lithium salt-supplemented
diet (WT + Li); and KO and TG animals that were fed a
lithium salt-supplemented diet (MMP-9 KO + Li, MMP-9
TG + Li). Lithium chloride (0.2 % [w/w]) was supplemented
in custom-prepared food pellets (Vivari, Warsaw, Poland).
Treatment commenced at 3 months of age, and the diets were
provided ad libitum for 1 month. Animals that fed the lithium
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salt-supplemented diet were given drinking water with 1.5 %
(w/v) sodium chloride to counteract the peripheral side effects
of lithium ions.

Dendritic Spine Analysis

Dendritic spine analysis was performed essentially as de-
scribed previously [35]. GSK-3B[S9A] and GSK-3" " mice
and Li*-treated MMP-9 KO mice and MMP-9 TG rats and
their respective controls were anesthetized with pentobarbital
and transcardially perfused first with phosphate-buffered sa-
line (PBS) and then with 1.5 % paraformaldehyde (PFA) at
room temperature. The brains were postfixed in 1.5 % PFA for
20 min and transferred to ice-cold PBS for another 20 min.
The brains were cut into 130-pum-thick slices using a
vibratome and left in PBS for 1 h. The sections were labeled
by gene gun delivery of tungsten particles (Bio-Rad, Hercules,
CA, USA) coated with the lipophilic dye 1,1'-dioctadecyl-3,3,
3’ 3'-tetramethylindocarbocyanine perchlorate (Dil; D-3911,
Thermo Fisher). The slices were subsequently incubated in
1.5 % PFA for 24 h to allow the dye to diffuse into neuronal
processes, including spines. Confocal images of secondary
apical dendrites of the dentate gyrus field were acquired under
561-nm fluorescent illumination. Spines were measured and
analyzed using semiautomatic custom software
(SpineMagick) [36].

Dendritic Spine Clustering

The virtual skeletons of dendritic spines were obtained in
SpineMagick. Spine length was calculated as the length of
the path from the spine top to the dendrite along the virtual
skeleton of the spine. To analyze the shapes of spines, the
virtual skeleton of each spine from an individual image was
transformed to form a straight line. The images were then
rescaled to normalize the spine area. For each spine diameter,
we defined width as a function of distance from the dendrite,
denoted d(h).

We classified 9429 spines according to shape from GSK-
33-modified mice and their respective controls using a two-
step procedure [37]. First, all 9429 d(h) functions were clus-
tered into 36 clusters. Second, the clusters were manually
sorted into three groups (i.e., mushroom, stubby, and thin
spines) based on visual inspection of clustered spines. The
data analysis was performed using custom scripts that were
written in Python using NumPy and SciPy [38, 39] and
Matplotlib [40].

Pentylenetetrazole Treatment
To induce seizures and activate MMP-9, the mice were

injected with the 'y-aminobutyric acid-A (GABA,) receptor
antagonist pentylenetetrazole (PTZ) [41]. GSK-33[S9A]
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(n=6) and WT (n=06) mice (3.5-4 months old) were habitu-
ated to handling by subjecting them to intraperitoneal (i.p.)
injections of 0.9 % NaCl twice per day for 7 days before
PTZ stimulation. On day 8, WT and GSK-33[S9A] mice were
divided into groups that received either PTZ (50 mg/kg, i.p.)
or saline (0.9 % NaCl, i.p.). The mice were sacrificed by cervi-
cal dislocation 10 min after the onset of PTZ-induced seizures
or after saline injection. This 10-min time point was chosen
based on a timeline of MMP-9 activity upon PTZ treatment
(50 mg/kg) in WT mice. The mice were sacrificed 0, 5, and
10 min after PTZ-induced seizure onset (n = 3/time point).

Acute Hippocampal Slices and GM 6001 Treatment

GSK-33[S9A] and WT mice (n=5/group) were anesthetized
with isoflurane and decapitated. The brains were quickly re-
moved and placed in cold NMDG solution (135 mM N-meth-
yl-D-glutamine, 1 mM KCI, 1.2 mM KH,PO,, 1.5 mM
MgCl,, 0.5 mM CaCl,, 20 mM choline bicarbonate, and
10 mM D-glucose, pH 7.4) saturated with a carbogen gas
mixture (95 % O, and 5 % CO,). Both hemispheres were
cut into 300-pum coronal slices with a vibratome. The slices
were left for recovery in artificial cerebrospinal fluid (aCSF;
119 mM NaCl, 2.5 mM KCI, 26.2 mM NaHCO3, | mM
NaH,PO,, 2.5 mM CaCl,, 1.3 mM MgCl,, and 10 mM D-
glucose) and saturated with carbogen at room temperature
for 1 h. Slices from WT and GSK-33[S9A] mice were then
transferred to aCSF that contained either 0.004 %
dimethylsulfoxide (DMSO) or GM6001 (1 uM in DMSO)
and incubated at room temperature for 1 h. Following fixation
with 1.5 % PFA for 20 min, the slices were processed for Dil
dendrite labeling and spine analysis.

