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Abstract The p53-family member, p73, plays a key role in
the development of the central nervous system (CNS), in se-
nescence, and in tumor formation. The role of p73 in neuronal
differentiation is complex and involves several downstream
pathways. Indeed, in the last few years, we have learnt that
TAp73 directly or indirectly regulates several genes involved
in neural biology. In particular, TAp73 is involved in the main-
tenance of neural stem/progenitor cell self-renewal and differ-
entiation throughout the regulation of SOX-2, Hey-2,
TRIM32 and Notch. In addition, TAp73 is also implicated in
the regulation of the differentiation and function of postmitotic
neurons by regulating the expression of p75NTR and GLS2
(glutamine metabolism). Further still, the regulation of miR-
34a by TAp73 indicates that microRNAs can also participate
in this multifunctional role of p73 in adult brain physiology.
However, contradictory results still exist in the relationship

between p73 and brain disorders, and this remains an impor-
tant area for further investigation.
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Abbreviations
CNS Central nervous system
NSC Neural stem cell
(MBP) Myelin basic protein
NGF Nerve growth factor
PNS Peripheral nervous system
p75NTR p75 neurotrophin receptor
WT Wild type
TAp73−/− TAp73 knockout
p73−/− p73 knockout mice
DG Dentate gyrus
AD Alzheimer’s disease
Aβ β-amyloid
NFTs Neurofibrillary tangles

Introduction

The transcription factor p73 belongs to the p53 family [1],
involved in several complex biological processes including
cell cycle arrest, DNA repair, apoptosis, metabolism, autoph-
agy, and senescence [2–10]. Despite of evident functional
overlapping functions (extensively reviewed in [1, 11]), the
three p53 relatives also have distinct roles and functions, with
p73 clearly involved in neurological developmental abnor-
malities [12].

The role of p53 in suppressing cancer and promoting cell
death and senescence [6, 13, 14] is strongly supported by its
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of the cortex and in the molecular layer of the DG. More-
over, the expression of reelin, a glycoprotein involved in
neuronal migration and a marker of CR neurons, was lost
in the cortical and hippocampal marginal zone of the p73−/
− mice, suggesting that loss of p73 leads to the disappear-
ance of this cell type [47]. This could, in part, explain the
observed hippocampal phenotype.

However, there are, of course, alternative explanations: The
Kaplan group have found p73 to be essential for the survival
of young postnatal and adult cortical neurons [48]. Indeed, the
number of cortical neurons in p73−/− mice is normal at birth
but decreases by postnatal day 14 (P14) as a consequence of
enhanced cortical apoptosis peaking between P4 and P6 [48].
The same group has also observed that deletion of p73 leads to
increased death of sympathetic neurons in the developing su-
perior cervical ganglia [49].

Because the strategy used to generate the first p73−/−
mouse targeted the DNA-binding domain of p73,
resulting in the loss of all isoforms, both TAp73 and
ΔNp73 forms of each, it was impossible to discriminate
the contribution of each major isoform type to the pheno-
type. An important step forward in our understanding of
p73 in neurobiology came when, in collaboration with the
Tak Mak lab, we generated the TA isoform selective p73
knockout mouse (TAp73−/−) [34]. Histological analysis
of the TAp73−/− brain again revealed an abnormal hippo-
campal formation. In particular, the lower blade of the DG
was missing or truncated. Notably, this abnormality
occurs postnatally, between P6 and P14, suggesting
that the TAp73 isoform is necessary for postnatal
neurogenesis. In contrast, the size of the lateral ventricles
and the thickness of the cortex were not affected by the
loss of TAp73, indicating that TAp73 regulates hippocam-
pal morphology while ΔNp73 isoforms, which are still
expressed in this line, appear sufficient to prevent the loss
of cortical neurons.

