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Abstract Posterior reversible encephalopathy syndrome
(PRES) is a rare neurological disease. Recently, an increase
in the number of transplantations has led to more cases being
associated with PRES than what was previously reported.
Calcineurin inhibitors (CNIs) are major risk factors for PRES
in posttransplantation patients. The mechanisms of the devel-
opment of PRES remain to be unclear. The typical clinical
symptoms of PRES include seizures, acute encephalopathy
syndrome, and visual symptoms. The hyperintense signal on
fluid-attenuated inversion recovery image is the characteristic
of the imaging appearance in these patients. In addition, other
abnormal signals distributed in multiple locations are also
reported in some atypical cases. Unfortunately, PRES is
often not recognized or diagnosed too late due to compli-
cated differential diagnoses, such as ischemic stroke,
progressive multifocal leukoencephalopathy, and neurode-
generative diseases. Thus, this review emphasizes the
importance of considering the possibility of PRES when
neurological disturbances appear after solid organ

transplantation or hematopoietic cell transplantation.
Moreover, this review demonstrates the molecular mech-
anisms of PRES associated with CNIs after transplanta-
tion, which aims to help clinicians further understand
PRES in the transplantation era.

Keywords Posterior reversible encephalopathy syndrome .

Transplantation . Calcineurin inhibitors . Etiology .

Physiopathology . Therapy

Abbreviations
ACEI Angiotensin-converting enzyme inhibitors
ADC Apparent diffusion coefficient
CNIs Calcineurin inhibitors
CsA Cyclosporine A
CSF Cerebrospinal fluid
DNA Deoxyribonucleic acid
DWI Diffusion weighted MRI
EBV Epstein–Barr virus
FLAIR Fluid-attenuated inversion recovery
HSCT Hematopoietic stem cell transplantation
MRI Magnetic resonance imaging
ODS Osmotic demyelination syndrome
PAI-1 Plasminogen activator inhibitor-1
PKA Protein kinase A
PKC Protein kinase C
PRES Posterior reversible encephalopathy syndrome
PTLD Posttransplantation lymphoproliferative disorder
T1WI T1-weighted image
T2WI T2-weighted image
TAC Tacrolimus
SOT Solid organ transplantation
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Introduction

Posterior reversible encephalopathy syndrome (PRES), ini-
tially described by Hinchey [1] in 1996, is a neurological
disturbance coupled with different clinical symptoms and ap-
pearances of distinctive imaging features. The etiology of this
syndrome is complicated, varied, and often includes hyperten-
sive encephalopathy, eclampsia, immunosuppressive drugs,
and autoimmune diseases [1, 2]. So far, the mechanisms of
PRES development are still unknown. Seizures, acute enceph-
alopathy syndrome, and visual symptoms are the typical clin-
ical symptoms of PRES [3–5]. The fluid-attenuated inversion
recovery (FLAIR) images usually show an abnormal and re-
versible increased signal, mostly distributed in the parietal and
occipital lobes. However, the abnormal signal can also be
distributed in the posterior frontal, temporal lobe, cerebellum,
brainstem, thalamus, and basal ganglia. The incidence of atyp-
ical distribution and imaging appearances may even be higher
than what is commonly seen in the literature [5–7]. The man-
agement of PRES is still unclear. Although this disease is
reversible, permanent neurological deficits and cerebral in-
farcts may appear because of late recognition of this syndrome
and persistence in the incorrect usage of drugs [5].

PRES after transplantation, as a rare complication, should
not be ignored, especially in developing countries, where the
numbers of transplantations are rising rapidly. There is an
upward trend of the reports about PRES with an increasing
number of transplantations. There are about 160 publications
that have mentioned PRES after transplantation since the dis-
ease was first reported in 1996. More than 80 publications
regarding PRES after transplantation have been published
from 2010 to 2014, including 78 cases that report after solid
organ transplantation (SOT) or hematopoietic cell transplan-
tation (Table 1) [8–31]. There have been significant advances
in PRES research after transplantation in the past 4 years, but
only few review articles concerning PRES after transplanta-
tion. The aim of our paper is to review the prevalence, mech-
anism, diagnosis, differential diagnoses, and management of
PRES and to help clinicians to consider the possibility of
PRES appearing as a neurological disturbance after
transplantation.