Western Blotting

Protein extracts were subjected to sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE; 8 % gels)
and electrotransferred (semi-dry transfer) to polyvinylidene
difluoride membranes (Immobilon-P, Millipore). The mem-
branes were blocked with 10 % (w/v) dried nonfat milk pow-
der in Tris-buffered saline with 0.1 % Tween-20 and incubated
with the following primary antibodies: rabbit anti-pGSK-3 o/
(Ser21/9) (1:1000 dilution; #9331, Cell Signaling Technol-
ogy); rabbit anti-GSK-3o/f3 (1:1000 dilution; #5676P, Cell
Signaling Technology); rabbit anti-pAktS473 (1:1000 dilu-
tion; #4060, Cell Signaling Technology), rabbit anti-
pAktT308 (1:1000 dilution; #4056, Cell Signaling Technolo-
gy); rabbit total Akt (1:1000 dilution; #9272, Cell Signaling
Technology); mouse anti-3-dystroglycan ([3-DG; 1:500 dilu-
tion; NCL-b-DG, Novocastra); and mouse anti-
glyceraldehyde-3-phosphate dehydrogenase (GAPDH;
1:2000 dilution; MAB374, Chemicon). Following washing
with TBST, the membranes were incubated with horseradish
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peroxidase-labeled secondary antibody (anti-mouse or anti-
rabbit; Vector Laboratories). After washing, peroxidase activ-
ity was visualized with ECL plus reagent (GE Healthcare).
Signal densities were analyzed using GeneTools software
(SynGene, England).

Matrix Metalloproteinase Gel Zymography

The extraction of MMP from mouse brain tissue was per-
formed as described previously [42]. Following cervical dis-
location, the brains were rapidly removed. The cerebral cortex
was isolated, homogenized, and centrifuged. Proteins from the
supernatant were precipitated with cold ethanol, and the pre-
cipitate was solubilized in sample buffer. The pellets from the
first centrifugation (Triton X-100-insoluble) were resuspend-
ed, incubated at 60 °C, and centrifuged. The proteins from the
resulting supernatant were precipitated and solubilized in non-
reducing sample buffer.

Triton X-100-insoluble samples were subjected to SDS-
PAGE on 8 % gels that contained 2 mg/ml gelatin (Sigma-
Aldrich). Following protein separation, the gels were washed
with 2.5 % Triton X-100 and incubated with moderate shaking
in developing buffer for the enzymatic reaction. The gels were
stained with 0.1 % Coomassie Blue G-250.

Dissociated Hippocampal Cultures

Dissociated hippocampal cultures were prepared from new-
born (postnatal day 0) Wistar rats [35]. The brains were re-
moved, and hippocampi were isolated on ice in dissociation
medium. The hippocampi were then dissociated with papain
and rinsed in dissociation medium and MEM plating medium.
The hippocampi were triturated in plating medium, and cells
were diluted in OptiMEM (Thermo Fisher) and centrifuged.
The cells were plated at a density of 120,000 cells per poly-L-
lysine-coated coverslip (Sigma). The cells were kept in main-
tenance medium at 37 °C under a humidified 5 % CO, atm.
All of the experiments were performed on days 17-19 in vitro.

Cell Stimulation

Hippocampal neurons were incubated for 5 min with
400 ng/ml of recombinant MMP-9 or inactive MMP-9
E402A mutant or with MMP-9 and wortmannin (100 nM in
DMSO) in maintenance medium. The final concentration of
DMSO did not exceed 0.016 %. After stimulation, the cells
were washed with maintenance medium, lysed with reducing
SDS sample buffer, and subjected to Western blotting.

