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Abstract Organotypic hippocampal slice cultures (OHSCs)
have been used as a powerful ex vivomodel for decades. They
have been used successfully in studies of neuronal death,
microglial activation, mossy fiber regeneration, neurogenesis,
and drug screening. As a pre-animal experimental phase for
physiologic and pathologic brain research, OHSCs offer out-
comes that are relatively closer to those of whole-animal stud-
ies than outcomes obtained from cell culture in vitro. At the
same time, mechanisms can be studied more precisely in
OHSCs than they can be in vivo. Here, we summarize stroke
and traumatic brain injury research that has been carried out in
OHSCs and review classic experimental applications of
OHSCs and its limitations.
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Introduction

Organotypic brain slice cultures are commonly used in brain
disease research because they provide unique advantages over
in vivo and in vitro platforms [1]. They largely preserve tissue
structures, maintain neuronal activities and synapse circuitry,
and replicate many aspects of the in vivo context. Additional-
ly, the system is much simpler than an in vivo animal model

and can be manipulated by overexpressing or knocking down
genes. Thus, gene functions and pathways can be studied as
easily as they can be in an in vitro system [1, 2].

Slice systems have been successfully established from spi-
nal cord (acute slice cultures) and various brain regions, in-
cluding hippocampus, striatum, cortex, olfactory epithelium,
thalamus, and cerebellum [1, 3–9]. Slice cultures from hippo-
campus are the most commonly used to investigate the effects
of drugs on neurons, microglia, and astrocytes and to assess
neurogenesis. Organotypic hippocampal slice cultures
(OHSCs) can be grown acutely or for long periods (chronic
slice culture). Chronic slice culture can represent brain devel-
opment, including the patterns of gene regulation, protein ex-
pression, and synaptic activity of age-matched hippocampus
in vivo [1, 10–12]. Therefore, long-term hippocampal slice
cultures are increasingly used as models for neurodegenera-
tive disease, traumatic brain injury (TBI), and stroke, and as
drug screening platforms to identify novel therapeutics. In
Fig. 1, we summarize the disease models and pathophysiolog-
ic processes that can be studied with OHSCs and provide a
schematic diagram showing a simple process for preparing
chronic OHSCs.

OHSCs are usually prepared from rats or mice at postnatal
days 3–9 (PND3–9) [1, 13]. Brain tissue during this time has a
high degree of plasticity and is resistant to mechanical trauma
during the slice preparation. Rodents that are younger than
PND3 are not suitable for long-term slice culture because
the slices lose their morphological characteristics [14]. Slices
from adult animals often undergo neuronal degeneration, al-
though some researchers claim to have prepared slices from
adult rodents and maintained them in culture for several weeks
[1, 15, 16]. After the brain is removed from anesthetized an-
imal and separated into two equal hemispheres, the tissues are
chilled in ice-cold dissection medium consisting of minimal
essential medium (MEM), 24 mM HEPES, and 10 mM Tris–
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HCl or Hanks’ balanced salt solution (HBSS), to help main-
tain viability and activity as much as possible [17]. Subse-
quently, a tissue chopper or a vibratome is used to cut the brain
into 300–400 μm slices. The hippocampus is dissected care-
fully from slices for culturing. Two methods have been devel-
oped to maintain thin slices: the roller tube and the membrane
interface method [13, 18–20]. The conventional roller tube
technique is associated with preparation difficulties and large
experimental viabilities [1]. Thus, membrane interface culture
has become the most frequently usedmethod [1]. In this meth-
od, brain slices are maintained on a porous membrane insert
while the medium below the membrane provides nutrients to
tissues by capillary action [1, 13]. The standard culture medi-
um consists of 50 % MEM, 25 % heat-inactivated horse se-
rum, and 25%HBSS, supplemented with final concentrations
of 25 mM glucose, 2 mM glutamine, or 12.5 mMHEPES and
penicillin–streptomycin [17, 21–23]. The slices are incubated
at 34–37 °C in a humidified atmosphere of 5 % CO2 [23–25].
Mechanical lesions and alterations in metabolic state caused
by release of enzymes and iron during tissue slicing are
repaired during the first 6–18 days of culture [13]. After sev-
eral weeks, the slices eventually thin down to 5–8 layers of
cells (∼100 μm) [13]. For use in experiments that mimic is-
chemia or excitotoxicity, a low-serum or serum-free medium
may be used, or conditioned medium can be applied based on
the experimental targets [26].