Prevalence

PRES is increasingly recognized as a neurological disturbance
with various clinical symptoms and characteristic images.
PRES can occur in both male and females as well as in adults
and children. The incidence of PRES after SOT is approxi-
mately 0.5–5 % [10, 13, 15, 25]. One study [32], which eval-
uated 4222 patients that underwent transplantation, reported
that the incidence of PRES after SOT is about 0.49 %, with a
similar incidence among subtypes. Another study considered

that the incidence of PRES after lung transplantation is closely
5.7 %, while only 12 cases had been published among 25,755
lung transplant recipients from 1999 to 2009 [24].Meanwhile,
the incidence of PRES after allogeneic hematopoietic stem
cell transplantation (HSCT) is 1.1–20 % [14, 16, 17, 33].

The etiology of PRES is complicated and varied, including
hypertensive encephalopathy, eclampsia, immunosuppressive
drugs, and autoimmune diseases [1, 2, 5]. There are also other
risk factors, such as the following: hypomagnesemia,
hypocholesterolemia, vasoactive agents, erythropoietin, blood
transfusion, antineoplastic drugs, peritoneal dialysis, and para-
thyroid hormone-related peptide [19, 34, 35]. Immunosup-
pressive drugs, especially calcineurin inhibitors (CNIs), are
widely used for preventing acute rejection reaction in patients
with various transplantations. Seventy-five patients with
PRES seem to be related with immunosuppressive drugs in
78 transplantation patients from 2010 to 2014. One study pro-
posed that PRES can occur in patients receiving CNIs after
kidney, allogeneic peripheral blood stem cell, liver, and lung
transplantations [36]. CNIs may be a major risk factor for
PRES in posttransplantation patients. In addition, hyperten-
sion is sometimes accompanied with PRES after transplanta-
tion. Hypertension presents in approximately 70–80 % of pa-
tients [2, 4]. Fifty-six percent of the patients may have a his-
tory of hypertension [37]. High-dose corticosteroid use, ische-
mia reperfusion during surgery, the use of multiple medica-
tions, and antibiotics may be associated with PRES after SOT
and hematopoietic cell transplantation, as well [11].

Clinical Features of PRES

The features of PRES after transplantation include clinical
symptoms and neuroimaging. The typical clinical symptoms
are involved in seizures, acute encephalopathy syndrome, and
visual symptoms. Dysarthria, incoordination of the limbs, pa-
resis, sensory deficits, and visual hallucinations are atypical
clinical symptoms. The characteristic neuroimaging is a hy-
perintense signal, distributing in the parietal and occipital
lobes on FLAIR images. Other magnetic resonance sequences
can also show the specific appearances of PRES. Furthermore,
angiography and magnetic resonance angiography (MRA) are
also useful diagnosis approaches for PRES.

Clinical Symptoms

Seizures, acute encephalopathy syndrome, and visual symp-
toms are the mainly clinical symptoms of PRES after trans-
plantation. One study identified 120 cases of PRES, which
reported that seizures (74 %), encephalopathy (28 %), head-
ache (26 %), and visual disturbances (20 %) are the clinical
presentations of PERS [38]. The acute encephalopathy syn-
drome includes confusion, headache, vomiting, altered
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consciousness, and mental status changes [4, 9, 10, 22, 29].
Visual symptoms involve hemianopsia [4], loss of visual acu-
ity [11], visual blurring [11], blindness [20], and diplopia [30].
Seizures with secondary generalization, multiple seizures, and
status epilepticus are reported as the common symptoms in
some literatures [4, 26]. Status epilepticus is also reported as a
main manifestation of PRES after pediatric HSCT [14]. Re-
sidual epilepsy may be continued despite clinical and neuro-
radiological normalization in PERS patients [12]. In addition,
other atypical symptoms like dysarthria, incoordination of the
limbs, paresis, sensory deficits, and visual hallucinations can
occur in PRES [10, 23, 30, 31]. One study suggested that the
incidence of atypical distribution and imaging appearances
may even be higher [7]. Intracranial hemorrhage can occur
simultaneously in PRES, with an incidence of approximately
15 %. Intracranial hemorrhage is more common after alloge-
neic bone marrow transplantation than after SOT [31, 39].

The time course of PRES presentation varies in posttrans-
plantation patients. PRES typically develops within 2–
3 months after liver transplantation [5, 15]. The timing is even
later in renal transplantation patients [32]. Some cases showed
an onset time within 1 week after transplantation [10, 11, 19,
25, 26, 29, 40]. Therefore, PRES can occur during acute and
subacute onset neurological disturbances after transplantation.
The time course of PRES may be associated with the type and
dosage of CNIs and the organ of transplantation surgery.