A direct antiapoptotic role for ΔNp73 in cortical neu-
rons was subsequently demonstrated by Tissir and col-
leagues in a ΔNp73−/− mouse line [50]. Here, the selec-
tive inactivation of all ΔNp73 isoforms resulted in an
increase in cell death in specific brain regions including
the preoptic area and the vomeronasal organ and a reduc-
tion of CR and gonadotropin-releasing hormone (GnRH)
neurons. This antiapoptotic effect was confirmed in a
second ΔNp73 selective knockout mouse line. This
ΔNp73−/− line also displayed some signs of neurode-
generation and a small reduction in cortical thickness
and neuron number in older mice [31]. Although these
studies have elegantly shown distinct roles for the p73
isoforms in the CNS, it should be noted that the pheno-
types displayed by the isoform selective knockouts are
milder than that observed in the total knockout lacking
both TA and ΔN isoforms.
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frequent mutations in human cancers, mostly showing a gain
of function able to promote tumorigenesis [15–19]. Converse-
ly, p63 is a master regulator of epidermal development
[20–23], including skin annexes such as breast, prostate, vi-
brissae, and teeth [24, 25]; it is also involved in the develop-
ment of the heart [26, 27]. As a consequence of its role in the
development of pluri-stratified epithelia, mutations in the
Tp63 gene cause several human genetic syndromes including
EEC syndrome (ectrodactyly, ectodermal dysplasia, and cleft
lip/palate), SHFM syndrome (nonsyndromic split hand–split
foot malformation), and AEC syndrome (ankyloblepharon,
ectodermal defects, cleft lip/palate) [28–30].

p73 regulates cell survival and genomic stability, thus af-
fecting cancer development [31–34]. Accordingly, over 70 %
of the TAp73 selective knockout mice (TAp73−/−) show an
increased susceptibility to both spontaneous and induced car-
cinogenesis [34]. In addition, TAp73−/−mice are infertile and
exhibit hippocampal dysgenesis, indicating a role for the
TAp73 isoform in the regulation of reproduction and in neu-
ronal development [35–38].

The Tp73 gene is expressed as two main isoforms, TAp73
(transcribed from the P1 promoter) or ΔNp73 (transcribed
from the P2 promoter), containing or not an N-terminal
transactivation (TA) domain, codified by the first three exons
[39, 40]. Like p53, TAp73 can transactivate target genes that
regulate apoptosis and senescence [41, 42]. Through a direct
competition for the promoter or by formation of inactive
hetero-oligomeric complexes, the ΔNp73 protein acts as a
dominant negative for TAp73 (and p53) and therefore shows
an antiapoptotic effect [43].

In addition to the N-terminal isoforms, seven different al-
ternative splicing C-terminal isoforms of p73 are expressed at
the RNA level (α, β, γ, ζ, δ, ϵ, η), although it remains unclear
if all these isoforms are expressed as proteins and their differ-
ential biological importance; indeed, no mouse model exists
for their study [44–46].

All the transgenic mouse models for the various p73 iso-
forms show neurological defects (see Fig. 1), demonstrating
the importance of p73 for neuronal development.

p73 Causes Neuronal Development Defects

The p73 knockout mouse (p73−/−), generated by the
McKeon’s group in 2000, immediately revealed the impor-
tance of p73 in neuronal development [35]. These p73−/−
mice displayed mild hydrocephalus at birth and hippocampal
dysgenesis, characterized by an unusual organization of
regions CA1 and CA3 and the dentate gyrus (DG). In par-
ticular, the DG lacks the infrapyramidal blade and the
suprapyramidal blade is hypertrophied and extended. In
addition, p73 expression was found only in Cajal-Retzius
(CR) neurons that are distributed along the marginal zone