Healthy, undamaged slices are crucial for successful exper-
iments and for minimizing experimental variation. On a
healthy hippocampal slice, one should be able to easily iden-
tify cell bodies of pyramidal cells in CA1 and CA3 regions
under a ×40 objective and smooth cell somata on the slice
surface [13]. Various stains can also be used to help identify
healthy slices. For example, propidium iodide (PI) is used to
stain dead cells, and immunostains for markers of neurons and
synapses can be used to identify lesions, certain healthy cell
populations, and tissue architecture.

Experimental Applications of OHSC in Stroke
and TBI

The technique of oxygen-glucose deprivation (OGD) mimics
the conditions of ischemic stroke in vitro. A variety of neuro-
protective mechanisms have been studied with the OGDmod-
el [25, 27, 28]. The hippocampal CA1 area is highly suscep-
tible to OGD timing in OHSCs [29–31]. Variations in the time
of preincubation, temperature, and cocultured cells strongly
affect cell death [32–35].

PI is widely used to detect disrupted cells in slice culture. It
binds to DNA in a nonspecific manner by penetrating the
damaged phospholipid bilayers. Although PI cannot distin-
guish apoptotic and necrotic processes, it is accepted to

Fig. 1 The preparation and pathological models of chronic organotypic
hippocampal slice cultures (OHSCs). Hippocampus is disected from
mouse brains (from −1.06 to −2.80 mm relative to bregma) at postnatal
days 3 to 9. OHSCs are prepared with a tissue chopper and are generally
350 μm in thickness. After being cultured for 10–14 days in vitro (DIV),

the slices thin out and should have a healthy/integrated structure under
brightfield microscopy. The disease models and pathophysiologic
processes that can be studied with OHSCs are listed in the boxes. DG
dentate gyrus
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correlate well with the overall number of damaged cells [36,
37]. PI staining fails to distinguish the damaged cell popula-
tion but provides an idea of the major damaged cell type by the
unique structure of hippocampus. The concentration of PI
usually used is 5 μg/ml, and 30 min to 1 h is an effective
incubation period. Alternatively, damaged cells can be stained
with Sytox Green (5 μM) for 30 min [38]. Cell death is cal-
culated as 100×(Px–P0)/(Pmax–P0), where Px is the fluores-
cence intensity of slices at a certain time point, P0 is the back-
ground (baseline) fluorescence, and Pmax is the maximum
fluorescence intensity of slices after a toxic dose of N-
methyl-D-aspartate (NMDA), glutamate, or hypothermia,
etc. [36, 39, 40].

Immunohistology is performed directly on the slices after
different experimental treatments. Some groups prefer to per-
form the cryosection on OHSCs (20 μm) before
immunodetection [41]. Ultrastructure, such as mitochondria,
endoplasmic reticulum, and dendrites, can be observed by
electron microscopy after traumatic insult [42].

Biochemical Characteristics

No special treatment is required to extract protein and mRNA
from cultured slices except for pooling of samples. Five to six
slices of rat hippocampus should be pooled [41, 43]. More
slices are needed to extract proteins from mouse OHSCs.