Neuroimaging

The MRI is one of the most useful imaging tools for diagnos-
ing PRES. MRI scan usually shows an abnormal and revers-
ible increased signal on FLAIR images, which is the most
sensitive sequence for recognition of cortical and subcortical
edema in PRES [5]. The hyperintense signal alterations on

Table 1 The clinical presentation and management of 80 PRES patients after solid organ transplantation and hematopoietic cell transplantation
(reported from 2010 to 2014)

Patient Transplantation Symptoms ISD Managementa

1–3 Lung transplantation SE TAC Lower dose

4–7 Lung transplantation MSC/SE/AC TAC/CsA Switch drug

8 Lung transplantation SE CsA Discontinue

9 Lung transplantation VS Noneb Othersc

10 Lung transplantation SE TAC Reduce and add othersd

11 Renal transplantation VS, HD, AC, paralysis TAC Switch drug

12 Renal transplantation HD, SE, VS MF Switch drug

13 Renal transplantation HD, VS, VT, SE, AC, hemiparalysis Rapamycin Switch drug

14 Renal transplantation SE, MSC, HD TAC Lower dose

15–33 Liver transplantation SE/MSC/HD TAC/CsA Switch drug

34 Liver transplantation Aphasia TAC Switch drug

35 Liver transplantation SE, MSC TAC Lower dose

36 Liver transplantation Vertigo, SE TAC Lower dose

37 Liver transplantation VS, MSC, visual hallucinations TAC Switch drug

38 Heart transplantation SE, HD, MSC TAC Discontinue

39 Small bowel transplantation HD, VS, SE TAC Reduce and add othersd

40 Multivisceral transplantation HD, AC, VS, SE TAC, sirolimus Discontinue

41–59 Hematopoietic cell transplantation SE/HD/VS/MSC TAC/CsA Switch drug

60–65 Hematopoietic cell transplantation HD/VT/SE/VS/MSC TAC/CsA Discontinue

66 Hematopoietic cell transplantation AC, VS, HD, VT, gait disturbances TAC Discontinue

67–76 Hematopoietic cell transplantation SE/MSC/VS TAC Hold and continue

77–78 Hematopoietic cell transplantation HD/AC/VT/SE Noneb Othersc

ISD immunosuppressive drugs, SE seizures, MSC mental status changes, AC altered consciousness, VS visual symptoms, HD headache, VT vomiting,
MF mycophenolate mofetil
aManagement means the management of immunosuppressive drugs, including switching the culprit drugs to other immunosuppressive drugs, lower
dosage of the immunosuppressive drugs, reducing the culprit drugs accompanied with adding other similar drugs, discontinuing the culprit drugs, and
continuing using the culprit drugs
b The immunosuppressive drugs was not used, when the patients showed the symptoms of PRES
cOther managements do not include the management of immunosuppressive drugs
d The dose of the culprit drugs was reduced, and another immunosuppressive drug was added
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FLAIR images usually distribute in the parietal and occipital
lobes. The lesions also appear as iso-intense or hyperintense
signals on T1-weighted images (T1WI) and hyperintense sig-
nals on T2-weighted images (T2WI) [41, 42]. Diffusion-
weighted MRI (DWI) and apparent diffusion coefficient
(ADC) are instrumental in distinguishing the type of edema
in PRES lesions. Hyperintense on the DWI and hypointense in
the ADCmapping are the characteristics of a cytotoxic edema,
whereas an iso-intense or hyperintense signal in DWI and
hyperintense in ADC are typical presentations of a vasogenic
edema. Vasogenic edema can generally be completely revers-
ible; however, severe vasogenic edema can exacerbate cyto-
toxic edema, leading to worse outcome [2, 4–6]. PRES can
also be identified in otherMRI imaging. Gadolinium enhance-
ment, hemorrhage, and restricted diffusion have been ob-
served in some patients with PRES [7, 12, 18, 21, 24, 43].
The abnormal signal of PRES can be distributed throughout
the posterior frontal, temporal lobe, cerebellum, brainstem,
thalamus, and basal ganglia [7, 10, 11, 24, 43]. In addition,
angiography is another measure for PRES patients. Angiogra-
phy can reveal focal or diffuse vasoconstriction, vasodilata-
tion, or a Bstring-of-beads^ appearance [43]. One study also
mentioned that the dilation and constriction in the secondary
and tertiary branches of intracranial artery could be observed
in PRES patients by angiography and MRA [2].