The hippocampus plays a central role in many aspects of
memory [51], and the above studies indicate that the TAp73
isoform plays an important role in the morphogenesis of this
structure, at least: Does such abnormal hippocampal anatomy
have behavioral consequences? The p73−/−mice show a gen-
eral reduction in performance across several behavioral tests.
Performance in the Barnes maze, a test of spatial learning and
memory formation, is markedly impaired in p73−/−mice [52].
The p73−/− mice also have impaired reflex and neuromuscu-
lar function and sensorimotor coordination and increased anx-
iety. Many of these behavioral abnormalities observed in the
p73−/− mice were also found in the TAp73−/− mice [36].
Hippocampal dysfunction is specifically associated with a re-
duction in burrowing and open field performance [53, 54], and
the TAp73−/− mice also exhibit a reduction in burrowing and
in speed and rearing time in open field tests. Moreover, the
degree of impairment in both increased with age [36]. Impor-
tantly, these behavioral deficits manifest with accompanying
electrophysiological abnormalities.

In contrast, the ΔNp73−/− mice, in particular older
animals, show only a slight deficit in the open field test.
However, the limited number of observations and a lack
of any electrophysiological data do not yet give a full
picture of the role of ΔNp73 in the CNS, a line of enquiry
worthy of further investigation.

How Does p73 Regulate so Many Aspect of Neural
Development?

From in vivo studies, it emerges that either the deletion of both
major p73 isoforms or the selective deletion of just the N-
terminal isoforms leads to a complex neural phenotype. Ini-
tially, this phenotype was ascribed to the pro-survival role of
ΔNp73 [48], supported by the observation that cortical neu-
rons from p73−/− mice are more susceptible to glutamate-
induced cell death [55]. However, when cortical neurons de-
rived from the three mouse models, p73−/−, TAp73−/−, and
ΔNp73−/−, were cultured in vitro, no signs of cell death were
observed. Furthermore, no differences were seen in cortical
neurons from these lines when challenged with DNA-
damaging agents [56, 36]. Therefore, the pro-survival role of
ΔNp73 can only partially explain the neural phenotypes of the
various p73 knockout models. Further histological analysis of
the p73−/− hippocampus shows a disorganized distribution,
with cells lacking correct basal-apical orientation. In particu-
lar, p73−/− hippocampal neurons have a reduced number of
branches and shorter dendrites than doWTcells and impaired
morphology is observed in hippocampal neurons in CA3 and
DG. This aberrant morphology suggests that p73, in particular
the TAp73 isoforms, are playing a role in hippocampal
neurogenesis. Indeed, earlier work, albeit only in vitro, had
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Fig. 1 Neural phenotype of the distinct p73mousemodels. Four different mouse models have been generated: p73−/− (34), TAp73−/− (49), andΔNp73
−/− (31, 50). The table summarizes the central nervous system and the peripheral nervous system defect, and the behavioral and memory test performed
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indicated a possible role for p73 in neuronal differentiation
[57, 58].

Neurogenesis is a complex multistep process through
which nerve cells are generated and integrated into existing
neuronal circuits [59, 60]. Under normal conditions, adult
neurogenesis takes place in two different regions of the brain,
the subventricular zone (SVZ) of the lateral ventricle and the
subgranular zone (SGZ) of the DG [60, 61]. Neural stem cells
(NSC) of course play a key role in neurogenesis and have the
ability to differentiate into different brain cell types (neurons,
astrocytes, and oligodendrocytes) while also retaining the ca-
pacity to produce identical NSC progeny (self-renewal) [62].
Other p53 family members, p53 itself and ΔNp63, have al-
ready been implicated in the regulating NSC behavior
[63–65].

p73 and Stemness

Numerous studies have demonstrated that p73 is also a posi-
tive regulator of embryonic and adult NSCs [66, 52, 67–69].
Indeed, neurospheres derived from p73−/− mice are smaller
and grow more slowly than do WT. This phenotype is due to
an impairment of cell proliferation with a reduced number of
cells in S-phase and is associated with an increase in the se-
nescent population [52]. Interestingly, Talos et al. found no
differences in apoptosis between p73−/− and control NSCs
indicating that apoptosis does not play a part in the reduced
neurosphere size. The same phenotype has been observed in
TAp73−/− NSCs, indicating that it is the TA isoform that is
responsible for NSC maintenance [67]. In support of this,
TAp73 is the main isoform expressed in embryonic NSCs
and the endogenous expression of TAp73 increases during
NSC differentiation [66]. As a consequence, both p73−/−
and TAp73−/− mice have significantly depleted stem cell
compartments in SGZ and SVZ.