Statistical Analysis

Graphs were prepared using Prism 5.01 software (GraphPad,
San Diego, CA, USA). Spine densities were compared using

the Mann-Whitney test. The numbers of differently shaped
spines were compared using the ~ test. The effects of lithium
and the MMP-9 inhibitor crossed with the effects of GSK-33
modification in mice on dendritic spine morphology were sta-
tistically analyzed using nested Gaussian mixed models. An-
imals and photographs were considered nested random ef-
fects, whereas the inhibitor and genetic modification were
considered crossed fixed effects. To stabilize variance, the
length-to-width ratio was log-transformed. Modeling was per-
formed using the R statistical package [43] with lme4 [44]
(available on CRAN) and DendriticSpineR (available on
GitHub). Graphs presenting densitometric quantification of
WB were prepared in Excel and results were compared using
Student ¢ test.

Results

Mice Expressing Constitutively Active GSK-3[3 had
Longer and Thinner Dendritic Spines, Whereas
GSK-33-Deficient Mice had Shorter Dendritic Spines

We studied how GSK3{ affects structural synaptic plastic-
ity in the adult central nervous system in mice either
overexpressing constitutively active GSK-3f3 in neurons
(GSK-3f3[S9A]) or deficient in GSK-3(3 specifically in
neurons (GSK-3p"""). We compared spine density and
morphology with control WT mice and mice with a floxed
GSK-3B gene (GSK-3p'O1%P) " respectively. The mor-
phometric analysis of spines in neurons that were stained
with the Dil dye was performed in the dentate gyrus
(Fig. la) using the length-to-width ratio as the most reli-
able reflection of spine morphology [35].

GSK-3[S9A] mice had similar spine densities (Fig. 1b)
but significantly longer spines, with a 60 % larger average
length-to-width ratio than WT mice (Fig. 1c). Conversely,
GSK-3B""" mice had a 14 % smaller length-to-width ratio
of dendritic spines compared with GSK-3p'*P1*P mice
(Fig. 1c). Spine density was reduced by 28 % in neurons in
GSK-3B™" mice (Fig. 1b). Importantly, the two control
strains (WT and GSK-3B'"*°*P) did not differ with regard
to the length-to-width ratio (Fig. 1c¢), although spine density in
GSK-3p'*P1oXP mice was 14 % higher than in WT mice
(Fig. 1b).

To further understand how GSK-3f3 affects dendritic spine
shape, we clustered spines into mushroom, stubby, and thin
categories (Fig. 1d). GSK-33[S9A] mice exhibited a signifi-
cant increase in the population of thin spines (28 % more) and
a significant decrease in the population of stubby spines (21 %
less) compared with WT mice, whereas GSK-3 [3"7/7 mice
exhibited an increase in the population of stubby spines
(13 % more) compared with GSK-3 3PP mice.
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Fig. 1 GSK-3f imbalance in a
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GSK-3[3 Regulation of Dendritic Spine Morphology
Involved MMP-9

The elongated phenotype of dendritic spines in GSK-3(3[S9A]
mice was reminiscent of a similar observation in MMP-9-
overexpressing TG rats [35]. MMP-9 is an extracellularly act-
ing protease that regulates dendritic spine shape [35, 45, 46].
Consequently, we hypothesized that GSK-33 regulates
MMP-9 activity to control dendritic spine morphology. We
further hypothesized that this co-regulation would be dysfunc-
tional in the absence of GSK-3f (i.e., in GSK-3B™" mice).

To test these hypotheses, we analyzed MMP-9 activity in
GSK-3B[S9A] and GSK-3B™"" mice (Fig. 2a). Because
MMP-9 is released by synaptic stimulation, we habituated
mice for 7 days to exclude any possible effects of the handling
procedure. On day 8, the mice were injected with saline (basal
condition) or PTZ to produce strong neuronal excitation. Pre-
vious studies reported that PTZ-induced MMP-9 activity in
vivo, and the sensitivity to PTZ-induced epileptogenesis was
MMP-9-dependent [32, 41]. Gelatin gel zymography demon-
strated that MMP-9 activity was unaffected by GSK-3[S9A]
overexpression in the basal condition, whereas GSK-33[S9A]
potentiated MMP-9 activity almost twofold upon neuronal
excitation (Fig. 2b).

Interestingly, these experiments showed that GSK-3p""~
mice were extremely susceptible to PTZ-induced seizures. On
average, 50 % died within 3 min after the injection of 50 mg/kg
PTZ. Lower PTZ doses (35 mg/kg) extended the survival of
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GSK-3 [Snf/f mice to 10 min, but at this lower dose neither
GSK-3p"*1xP nor GSK-3B™" mice developed seizures,
with no changes in MMP-9 activity (data not shown). Conse-
quently, the assessment of MMP-9 activity was not relevant in
GSK-3B""" mice.