Differential Diagnosis

It is often very difficult to recognize PRES at the beginning,
since this syndrome has various atypical symptoms and imag-
ing appearances. The diagnosis of PRES was further con-
firmed in most cases, when neuroimaging showed a reversible
lesion. Clarity of the differential diagnoses of PRES is needed
in order to make a diagnosis. Encephalopathy associated with
ischemia, thrombosis, hemorrhage, infection, immune-inflam-
mation, and others are general differential diagnoses. Most
diseases mentioned above can be distinguished by symptoms,
radiography, and laboratory examinations. Here, we present
some differential diagnosis for PRES in Table 2.

Osmotic Demyelination Syndrome

Osmotic demyelination syndrome (ODS) is a neurological
disorder with new onset neurological symptoms and a recent
rapid increase in serum sodium. Typical MRI lesions of ODS
reveal hypointense images on T1WI and hyperintense images
on FLAIR and T2WI [44]. The incidence of ODS is higher in
liver transplant recipients than the general population [45].
However, the distributions of lesions are common in the stri-
atum and pons. Mental status changes, movement disorders,
dysphagia, and dysarthria are major presentations [44–46].
Monitoring serum sodium may also be helpful in identifying

the disease. Of patients, 50–67 % may have good outcomes,
but even in those patients who havemade a complete or nearly
complete clinical recovery, imaging findings do not improve
[44, 46].

Posttransplantation Lymphoproliferative Disorder

Posttransplantation lymphoproliferative disorder (PTLD) is a
heterogeneous disease with variable benign or malignant
types and unspecific symptoms. The incidence varies from 1
to 2 % after kidney transplantation to 20 % after small bowel
transplantation [47, 48]. The risk is 20–120-fold higher in the
posttransplantation patients than in the normal subjects [47,
49]. PTLD is also a malignant complication of cyclosporine A
(CsA) with an incidence between 2 and 4 % [50]. PTLD in the
central nervous system is a more rare form but has been in-
creasing with the rise in popularity of SOTs. Focal neurolog-
ical deficits, headaches, and altered mental status are common
symptoms of central nervous system PTLD. Neuroimaging
usually reveals multiple contrast-enhancing mass lesions in
supratentorial, lobar, periventricular, corpus callosum, basal
ganglia, and pituitary [47, 51, 52]. Epstein–Barr virus (EBV)
deoxyribonucleic acid (DNA), biopsy, and cerebrospinal fluid
(CSF) cytology and immunology are measures for the distinc-
tion between PTLD and PRES [47, 48, 53]. Prognosis is var-
iable but not reversible. Rate of survival depends on the ma-
lignant degree, early detection, and timely treatment [48].

Progressive Multifocal Leukoencephalopathy

Progressive multifocal leukoencephalopathy (PML) is a de-
myelinating disease due to John Cunningham (JC) virus,
which leads to a destructive infection of oligodendrocytes in
immunosuppressed patients. Seventy-nine percent PML oc-
curs in AIDS patients. The usage of immunosuppressant in
organ transplantation recipients is associated with the devel-
opment of 5 % PML [54]. The clinical symptoms are usually
nonspecific and variable, including limb weakness, cognitive
deficits, speech or visual difficulties, ataxia, seizures, and
headache [55]. Radiographic characteristic of PML is single
or multifocal white matter lesion, which may become conflu-
ent and large with the progression of this disease. The lesions
of PML are generally hypointense on T1WI and hyperintense
on T2WI, with high signals on the DWI and normal-to-low
signals in the ADC. The parietal, occipital, and frontal lobes
are the most frequent sites of PML. The lesions can occasion-
ally be seen in the pontomesencephalon, basal ganglia, and
cerebellum in PML patients [54, 56]. The neuroimaging ap-
pearance can also reveal mass effects and enhancements [55,
57]. JC virus DNA in CSF and proton magnetic resonance
spectroscopy (MRS), which reveals low levels of N-
acetylaspartate, high levels of choline, and elevated levels of
lactate and variable myo-inositol in PML patients, may be
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helpful in distinguishing PML from PRES [56]. Brain biopsy
is the gold standard of PML. The outcome of PML ranges
from stabilization or even remission to brain herniation or
even death [54, 58].

Management and Prognosis

PRES following transplantation is reversible, when culprit
drugs are discontinued or decreased early, or when related
symptoms are controlled immediately such as hypertension
or seizures. Unfortunately, permanent neurological deficits
and cerebral infarcts may appear because of late recognition
of this syndrome or persistent use of culprit drugs. The occur-
rence of intracranial hemorrhage also worsens the prognosis.
Increasing studies suggested that not all PRESs are reversible
[17, 59]. Therefore, timely and effective treatments for PRES
after transplantation are essential for the outcomes of patients.