The potential downstream candidates responsible for this
phenotype are genes involved in the regulation of proliferation
and/or self-renewal [70]. The loss of p73 leads to the transcrip-
tional dysregulation of SOX-2, SOX-3, NANOG, NOTCH-1,
NOTCH-2, HES-5, JAG2, HEY-2, and DELTEX (Fig. 2a).
Although additional studies are required to address how p73
physiologically regulates these factors, so far only Hey-2 has
been shown to be a direct transcriptional target of TAp73 [67].
Of possible relevance here, given the HES/HEY family are
transcriptional targets of the Notch-1 intracellular domain
(N1ICD), we have shown that TAp73, but not ΔNp73, iso-
forms are able to directly bind the N1ICD and antagonize its
transcriptional activity [71]. Of particular note, a CNS-specific
conditional Sox-2 knockout mouse line closely phenocopies
the p73 and TAp73 null mice [72], manifesting with reduced
cortical mass, hydrocephalus, and progressive loss of the low-
er blade of the DG, while neurospheres generated from this
line also show a gradual reduction in stem cell number.

p73 and Neuronal Stem Cell Differentiation

In addition to the above, there is experimental evidence
that TAp73 also regulates the differentiation of NSCs.
Indeed, it has been shown that neurons derived from
p73−/− NSCs do not differentiate fully and exhibit den-
dritic arborization defects and reduced synaptic connectiv-
ity [52]. p73 has been implicated in oligodendrocyte de-
velopment [58], and oligodendrocytes derived from p73−/
− NSCs are fewer in number and of Bpoorer quality^ than
those derived from WT cells. The role of TAp73 in the
regulation of NSC differentiation has been further con-
firmed using mouse embryonic stem cells (mESCs) com-
mitted to neuronal differentiation. Inhibition of TAp73
expression results in a reduction of the number of differ-
entiated neurons together with reduced neurite connectiv-
ity. Although the molecular mechanisms underlying
TAp73 function in NSC differentiation are not fully char-
acterized, a possible explanation has recently emerged.
Firstly, TAp73 drives the expression of miR-34a in
mESCs [73], while miR-34a modulates the appearance
of neurons and neurite outgrowth, by a mechanism that
involves, at least in part, SIRT-1 (Fig. 2b) [74]. Impor-
tantly, miR-34a levels are reduced in the hippocampus of
p73−/− mice, suggesting that a TAp73/miR-34a axis ex-
ists in vivo. And, in addition, miR-34a knockout mice
show a significant reduction of proliferating precursor
cells (i.e., Ki-67-positive cells) in the DG SGZ, reminis-
cent of the p73−/− mouse phenotype. As for TAp73, the
molecular mechanisms underlying the role of miR-34a in
mESC neuronal differentiation are not yet fully character-
ized, although the inverse relationship between miR-34a
and SIRT-1 is suggestive of SIRT-1 being a miR-34a tar-
get [75]. Furthermore, Wnt signalling is involved in the
regulation of the self-renewal [76] and Wnt-1 is downreg-
ulated during ESC differentiation [77]. Recently, Wnt-1
has also been shown to be a miR-34a target [78]; thus,
miR-34a may affect the differentiation of ESCs by acting
on Wnt-1 signalling. Notch signalling also plays a central
role in neuronal differentiation, and the inhibitory effect
of TAp73 on Notch we allude to above may also be at
work here. Moreover, the Notch and Wnt signalling path-
ways are known to interact at several levels and to exert
mutually antagonistic effects on each other [79]. Indeed,
the TAp73β the isoform we found to be most antagonistic
towards Notch has been shown to enhance canonical Wnt
signalling [80], indicating that p73 may be another hub
through which the Notch and Wnt pathways interact.