We then sought to determine whether MMP-9 mediates
GSK-33-induced changes in dendritic spine morphology.
We analyzed acute hippocampal slices from GSK-3[3[S9A]
mice, both without MMP inhibition and after MMP inhibition,
and measured spines of granular neurons in the dentate gyrus
(visualized by Dil dye; Fig. 2¢). The length-to-width ratio was
significantly higher (by 12 %) in GSK-33[S9A] slices com-
pared with WT slices, confirming the in vivo results (Figs. 1c,
2d). Interestingly, the application of GM6001 to GSK-
33[S9A] slices significantly reduced the length-to-width ratio
by 10 % (Fig. 2d). These results indicate that increases in
MMP-9 activity contribute to the elongation of dendritic
spines under conditions of increased GSK-3f3 activity.

Longer and Thinner Dendritic Spines Produced
by Activated MMP-9 Were Normalized by Lithium
Chloride

To further investigate the effects of the relationship between
MMP-9 and GSK-3f3 activity on the morphology of dendritic
spines, we chronically inhibited GSK-3 in MMP-9 KO mice
and MMP-9 TG rats. We used lithium because: (i) GSK-3 is
inhibited by lithium ions in vivo [47-50], (ii) different and
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Fig. 2 GSK-3f regulates dendritic spine morphology in an MMP-9-
dependent manner. a WT and GSK-33[S9A] mice were stimulated with
saline or PTZ, and MMP-9 activity in hippocampal homogenates was
analyzed by gelatin gel zymography. b MMP-9 activity in control and
GSK-33[S9A] mice. The data are expressed as mean+ SEM. **p <0.01
(Mann-Whitney test). ¢ Example photographs of Dil-stained apical
dendrites of dentate gyrus neurons in acute hippocampal slices from

more specific GSK-3 inhibitors mimic the behavioral actions
of lithium salt [51, 52], (iii) the deletion of GSK-3« or GSK-
33 mimics the behavioral actions of lithium salt in mice [48,
53, 54], (iv) lithium salt-sensitive behavior is reversed by in-
creasing brain GSK-3 activity [18], and (v) impairments in
synaptic transmission caused by increased GSK-3(3 activity
are normalized by lithium salt [ 12]. Animals were treated with
lithium chloride for 30 days, and spines of neurons in the
dentate gyrus were visualized using Dil dye (Fig. 3a, b ).
MMP-9 KO mice had a significantly smaller (by 11 %) spine
length-to-width ratio compared with WT mice (Fig. 3c ).
MMP-9 TG rats had a significantly larger (by 8 %) length-
to-width ratio compared with WT rats (Fig. 3d). Chronic lith-
ium chloride treatment significantly reduced the spine length-
to-width ratio in WT mice (Fig. 3c) and WT rats (Fig. 3d) by
13 and 18 %, respectively, producing a similar dendritic spine
phenotype as neuronal GSK-3(3 deficiency (Figs. 1c, d and 3c,
d).

If MMP-9 and GSK-3{3 regulate dendritic spine mor-
phology through distinct molecular mechanisms, then

b
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WT and GSK-33[S9A] mice after administration of the MMP-9
inhibitor GM6001. Scale bar=2 pm. d Cumulative histogram of spine
length-to-width ratio in WT and GSK-33[S9A] mice (p <0.01; nested
analysis of variance). GM6001 normalized the dendritic spine length-
to-width ratio in GSK-3f3[S9A] mice (p<0.01; nested analysis of
variance). WT: n=5; WT-GM6001: n=5; GSK-3[S9A]: n=5; GSK-
3B[S9A]-GM6001: =15 mice

the absence of MMP-9 activity should not affect the
observed effects of GSK-3 on spine alterations. We ob-
served no changes in the length-to-width ratio in MMP-
9 KO mice that were treated with lithium chloride com-
pared with untreated MMP-9 KO mice (Fig. 3c). In
contrast, lithium chloride treatment reduced (by 14 %)
the length-to-width ratio in MMP-9 TG rats (Fig. 3d).
These results demonstrate that GSK-3 and MMP-9 act
in concert on the same signaling pathway(s) to control
dendritic spine morphology.