Management of Immunosuppressive Drugs

CNIs may be one of the major risk factors for PRES in post-
transplantation patients. Management of immunosuppressive
drugs is one of the primary tasks. However, there are several
strategies for managing culprit immunosuppressive drugs. In
some studies, the drugs were switched or substituted [9, 10,
20]. Some cases lowered the dosages of immunosuppressive
drugs [11, 60]. A reduction of the culprit drugs accompanied
with adding other similar drugs can also be seen in some other
cases [18, 26]. Moreover, other studies have reported some
cases in which CsAwas ceased without substitution [24, 61].

In a study of 19 patients after hematopoietic allogeneic
stem cell transplantation [17], 40 % of the patients survived
without using tacrolimus (TAC) to manage PRES. About
40 % of the patients survived when TAC was continued.
Meanwhile, 50 % of the patients who were switched to
another agent survived and were eventually discharged. The
results of this study suggest that there is no difference among
these strategies, since the survival percentages were similar.
In addition, another study showed that switching the
immunosuppressive regimen may be detrimental and even
fatal. It is recommended to completely cease treatment of
CNIs as a treatment of PRES [62]. However, some cases that
switch the immunosuppressive regimen have good outcomes
[9, 20, 24, 25, 27, 30]. So, the management of immunosup-
pressive drugs still needs more researches. In most cases,
reducing the dosage, switching the immunosuppressive drugs,
or cessation of treatment are still the therapeutic strategy of
PRES. Continuing using the culprit drugs should be discreet.
The risk of rejection after transplantation should be taken into
consideration.Meanwhile, therapeutic effects and related risks
should be weighed.T
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Symptomatic Treatment

Seizures, one of the typical clinical symptoms of PRES after
transplantation, should be controlled immediately. Uncon-
trolled seizures may shorten life span and increase the risk of
death significantly. Approximately 20–30 % of patients with
epilepsy are not fully controlled with available drugs [63]. The
efficiency and adverse effects of the antiepileptic drug should
be considered. Since there are several advantages and limita-
tions for each drug, it is often difficult to choose appropriate
antiepileptic drugs. One review [64] discussed all relevant
data about epilepsy and other comorbidities, which concluded
that gabapentin, levetiracetam, pregabalin, and topiramate are
the most appropriate antiepileptic drugs to treat epilepsy in
patients with liver transplantation. Additionally, the most ap-
propriate drugs in kidney transplantation are benzodiazepines,
lamotrigine, and valproic acid. The most appropriate drugs in
bone marrow transplantation are gabapentin, levetiracetam,
lamotrigine, and topiramate.

Blood pressure is often high in PRES patients. Of patients,
32–52 % have high blood pressure after transplantation. In all
these cases, antihypertension treatments were used for control-
ling blood pressure. A treatment regimen of a diuretic plus an
angiotensin-converting enzyme inhibitor (ACEI) is often rec-
ommended in patients with cerebrovascular disease [65]. In-
travenous antihypertensive agents are necessary in patients
with hypertensive emergency, which decrease blood pressure
by 25 % [66]. However, some articles suggest that hyperten-
sion is a compensatory way to improve cerebral blood flow
[15]. Thus, controlling blood pressure should be appropriate
and prudent. The management of hypertension in PRES pa-
tients after transplantation still needs more evidence-based
studies.

In addition, other symptoms, such as vomiting, mental sta-
tus changes, and intracranial hemorrhage, should be examined
since all of these are associated with patient outcomes. Mon-
itoring vital signs, maintenance of arterial oxygenation, suffi-
cient hydration, and correction of coagulopathies and electro-
lyte disturbances are general strategies for managing PRES
patients.

Prognosis

The prognosis of PRES is generally reversible and benign.
Seventy-two percent of patients present a reversion of imaging
abnormalities with a mean duration of 41 days [67]. Recur-
rence of PRES is also infrequent and benign [13, 27]. Only a
part of the patients after transplantation were reported to be-
come worse, even died. But the death is rarely directly related
with PRES [15]. However, one study included 302 patients,
who underwent allogeneic HSCT, which suggested that the 1-
year survival rate is significantly inferior in patients who de-
veloped PRES [68]. Permanent neurological deficit and

cerebral infarcts also appear in some cases [69]. Therefore,
early diagnosis and appropriate treatments are still essential
for a good recovery of patients.