Another plausible mechanism by which TAp73 could reg-
ulate NSC differentiation is via the ubiquitin/proteasome path-
way, specifically through the E3 ubiquitin ligase tripartite mo-
tif protein 32 (TRIM32), which has been found necessary for
the correct induction of neuronal differentiation of NSCs [81,
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82]. TAp73 directly binds the TRIM32 promoter to drive its
expression (Fig. 2b); TAp73 and TRIM32 levels increase in
parallel during NSC differentiation, and TRIM32 steady-state
expression is reduced in p73−/− NSCs and in the SVZ of the
p73−/− mouse [83].

p73 and Multipotency

Multipotency is the ability of NSC to differentiate into the
three neural lineages, neurons, astrocytes, and oligodendro-
cytes. Overall, the loss of p73 does not affect the
multipoptency of NSCs as dissociated p73−/− NSCs maintain
their ability to differentiate along each lineage [52].

Overall, TAp73 is required for the maintenance of NSCs
and for the proper differentiation of these cells into neurons
and oligodendrocytes. Is TAp73 also required for the commit-
ment in NSCs from the neuroectoderm, a process that takes
place in the early phase of CNS development? Recent studies
have provided at least a partial answer to this question [84].
Mouse embryonic fibroblasts isolated from p73−/− mice
can be normally reprogrammed into induced pluripotent
stem cells (iPSC), indicating that p73 deficiency does not
affect iPSC generation, self-maintenance, or pluripotency.
Moreover, iPSC from p73−/− mice are able to differenti-
ate normally into NSCs, clearly suggesting that p73 is
dispensable for NSC formation.

p73 and Terminal Neuronal Differentiation

Once neuronal progenitors exit from the cell cycle, the imma-
ture postmitotic neurons engage in a series of developmental
processes including migration, axonal and dendritic growth,
synapse formation, and integration in the preexisting neuronal
circuitry [85, 60]. Extrinsic factors including brain-derived
neurotrophic factor (BDNF), neurotrophin 3, and nerve
growth factor (NGF) play key roles in axon growth and den-
dritic morphology in cortical neurons [86]. The p75
neurotrophin receptor (p75NTR) is a member of the tumor
necrosis factor receptor family that transduces signals from
pro- and mature neurotrophins, including NGF [87–89].
p75NTR has multiple functions within the nervous system,
ranging from neurite outgrowth and survival to apoptosis;
these multiple functions are a reflection of the variety of li-
gands as well as the ability of p75NTR to interact with other
receptors such as tyrosine kinase receptor B (TrkB) and
sortilin [90–93]. p75NTR promotes neurite outgrowth, elon-
gation, and branching via activation of a ceramide, Ras/ERK
pathway [94–96]. Furthermore, p75NTR facilitates cell sur-
vival through PI3-K-mediated Akt activation and NF-κB, an
antiapoptotic signalling factor [97–100].

p75NTR expression is reduced in both the cortex and hip-
pocampus of TAp73−/− mice. Moreover, TAp73−/− cortical
neurons show reduction in total neurite length and branch
points after NGF treatment, resulting in a reduction in the
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complexity of the dendritic arbor and a reduction in network
connectivity, as confirmed by electrophysiology [36]. At the
molecular level, the same authors demonstrated that TAp73
binds the p75NTR promoter and regulates its expression
(Fig. 3a).

Several observations indicate that p75NTR also plays an
important role in the peripheral nervous system (PNS) where
it exerts a positive effect on myelination [101–103]. TAp73−/
− mice show similar PNS defects to those observed in
p75NTR knockout mice [36]. In addition, sciatic nerves from
TAp73−/−mice contain fewer axons which also have a reduc-
tion in the diameter of the myelin sheath, while these mice
manifest an associated thermal sensitivity defect.