MMP-9 Induced GSK-3(3 Phosphorylation
Through the PI3K/Akt Signaling Pathway

Higher GSK-3f activity concomitantly increased MMP-9 ac-
tivity upon neuronal excitation. Therefore, we investigated
whether secreted MMP-9 affects neuronal signaling. We ana-
lyzed MMP-9 activity in WT mice, in which MMP-9 was
activated by an injection of PTZ (Fig. 4a). PTZ significantly
increased MMP-9 activity, which coincided with increases in
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Fig.3 Dendritic spine morphology in MMP-9 KO mice and MMP-9 TG
rats after chronic GSK-3 inhibition. a Example photographs of Dil-
stained apical dendrites of dentate gyrus granule neurons in WT and
KO MMP-9 mice treated with lithium chloride. b Example photographs
of Dil-stained apical dendrites of dentate gyrus granule neurons in WT
and TG MMP-9 rats treated with lithium chloride. Scale bar=2 pm. ¢
Cumulative histogram of dendritic spine length-to-width ratio in WT and
KO MMP-9 mice treated with lithium. MMP-9 KO mice had shorter
dendritic spines (p <0.05; nested analysis of variance). Lithium
significantly reduced the length-to-width ratio of dendritic spines in WT

the levels of the cleaved 30-kDa form of [3-DG, the neuronal
substrate of MMP-9 (Fig. 4a, b) [41]. We also observed an
increase in the levels of inhibitory GSK-33 phosphorylation
at Ser9 that followed the increase in MMP-9 activity (Fig. 4a,
b).

To confirm that MMP-9 regulated GSK-3f3 activity, we
incubated dissociated hippocampal cultures with recombinant
MMP-9 or its inactive mutant MMP-9 E402A as a control.
Active MMP-9, but not the inactive mutant MMP-9 E402A,
increased the levels of the cleaved (3-DG and of phosphory-
lated GSK-33 at Ser9 and phosphorylated Akt at Ser473
(Figs. 4c, d and 5a, b). Among the factors that regulate
GSK-3f3, the PI3K/Akt pathway is by far the major signal
transducer. Treatment with the PI3K inhibitor wortmannin
prevented exogenous MMP-9-induced GSK-3 3 phosphoryla-
tion (Fig. 4c, d), demonstrating that extracellular MMP-9 in-
duced signaling to GSK-3f3. Surprisingly, wortmannin alone
increased levels of 30-kDa form of 3-DG (Fig. 4c, d).
Wortmannin, however, did not affect exogenous MMP-9-
induced 3-DG cleavage (Fig. 4c, d).
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mice (p <0.05; nested analysis of variance), with no effect in MMP-9 KO
mice (p=0.135; nested analysis of variance). MMP-9 KO: n=3; WT:
n=3; WT-Li: n=3; MMP-9 KO-Li: n =3 mice. d Cumulative histogram
of dendritic spine length-to-width ratio in MMP-9 TG rats. MMP-9 TG
rats had a higher length-to-width ratio of dendritic spines (p < 0.05; nested
analysis of variance). Lithium reduced the length-to-width ratio of
dendritic spines in WT and MMP-9 TG rats (p <0.001; nested analysis
of variance). MMP-9 TG: n=3; WT: n=3; WT-Li: n=3; MMP-9 TG-Li:
n=3rats

Discussion

Here, we studied the direct role of the GSK-3f3 isozyme in
dendritic spine morphology that is fundamentally and
translationally important and in need of in depth examination.
We analyzed dendritic spines in the dentate gyrus because we
observed previously that GSK-3(3 affects the volume of the
dentate gyrus and related functional aspects such as species-
typical behavior [55]. Furthermore, this region is essential in
the trisynaptic circuit that processes information from the en-
torhinal cortex to the CA3 region of the hippocampus [56]. In
the present study, we found that an imbalance of GSK-3f3
activity affects the morphology of dendritic spines bi-
directionally. Increasing GSK-3f3 activity resulted in an elon-
gation of spines, shifting the spine population toward the thin
type. Conversely, reducing GSK-3 (3 activity either genetically
or pharmacologically resulted in a shortening of spines,
shifting their population toward the stubby type. These shifts
occurred at the expense of the mushroom spine type, suggest-
ing that GSK-3f3 can actively switch the balance of dendritic
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Fig. 4 MMP-9 activity induced GSK-3[3 phosphorylation via PI3K/Akt
signaling pathway. a Neuronal excitation induced MMP-9 activity,
followed by GSK-3 phosphorylation, in PTZ-treated WT mice that
were analyzed 0, 5, and 10 min after PTZ treatment. MMP-9 activity in
total hippocampal homogenates was visualized by gelatin gel
zymography (upper panel) and Western blot for 3-DG cleavage
(middle panel) and total and phosphorylated GSK3 isozymes (lower
panel). b Densitometric quantification of pGSK-33Ser9, total GSK-f3,