Pathophysiology Mechanisms

Until recently, there was a lot of controversy about the mech-
anism of PRES. There are two major hypotheses, which in-
cluded the hyperperfusion and hypoperfusion theories [5, 40,
70, 71]. The first theory suggests that severe hypertension
leads to transient impairment of autoregulation, causing cere-
bral vasodilatation and vasogenic cerebral edema. The other
theory suggests that the neurotoxicity of culprit drugs and
hypertension induces autoregulatory vasoconstriction, leading
to hypoperfusion, ischemia, and edema. Hyperperfusion re-
mains the most popular hypothesis for the development of
brain edema that occurs in PRES. Endothelial dysfunction
and disruption of the blood brain barrier are another mecha-
nisms, which lead to the development of PRES. There are
several clinical and neuroimaging evidences about the occur-
rence of hypertension, failed autoregulation, and vasogenic
cerebral edema [5, 70]. However, the molecular mechanisms
of PRES after transplantation are still unclear. Here, we review
the molecular mechanisms of PRES, which are mainly asso-
ciated with CNIs after transplantation.

TAC and CsA are both CNIs, which are the main immu-
nosuppressant drugs after transplantation. They are widely
used for preventing acute rejection, since they provide potent
inhibitory effects on T lymphocyte activation in patients with
various transplantations. TAC (the Japanese drug FK506), a
macrolide immunosuppressant, was discovered in 1984 [72].
TAC binds to the FK506-binding protein 12 (FKBP12) in the
cytoplasm. The complex then inhibits the activity of calcine-
urin, and the signal transduction pathways in T cells are also
downregulated [73–76]. CsA, a cyclic 11-amino acid peptide,
was discovered earlier than TAC. CsA binds to cyclophilin
and forms a complex, which can inhibit calcineurin and block
the phosphatase activity, causing a decrease in T lymphocyte
activation [74, 76, 77].

The Mechanism of Vasogenic Cerebral Edema in CNIs
Induced by PRES

The final pathophysiological manifestation of PRES is brain
edema. Previous studies suggested that severe hypertension
exceeds the potential of autoregulation and the autoregulation
dysfunction leads to vasogenic cerebral edema. In some cases,
neuroimaging shows evidence of vasogenic cerebral edema,
such as increased diffusions consistent with vasogenic edema
in DWI and ADC [6, 25, 29]. In the posttransplantation pa-
tients, CNIs may participate in the formation of vasogenic
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cerebral edema in PRES through multiple molecular
mechanisms.

Vasogenic edema of PRES may be caused by the dysfunc-
tion of the blood–brain barrier. There are two aspects of
blood–brain barrier dysfunction induced by CNIs: (1)
hyperpermeability of the blood–brain barrier and (2) the
inhibited expression of P-glycoprotein (Fig. 1). Previous stud-
ies have shown that CsA and TAC can damage the tight junc-
tion and the cell membrane directly and that CsA can induce
apoptosis on the brain capillary endothelial cells [78, 79]. This
leads to an increased permeability of the blood–brain barrier.
Moreover, it is known that TAC can induce a calcium ion
leakage from the endoplasmic reticulum [77, 80, 81]. FKBP12
binds to inositol 1,4,5-trisphosphate receptor (IP3R), which is
associatedwith regulation of IP3-mediated Ca2+ flux. Calcine-
urin anchors to the IP3R via FKBP12which participates in the
regulation of the receptor [77, 80, 82]. When TAC dissociates
FKBP12–IP3R complex or CsA inhibits calcineurin, the bind-
ing of calcineurin to the FK506–FKBP12 complex is stimu-
lated, resulting in the phosphorylation of IP3R by protein ki-
nase C, causing an increase in Ca2+ flux [77, 80, 83]. The
increased intracellular Ca2+ can disrupt the tight junctions,
which is the major constitution of the blood–brain barrier,
via Ca2+-dependent pathways [84–88]. Eventually, permeabil-
ity of the blood–brain barrier is increased because of the dis-
ruption of the tight junction. In addition, CsA can decrease
cAMP formation by inhibiting adrenomedullin-induced acti-
vation of adenylyl cyclase. The expression and phosphoryla-
tion of claudin-5 are weakened via a PKA pathway, when the

intracellular cAMP concentration is decreased. This causes an
increased permeability of the brain–blood barrier by the
loosening of the intercellular junctions [89–91]. Furthermore,
another current study showed that plasminogen activator
inhibitor-1(PAI-1) increased the tightness of the brain
endothelial barrier in a dose-dependent manner [92]. Previous
research also reported that the inducers of PAI-1 involve
the product of proinflammatory mediators, such as tumor
necrosis factor-α and interleukin-1 [93, 94]. However, the
production of the proinflammatory mediators is suppressed
by CNIs through inhibiting the transcription of genes of early
T cell activation [75]. Thus, the permeability of the
blood–brain barrier may be influenced by this mechanism
indirectly.