An enzyme-linked immunosorbent assay (ELISA) kit is
usually used to measure secreted proteins such as cytokines
and chemokines in the culture medium of OHSCs. The over-
expression of tumor necrosis factor α (TNFα), interleukin-6
(IL-6), and interleukin-1β (IL-1β) has been detected as early
as 60 min after 60-min OGD [44].

mRNA microarrays can be performed and analyzed from
slices subjected to hypoxia and OGD models [45]. Hypoxic
preconditioning has been shown to upregulate apoptosis/
survival-related genes, and isoflurane exposure has been
shown to upregulate cell cycle/development genes such as
Egr and Pten [45]. Proteins that regulate apoptosis, such as
B cell lymphoma 2 (Bcl-2), P53, and murine double minute
(MDM2), can be analyzed by Western blotting for evaluation
of cell death pathways [45, 46].

Electrophysiologic Function

Organotypic slice culture permits long-term exposure to
chemicals or drugs. Moreover, the chronic exposure may pro-
duce results that are opposite of those obtained in acute exper-
iments [47]. After TBI is induced in hippocampal slice cul-
ture, the response amplitude, threshold intensity to obtain
50 % maximal response, and spontaneous oscillations are re-
corded [48, 49]. Stretchable microelectrode arrays (SMEAs)
have been developed to record neuronal activity frommultiple
electrodes. Unlike typical electrodes, SMEAs deform with the

tissue during TBI-induced stretching [49]. SMEAs can stim-
ulate and detect electrical activity from cultured tissue without
causing additional mechanical damage [50].

Neural Genesis (Axogenesis, Gliogenesis)

To determine the fate of newly generated neurons and glial
cells, Strassburger et al. [41] detected proliferating cells by
using 5-bromo-2-deoxyuridine (BrdU) and by labeling with
specific cell markers sequentially. At 1 week after 40-min
OGD, little endogenous neurogenesis had occurred, as detect-
ed by doublecortin, the early neuronal marker; on the contrary,
the majority of BrdU-positive cells were microglia or GFAP-
positive cells [51].When the injured OHSCswere treated with
anti-inflammatory agents, neurogenesis was induced in the
posterior periventricular zone at 6 days after 40-min OGD
[41]. Sierra et al. [52] also showed that microglia in the hip-
pocampus can regulate neurogenesis through phagocytosis.
Moreover, neural progenitor cells can be grafted to the slice
cultures to study chemokines that regulate their migration and
to investigate survival [53], differentiation, synaptogenesis,
and function of the transplanted cells [35, 54–56]. In compar-
ison with neurogenesis, endothelial cell remodeling and an-
giogenesis have not been studied in OHSCs [57, 58].

Hypothermia

Mild hypothermia after OGD produces regional and time-
dependent neuroprotective effects [59]. Gregersen et al. [60]
cooled the slices with mild (33–34 °C), moderate (<25 °C),
and profound hypothermia (<20 °C) to investigate the limita-
tions of hypothermia after 60-min OGD. They found that the
protective effect of mild and moderate hypothermia was time-
dependent and that profound hypothermia increased cell death.

Coculture and Transgenic Mice

To study the role of microglia in neuroprotection and neuro-
degeneration, microglia can be depleted from OHSCs with
chemicals such as saporin. The depletion of microglia was
shown to increase neurodegeneration at 1, 7, and 14 days after
30-min OGD [61]. Conversely, microglia can be added to the
slice cultures. Microglia provided a neuroprotective effect
when applied up to 4 h after 40-min OGD [62]. Protein-
dependent function can be studied by using shRNA to knock
down a gene in OHSCs or by culturing slices from knockout
or transgenic animals [53, 63–65].

Applications to Stroke

In 2000 and 2012, stroke was the second leading cause of
death in the world (http://www.who.int/mediacentre/
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factsheets/fs310/en/). Even with timely treatment, it still may
cause severe long-term sequelae, including unilateral paraly-
sis, awareness and memory problems, speech problems, limb
pain, and even depression owing to onset and delayed neuro-
nal cell death and secondary neuroinflammation. The patho-
genic mechanisms, neuroprotection, and repair mechanisms
of stroke need to be investigated, and potentially effective
drugs need to be tested in preclinical or translational research.