spines toward less mature populations. Likewise, in a different
model, GSK-3f3 deficiency produced similar changes in den-
dritic spine populations in the CA1 region of the hippocampus
[27]. On the other hand, higher neuronal GSK-3f3 activity
decreased postsynaptic density (PSD) in hippocampal granule
neurons, indicating less mature spines [28]. Our current results
and previous studies demonstrate that GSK-33 activity regu-
lates the morphology of dendritic spines in the dentate gyrus
and CA regions of the hippocampus.

Relation of GSK-3f3 to Spine Morphology and MMP-9
MMP-9 is a protease that is secreted at excitatory synapses

upon enhanced synaptic activity, allowing it to cleave CAMs
and thereby reshape synaptic connections and morphology
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3-DG and MMP-9 levels. The data are expressed as mean+ SEM.
*p<0.05 (Student ¢ test). n=3 mice for each condition. ¢ Autoactive
MMP-9 induced GSK-33 phosphorylation in hippocampal neuronal
cultures. PI3K inhibitor wortmannin prevented MMP-9-induced GSK-
33 phosphorylation. d Densitometric quantification of 3-DG,
pAktSerd73, pGSK-33Ser9, total Akt, and total GSK-3f3 levels. The
data are expressed as mean + SEM. *p < 0.05 (Student ¢ test). n = 3 culture
wells for each condition

control

[57-59]. Our results suggest that active GSK-33 promotes
the secretion of MMP-9 in response to neuronal excitation,
and MMP-9 in turn influences intracellular signaling path-
ways that involve GSK-3(3. MMP-9 was previously shown
to activate extracellular signal-regulated kinase 1/2 and Akt
in Schwann cells, regardless of its activity (i.e., by hemopexin
domain binding to LRP1 receptor) [60]. Our current results
showed that the enzymatic activity of MMP-9 is important for
initiating the Akt-GSK-3 cascade in neurons. This is support-
ed by our findings of differential Akt phosphorylation at
Ser473 and Thr308 upon application of active and inactive
MMP-9 forms. Inactive MMP-9 induced only Thr308 phos-
phorylation suggesting that Akt was not fully active in this
condition. Only upon the sequential phosphorylation of
Thr308 and Ser473, Akt achieves full activity [61]. Here,
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Fig.5 Active and inactive MMP-9 forms differentially regulate GSK-33
and Akt phosphorylations. a Hippocampal neurons were incubated for
5 min with 400 ng/ml of recombinant MMP-9 or inactive MMP-9 E402A

PI3K inhibitor wortmannin efficiently blocked active MMP-
9-induced Akt and GSK-3{3 phosphorylations. Interestingly,
p1106 PI3K isoform is required for membrane localization of
3-DG [62] which may explain the observed increased 3-DG
cleavage by wortmannin. Whether synaptic MMP-9 sub-
strates, such as 3-DG [41] or nectin-3 [63], are involved in
signal transduction following application of active MMP-9,
remains to be elucidated. Nevertheless, the physiological role
for MMP-9 may involve keeping GSK-3 inactive upon neu-
ronal stimulation. In contrast, in brain pathology, GSK-3
overactivation may drive aberrant dendritic spine pathology
via activated MMP-9.

Unexpectedly, mice lacking neuronal GSK-3 3 were hyper-
sensitive to PTZ, and their acute death prevented an analysis
of MMP-9 activity upon neuronal excitation. MMP-9 basal
activity was not affected in either of the GSK-33-modified
mice, possibly because of the low levels of constitutive
MMP-9 or because its activity is affected in specific subfields
of the hippocampus [41, 42, 64, 65].