Several previous studies demonstrated that CsA can cause
dysfunction of P-glycoprotein, which leads to the breakdown
of the blood–brain barrier, via several ways. P-glycoprotein is
an adenosine triphosphate (ATP)-dependent transmembrane
transport protein and critical component of the blood–brain
barrier. One such way is to decrease production of
transforming growth factor-β1 (TGF-β1) in brain pericytes
or to cause the dysfunction of nitric oxide (NO) production
in astrocytes [77, 78, 89, 95, 96]. The inhibition of P-
glycoprotein activity by CsA is also shown by using PET of
11C-verapamil distribution into the brain [97]. Interestingly,
the effect of CsA on NO production is still controversial.
Some experiments demonstrated that CsA induces NO syn-
thase expression and causes an increase of NO [77, 98, 99].
However, other experiments showed that CsA reduces NO

Fig. 1 Schematic illustration of
the mechanism of vasogenic
cerebral edema in PRES
associated with CNIs. The blood–
brain barrier is formed by
endothelial cells, pericytes, and
astrocytes. CsA and TAC can
injure the tight junction of the
endothelial cells via causing the
Ca2+ leakage, weakening the
expression and phosphorylation
of claudin-5, and decreasing the
production of PAI-1. CsA also
decreases the production of TGF-
β1 in brain pericytes and causes
the dysfuction of NO production
in astrocytes, leading to the
hyperpermeability and
dysfunction of P-glycoprotein

Mol Neurobiol (2016) 53:6897–6909 6903



synthase expression [100, 101]. The effect of NO production
by CsAmay be dependent on the dose of CsA. In any way, the
dysfunction of the NO production may contribute to the en-
dothelial dysfunction, which leads to the permeability varia-
t ion. Moreover, a s tudy found that CsA causes
hyperpermeability and P-glycoprotein (P-gp) dysfunction by
inhibiting TGF-β1 production [96]. However, another study
concluded that CsA does not induce TGF-β1 biosynthesis. It
is the cell type and concentrations used that the different ef-
fects on TGF-β1, caused by CsA, depend on [102].

The hyperpermeability of the blood–brain barrier and the
inhibited expression of P-gp eventually result in brain swell-
ing which is termed vasogenic cerebral edema. The dysfunc-
tion of the blood–brain barrier may be transient or improved
by discontinuing or decreasing CNIs. As far as we know,
acute hypertension is also a major cause of PRES and can
change the function of the blood–brain barrier. During acute
hypertension, the increased NO may increase permeability
and contribute to disruption of the blood–brain barrier
[103–105]. It is also reported that the change of Ca2+ may
be responsible for the permeability and disruption of the
blood–brain barrier in acute hypertension [106]. These
mechanisms, resulting in the development of PRES, may
commonly exist in CNIs and hypertension. Hypertension
can disrupt the blood–brain barrier via other ways, such as
inflammation and oxidative stress [107, 108]. Recently, it is
found that short-term hypertension impairs the antioxidant
defense system in the brain by diminishing claudins and
gene transcription in the endothelial cells of the blood–brain
barrier, which causes changes to the blood–brain barrier
[109]. More studies are needed for further understanding
of the development of PRES.

The Mechanism of Cytotoxic Edema in PRES Associated
with CNIs

Most neuroimaging of PRES reveals vasogenic cerebral ede-
ma; nevertheless, a coexistence of vasogenic and cytotoxic
edema exists in several cases. The DWI of these cases also
shows restricted diffusions of the lesions [5, 7, 10]. Moreover,
the previous mechanism also mentions that autoregulatory
vasoconstriction, caused by several pathogenic factors, leads
to the hypoperfusion and results in ischemia and edema. Se-
vere vasogenic edema progressing to cytotoxic edema may
represent an early sign of irreversible damage. Currently, the
molecular mechanisms about the development of cytotoxic
edema in PRES associated with CNIs have not been reviewed.
Here, we conclude that the development of cytotoxic edema
caused by CNIs may be involved in two ways: vasoconstric-
tion resulting in hypoperfusion or mitochondrial dysfunction
resulting in energy abnormality (Fig. 2).