During development, a number of miRs show distinct ex-
pression patterns during maturation of the central nervous sys-
tem [104, 105]. miR-34a, discussed above, is highly
expressed in the brain, and its ectopic expression in neuroblas-
toma cell lines modulates neuron-specific genes [106], sug-
gesting a possible developmental role of miR-34a in the CNS.
The expression of miR-34a increases during postnatal devel-
opment of the brain and cerebellum, when synaptogenesis
takes place, and miR-34a expression is modulated during
in vitro differentiation of cortical neurons. TAp73 is an impor-
tant factor modulating miR-34a expression during neuronal
development, during in vitro differentiation of neuroblastoma
cells and cortical neurons [56].

An in silico search for targets that might explain the role of
miR-34a in this system revealed that several synaptic proteins
(synapsin-II, synaptotagmin-I and synaptotagmin-IV,
sintaxin-1A, synaptobrevin-2) contained putative miR-34a
consensus sequences within their 3′UTRs (Fig. 3b). Of these,
synaptotagmin-I and sintaxin-1Awere validated as direct tar-
gets of the miR-34 family. Ectopic expression of miR-34a in
primary cortical neurons reduced neurite arborization, and a
reduction in synaptotagmin-1 and sintaxin-1A expression,
while the reduced neurite complexity due to miR-34a expres-
sion was partially rescued by ectopic expression of synapto-
tagmin-1. In parallel, inhibition of miR-34a expression with
an antagomir resulted in increases in neurite outgrowth length
and branch number. These phenotypic changes resulting from
modulation of miR-34a expression were also associated with
changes in neurite spinal morphology and with electrophysi-
ological abnormalities, which are consistent with miR-34a
acting at the level of inhibitory synapses (Fig. 3b).

A recent report has suggested that TAp73 regulates the
expression of glutaminase 2 (GLS2), an enzyme that mediates
the conversion of glutamine into glutamate during the neuro-
nal differentiation of neuroblastoma cells (Fig. 3c) [107].
Moreover, direct manipulation of GLS2 expression itself
modulates neuroblastoma differentiation, and glutamine dep-
rivation influences the differentiation of cortical neurons
in vitro, suggesting that the neuronal effects of TAp73 are
partly due an effect on metabolism. Although TAp73 is not

essential for the in vivo regulation of GLS2 expression, met-
abolic profiling performed on TAp73- and ΔNp73-deficient
cortical neurons suggests that TAp73 loss does affect gluta-
mate metabolism. Indeed, cortical neurons derived from
TAp73−/− mice show a reduction in the levels of the neuro-
transmitters, glutamate, and GABA, without any significant
changes in aspartate and N-acetylaspartylglutamate. On the
contrary, N-acetylaspartylglutamate and glycine are reduced
inΔNp73−/− neurons, suggesting isoform-specific metabolic
functions of p73.

p73 and Alzheimer’s Disease

Alzheimer’s disease (AD) is confirmed in the postmortem
brain by an abundant presence of senile plaques (extracel-
lular deposits of the β-amyloid peptide) and neurofibril-
l a r y t a n g l e s ( i n t r a n e u r o n a l a g g r e g a t e s o f
hyperphosphorylated forms of the microtubule-associated
protein, tau) in the entorhinal cortex, hippocampal forma-
tion, and temporal and frontal cortices. In its initial for-
mulation, the “amyloid cascade hypothesis” of AD neuro-
pathology proposed that an increase in the extracellular
deposition of β-amyloid leads, in some yet to be deter-
mined way, to an affect on tau leading to tangle formation
which in turn resulted in cognitive impairment and neu-
rodegeneration. Almost 25 years on the hypothesis still
holds but is coming under considerable criticism largely
due to the lack of success of a number of large clinical
trials evaluating therapeutics aimed at targeting β-amyloid
[108–111].