Ischemic Stroke

Ischemic stroke accounts for approximately 87 % of all
strokes and is the most well-studied stroke type. Because
OGD can mimic the conditions of ischemic stroke in hippo-
campal slice cultures, which represent a complex mixed cell
population, it has been commonly used in ischemic stroke
studies since 1996 [66, 67]. Pathogenic mechanisms of acute
and delayed neuronal loss that have been studied in OHSCs
include cellular energy depletion, accumulation of extracellu-
lar glutamate and other excitotoxins, calcium overload, mito-
chondrial dysfunction, and oxidative stress [66]. CA1 pyrami-
dal cells are most vulnerable to OGD; the CA3 and dentate
gyrus regions are less vulnerable [66, 68]. OGD has been
shown to induce apoptosis [69, 70], necrosis [71], and a mix-
ture of both [72]. The differences in cell death type might
depend heavily on the duration of OGD (short OGD tends to
cause apoptosis, whereas longer OGD causes necrosis) and
the oxygen concentration [73]. Studies in which different
kinds of cell death are targeted have been carried out for years.
Pretreatment with caspase inhibitor Ac-YVAD-cmk (1 h be-
fore until 24 h after OGD) protected against CA1 cell death
and also prevented synaptic dysfunction [68]. Another cas-
pase inhibitor, z-VAD-fmk, also provided a neuroprotective
effect when administered during and after 30-min OGD
[74]. However, inhibitors of poly (ADP-ribose) polymerase
have no neuroprotective effect and have even caused more
cell death when tested in OHSCs [70, 73, 74]. Although many
groups have tried, it is not easy to replicate the typical time
pattern of neuronal cell death after global ischemia with OGD
in vitro or ex vivo: acute cell death in the dentate hilus follow-
ed by delayed cell death in the CA1. For now, OGD is a
common ex vivo model used to study the molecular and cel-
lular mechanisms of ischemic stroke and the effectiveness of
neuroprotective compounds in OHSCs.

Application of glutamate is believed to mimic
excitotoxicity that occurs as a consequence of ischemic stroke.
Excess glutamate, which is released into the extracellular
space by damaged cells, can overexcite inotropic and G-
coupled metabotropic glutamate receptors and thereby accel-
erate calcium ion entry into the cell. Calcium can also cause
the release of more glutamate. Glutamate can bind to two
types of receptors: inotropic receptors [including NMDA,
kainate, and α-amino-3-hydroxy-5-methyl-4-isoxazole

propionate (AMPA)] and metabotropic glutamate receptors.
Metabotropic glutamate receptors can be excited by L-2-
amino-4-phosphonobutyric acid (L-AP4), 1-amino-1,3-
dicarboxycyclopentane (ACPD), and L-quisqualic acid (L-
QA) [66, 75]. Exposing OHSCs to NMDA and AMPA causes
CA1 pyramidal cell death [76, 77]. Neurons located in CA3
are particularly responsive to administration of kainic acid
(KA) and demoic acid [76–81]. Interestingly, different ago-
nists induce different types of cell death. For example, KA
caused necrosis but not apoptosis in OHSCs [80]. Antagonists
of glutamate receptors have been tested in conjunction with
OGD. Repeated studies have shown that treating OHSCs with
MK-801, an NMDA antagonist, rescues most neurons from
death during and after OGD [7, 82–86], but results regarding
whether posttreatment withMK-801 protects against neuronal
death have been confl ict ing [7, 86]. 6-Cyano-7-
nitroquinoxaline-2,3-dione (CNQX) protected against dam-
age from glutamate, and GYKI 52466 and 2,3-dihydro-6-ni-
tro-7-sulfamoyl-benzo-quinoxaline (NBQX) showed protec-
tion against KA, AMPA, and ATPA [(RS)-2-amino-3-(3-hy-
droxy-5-tert-butylisoxazol-4-yl)propionic acid] toxicity [77,
87].