The endothelin-1 and decrease of NOmay contribute to the
vasoconstriction in cerebral artery. One study found that CsA-
mediated capillary disruption causes the release of endothelin-
1, which plays a significant role in CsA-induced endothelial
dysfunction [110]. Their experiment also described that
endothelin-1 gene is expressed during capillary breakdown
by CsA. Another study reported that the use of CsA is asso-
ciated with an increase in plasma levels of endothelin-1 [111].
However, other literatures considered that CsA does not ele-
vate the level of endothelin-1 but increases the expression of
the endothelin receptor [100]. In any way, endothelin-1 may
play a role in endothelial dysfunction and may cause vasocon-
striction of the arteries in the brain. Besides, TAC has
been reported to decrease the production of NO in several

Fig. 2 Schematic illustration of
the mechanism of cytotoxic
edema in PRES associated with
CNIs. CsA can cause the release
of endothelin-1 leading to
vasoconstriction and decrease the
concentration of ATP leading to
mitochondrial dysfunction. TAC
can decrease the production of
NO via several ways.
Vasoconstriction resulting in
hypoperfusion and mitochondrial
dysfunction resulting in energy
abnormality may lead to hypoxia
that causes cytotoxic edema
eventually
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ways. TAC inhibits calcineurin and decreases the dephosphor-
ylation of NO synthase [112]. Calcineurin is also reported to
directly modulate N-methyl-D-aspartic acid (NMDA)
receptors. Hence, TAC affects NMDA-stimulated neurotrans-
mitter release indirectly and inhibits glutamate-induced
NO synthase activity [113, 114]. In addition, TAC can
increase asymmetric dimethylarginine (ADMA), an
endogenous NO synthase inhibitor, which competes with
L-arginine to block NO synthesis [115, 116]. Moreover,
TAC can activate KPCβII, which is an isoform of convention-
al PKC. The activated KPCβII phosphorylates endothelial NO
synthase at its inhibitory site Thr495 and reduces the
production of NO [81, 117].

CsA is associated with mitochondrial dysfunction, which
results in abnormal cerebral energy metabolism. Even in the
therapeutic range of CsA in transplant patients, ATP concen-
tration is also decreased by 20 %, accompanied by the inhibi-
tion of the Krebs cycle and a reduction of NAD+ concentration
[118–120]. Moreover, 4 to 10 h after CsA perfusion, cytosolic
glycolysis shows an increase, which compensates for the
inhibition of mitochondrial glucose metabolism. Lactate
concentration is increased in the rat brain after 6 days of
CsA treatment [120]. Furthermore, CsA can induce
hyperpermeability and P-gp dysfunction after hypoxia/
reoxygenation injury [121]. So when the shortage of cerebral
energy metabolism is compensated, CsA may still cause the
dysfunction of the blood–brain barrier.

Vasoconstriction resulting in hypoperfusion and mitochon-
drial dysfunction resulting in energy abnormality may lead to
hypoxia that causes cytotoxic edema in PRES associated with
CNIs, which plays a significant role in the progression of the
disease. However, somemechanisms may possibly participate
in the development of cytotoxic edema with TAC-induced
leukoencephalopathy as well. The mechanism concerning
the reversal of cytotoxic edema in the PRES requires further
study.

The etiology of PRES includes hypertensive encephalopa-
thy, eclampsia, immunosuppressive drugs, and autoimmune
diseases. All of these are systemic factors. How do these sys-
temic factors cause a disease in the brain? These may be as-
sociated with the sensitivity of white matter, the difference of
hypoxia tolerance, and the difference of vascular develop-
ment. The mechanism of the PRES is also probably related
to the differences in gene expression. More researches and
clinical cases are the keys to make the pathophysiological
mechanism of PRES more clear.

Conclusion

PRES is rare in daily clinical work and has an upward trend
related to the increasing number of the transplantations. The
usage of CNIs can be a major risk factor for PRES in

posttransplantation patients. The complicated differential di-
agnoses and late recognition may make the early diagnosis
difficult. A familiarity with atypical clinical presentations, un-
common neuroimaging, and various differential diagnoses is
necessary for early diagnosis. Also, the therapeutic effects and
related risks should be measured when dealing with immuno-
suppressive drugs. Reviewing pathophysiology mechanisms
of PRESmay also provide novel management approaches and
methods. However, the effects of inflammation and oxidative
stress and the mechanisms of the reversal of cytotoxic edema
after PRES should be further studied.
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