Consistent with the increase in the activity of MMP-9 in
GSK-33[S9A] mice, the MMP inhibitor normalized dendritic
spines in acute brain slices from GSK-33[S9A] mice. The
data show that higher MMP-9 activity in GSK-33[S9A] mice
translates into a structural outcome that is longer and thinner
dendritic spines. Because local protein translation occurs on
the order of minutes after synaptic activation [66], GSK-33 is
proposed to regulate the local synthesis of MMP-9, in line
with our observation that the levels of the MMP-9 precursor
increased in GSK-33[S9A] mice that were treated with PTZ.
Although this and previous studies did not provide evidence
of the involvement of GSK-3 in local protein translation, the
activities of other proteins that are involved in controlling this

@ Springer

mutant. b Densitometric quantification of 3-DG, pAktSer473,
pAktThr308, and pGSK-33Ser9. The data are expressed as mean+ SEM.
n =3 culture wells for each condition

process, such as p70-S6K [67], TSC2/mTOR [68], and e[F4E
[69], were shown to be regulated by GSK-3(3.

Our results implicate MMP-9 as an effector of GSK-3f3-
mediated changes in dendritic spines. The effects of the rela-
tionship between GSK-33 and MMP-9 on dendritic spines
were further evaluated pharmacologically in MMP-9 KO mice
and MMP-9 TG rats. Lithium salts inhibit GSK-3, although
not specifically, and normalized in MMP-9 TG rats the longer
and thinner dendritic spines. That in MMP-9 KO mice the
shorter dendritic spines were not affected by lithium salts is
explained by the fact that the observed effect was maximal by
the MMP-9 deficiency.

Relation of Spine Morphology to Synaptic Transmission
in Health and Disease

The aberrant morphology of dendritic spines on apical den-
drites of granule neurons may have important functional con-
sequences, exemplified by GSK-33[S9A] mice that present
impairments in synaptic transmission and hippocampus-
dependent cognitive tasks (i.e., inhibitory avoidance and nov-
el object recognition) [15].

The relation of spine morphology to synaptic transmission
and their dynamic regulations in health and disease are in-
ferred, but the underlying mechanisms are not well under-
stood. In general, mushroom spines have a larger PSD with
a higher content of glutamate receptors and are more sensitive
to glutamate, which is typical for mature synapses. In contrast,
thin slender spines are associated with no or a small PSD that
contains NMDA receptors but no or only a few x-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) recep-
tors. These spines appear to be transitional and ready for
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strengthening and stabilization by the addition of AMPA re-
ceptors and an enlarged PSD, or alternatively, to shrink and
dismantle, both in response to more or less synaptic inputs.
Furthermore, LTP makes spines become larger, whereas LTD
causes shrinkage of spines [70]. Because GSK-3f3 is essential
for LTD [14], the shifts to thinner spines in GSK-33[S9A]
mice or to stubby spines in GSK3B™ "~ mice unlikely reflected
physiological processes associated with LTD. Rather, these
changes reflect pathological spine alterations, as observed in
neurological and neuropsychiatric disorders.

Increased numbers of elongated, thin dendritic spines are a
feature of fragile X syndrome (FXS), a disorder that is character-
ized by mental retardation [71]. Conversely, a reduction of the
number of dendritic spines is evident in neurodegenerative dis-
eases including Alzheimer’s disease, whereas in psychiatric dis-
eases such as schizophrenia and depression alternations in spine
morphology in either direction are evident [72].

In FXS, the higher incidence of thin spines is explained by
an increase in the activity of MMP-9, which is known to cause
the elongation and thinning of dendritic spines [35, 45, 46,
73]. Furthermore, the fragile X mental retardation protein
(FMRP) KO mouse model of FXS exhibits increased levels
of GSK-3(3, whereas mice with active GSK-3o/f3 isozymes
share some autism-related features with FMRP KO mice [74].
GSK-3 was previously reported to downregulate FXRIP, a
protein that belongs to a small family of RNA binding proteins
that also includes FMRP [75]. Because FMRP KO mice have
higher MMP-9 levels [76], we hypothesize that longer and
thinner dendritic spines in GSK-33[S9A] mice are caused
by the dysregulation of MMP-9 activity. Indeed, higher
GSK-33[S9A] activity potentiated MMP-9 but not MMP-2
in the hippocampus in PTZ-treated mice.

Altogether, our results demonstrate that the dysregulation
of GSK-3f3 activity in either direction has dramatic conse-
quences on dendritic spine morphology that are reminiscent
of dendritic spine alternations that are observed in different
neurological and neuropsychiatric disorders. Furthermore, our
results offer new insights into the possible synaptic mecha-
nisms of these disorders and indicate potential levels of ther-
apeutic interventions.
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