Some argue that it is now time to reject the amyloid cascade
hypothesis outright [112].While others point out that although
considerable evidence demonstrate that amyloid at any stage
of aggregation is not alone sufficient to cause AD, it is at the
very least necessary for AD to manifest [113]. Indeed, few
would argue β-amyloid does not play an important role in
the etiology and pathology of the disease, and the general
consensus now is that it is not the amyloid aggregates them-
selves but rather the oligomeric, soluble forms of β-amyloid
that are the toxic species, exerting effects on a multitude of
cellular processes including inflammation, autophagy, oxida-
tive stress, calcium homeostasis, mitochondrial function, syn-
aptic function, excitotoxicity, and neuronal cell death [114,
115].

In this light, β-amyloid is regarded as a trigger of other
downstream events that bring about neurodegeneration
[113]. The effectors of those events may well include mem-
bers of the p53 family. Only a few years after the amyloid
cascade hypothesis was first put forward reports began to ap-
pear implicating the p53 family in AD [116], and their number
has steadily grown over the intervening years. p53 in particu-
lar is closely linked with the three familial AD genes, the β-
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amyloid precursor protein (APP) [117, 118] and presenilin 1
and presenilin 2 (PSEN1 and PSEN2) [119]. The presenilins
are necessary components of γ-secretase, the multimeric pro-
tein complex responsible of the final proteolytic cleavage of
APP resulting in the generation of β-amyloid [119].

p73, the p53 family member preferentially expressed in the
brain, has also been implicated in AD, although its role re-
mains a matter of contention. In hippocampal pyramidal neu-
rons of adult human brain, the p73 protein displays a cytoplas-
mic expression pattern. However, in the brains of AD suf-
ferers, p73 shows a more nuclear localization pattern in these
cells. Our own in vitro studies show that TAp73 induces an
increase in tau phosphorylation at phosphoepitopes found to
be increased in AD brain. Furthermore, brains from aged het-
erozygous p73+/−mice showed an age-dependent increase in
tau phosphorylation levels and the formation of filamentous
aggregates resembling neurofibrillary tangles. It was sug-
gested that this effect on tau was predominantly due to a re-
duction in ΔNp73 isoform expression and was mediated
through an effect on JNK [55]. The p73/miR-34a axis has also
been implicated in AD, as high levels of TAp73 and miR-34a
have been found in brains from bothmouse models of AD and
AD patients [120–122, 56].

Evidence placing p73 downstream of β-amyloid and up-
stream of tau appeared when the heterozygous p73 mouse was
crossed with two mouse AD models resulting in a much earlier
appearance of increased tau phosphorylation and filamentous
aggregates and the activation of tau kinases [123]. However,
in a later study, no change in tau phosphorylation was observed
in the aged p73+/− mice or when the line was crossed with the
same mouse ADmodel (TgCRND8) [124, 125]. The authors of
this study also looked, but found no polymorphisms or change
in the copy number of TP73 associated with AD [126]. The
reasons for these disparities presently remain unclear. However,
an issue is that the p73+/− line and the TgCRND8 lines used
were not on an identical genetic background, a factor which is
known to have strong effects on phenotype.

A potential area yet to be investigated in AD is the meta-
bolic activities of p73, such as its regulation of glutamine
metabolism, which could help clarify this controversy. The
long history of research into the role of p53 in tumorigenesis
has led to important advances in the treatment of cancer: it is
hoped by those in the field that an improved understanding of
the role of p53/p73 in AD will, similarly, result in therapeutic
advances which are so urgently needed for this most devastat-
ing of diseases.
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Fig. 3 TAp73 regulates neuronal
terminal differentiation. TAp73
expression increases during the
developmental stage from
immature to mature neurons. Loss
of TAp73 results in a neuron with
less connectivity and
electrophysiological defects. This
complex phenotype results from
the direct regulation of several
genes by TAp73. a TAp73 binds
p75NTR promoter and regulates its
expression, which in turn
regulates neurite outgrowth,
elongation, and branching for
activation of ceramide, Ras/ERK
pathway, and cell survival
through PI3-K and NF-κB. b
miR-34a is a direct target of
TAp73. miR-34a inhibits the
expression of synaptotagmin-1
(Syt-1) and sintaxin-1A (Stx-1A),
resulting in a modulation of
synaptogenesis. c Glutaminase-2
regulates the conversion of
glutamine into glutamate.
Modulation of GLS2 expression
affects neurite outgrowth. GLS2
is a transcriptional target of
TAp73
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Perspectives and Conclusions

The p53 family member, p73, like the founder member is also
a tumor suppressor protein. However, the phenotypes of the
mice in which all or certain of different isoforms of p73 have
been deleted are not principally those of enhanced tumor sus-
ceptibility. Rather, abnormalities of the nervous system, par-
ticularly the CNS, occur. Of note, the p73 null mouse is nor-
mal at birth and the neurological abnormalities begin to man-
ifest around postnatal day 6. Given p73 expression increases
during neuronal maturation, these features indicate that the
appropriate expression levels of the p73 isoforms are required
for proper CNS development and subsequent neuronal func-
tion. Although our model does not allow for discrimination
between neuronal phenotypes caused by alterations of devel-
opment or aberrant neuronal biology, it demonstrates that p73
is an important factor involved in the regulation of postnatal
neurological function. However, the downstreammechanisms
involved appear complex and remain to be fully worked out. It
is clear that one molecular mechanism underlying the pheno-
type observed in the p73 null mouse is linked to its function as
a transcription factor. Indeed, TAp73 either directly or indi-
rectly regulates several genes known to be involved in neuro-
nal biology, including SOX-2, Hey-2, TRIM32, and p75NTR.
Moreover, the regulation of miR-34a by TAp73 indicates that
microRNAs also participate in the multifunctional role of p73
in neurons. In addition, p73 regulates several metabolic en-
zymes such as GLS2, which plays a central role in the pro-
duction of the neurotransmitter, GABA.

The loss of p73 isoforms could also have an impact at the
level of neuronal circuits. An altered neurotransmitter profile
has been documented in our p73 mouse models, which, to-
gether with an effect on dendritic arborization, could readily
lead to the disruption of neuronal connectivity.

Although the data so far accumulated indicate that the
complex in vivo phenotype observed in the genetically
modified mice is mainly due to the functions of the
TAp73 isoforms in neurons, one cannot exclude a con-
tribution from the glial cell population. Indeed, TAp73
has been shown to be involved in the proper differentia-
tion of oligodendrocyte precursor cells (OPCs). These
cells normally dived several times then differentiate.
However, the exogenous overexpression of TAp73 in
OPCs, in vitro, induces OPCs to spontaneously differen-
tiate into oligodendrocytes, while exogenous ΔNp73
completely inhibits this effect [58]. More recently, Talos
et al. using NSC isolated from p73−/− mice confirmed
the role of p73 in oligodendrocyte differentiation.

To date, no reports have appeared indicating a role of p73
in astrocytes, and astrocytes generated from p73−/− NSC ap-
pear normal [52], suggesting that this p53 family member
plays little role in astrocyte biology. Even so, further investi-
gations are needed to fully rule this out.

In the last few years, epidemiological studies and experi-
mental findings have postulated a link between cancer and
neurodegenerative disease [127]. Indeed, several genes that
are involved in neurodegeneration are often deregulated or
mutated in cancer. Among those genes, several are tumor sup-
pressor genes or oncogenes. Therefore, we would like to spec-
ulate that p73 could join the club of those genes with overlap-
ping function in both cancer and neurodegenerative disorders.
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