Calcium influx into the damaged neurons is a cause of cell
death after stroke. Iron channels and activated NMDA,
AMPA, and KA receptors are highly permeable to calcium
[88–93]. Sodium influx through NMDA, AMPA, and KA
receptors also causes calcium overload that is mediated by
voltage-sensitive calcium channels [66]. Therefore, the effica-
cy of calcium channel blockers and tetrodotoxin, a sodium
channel blocker, has been tested by PI staining and electro-
physiology methods [67, 83, 94]. Importantly, both L-type
and N-type calcium channel blockers have been shown to
provide neuroprotection in vivo and in vitro, but it was not
clear whether the protection was through the vasculature or
neurons [67]. OHSCs provided a unique platform that enabled
researchers to determine that the effect of an N-type calcium
channel antagonist (omega conotoxin MVIIA) was mediated
directly through neuronal calcium channels, whereas the ef-
fect of dihydropyridines (which block L-type calcium chan-
nels) might be mediated through vascular calcium channels or
indirectly through actions in other brain regions [67].

Calcium influx leads to activation of the mitochondrial
permeability transition pore (MPTP). The resulting depolari-
zation of the mitochondria causes a loss of ATP production, an
increase in reactive oxygen species (ROS), and damage to
cytochromes in the electron transport chain [66, 95–98]. The
increased presence of ROS and calcium within the mitochon-
dria leads to lipid peroxidation and membrane damage [66].
Nitric oxide (NO) accumulates and reacts with superoxide
anion to form peroxynitrite, which causes additional cell dam-
age and leads to apoptotic and necrotic cell death [66, 97].
Mitochondrial inhibitors (3-nitropropionic acid), compounds
that induce glutathione depletion (l-buthionine-sulfoximine),
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and other reagents have been used to mimic the pathological
process of ROS generation in OHSCs [66]. Neuroprotective
compounds like RU486, an antagonist of progesterone and
glucocorticoid receptors, have been shown to protect against
the effects of ROS-induced cell death, including amyloid beta
protein, hydrogen peroxide, and glutamate overloading [99].
This protective effect was independent of the presence or ac-
tivation of glucocorticoid or progesterone receptors [99].
Genipin, the multipotent ingredient in gardenia jasmenoides
fruit extract, was also able to reduce cell death stemming from
ROS and reactive nitrogen species production [38]. In addi-
tion, mild hypothermia (31–33 °C) has been shown to protect
against OGD-induced (60 min) neuronal death by reducing
free radical production [100].

Damaged neurons undergo cellular degeneration after the
onset of cerebral ischemic stroke. During this process, the
injured neurons upregulate stress-related signaling pathways
and secrete chemokines/cytokines that strongly activate near-
by glial cells [101–103]. In response to the inflammatory sig-
nals, microglia/macrophages are recruited to the infarct area,
where they contribute to phagocytosis of damaged neurons,
formation of scar tissue, and secondary inflammation. The
secondary inflammation potentially increases cerebral infarct
size and worsens clinical outcome of patients with ischemic
stroke [103–105]. It is commonly accepted that microglia/
macrophages have two distinct activation phenotypes. The
M1, or classically activated phenotype, is associated with
secretion of inflammatory cytokines and generation of
ROS, whereas the M2, or alternatively activated phenotype,
is believed to secrete anti-inflammatory factors, phagocy-
tize damaged neurons, and contribute to regeneration of
injured tissues [106]. The ability to manipulate microglial/
macrophage activation after stroke could affect ischemic
stroke outcomes. D-JNKI1, a specific JNK inhibitor, was
shown to decrease activation of microglia after 30-min
OGD through the JNK pathway in neurons [103]. Addition-
ally, the expression and activity of matrix metalloproteinase
(MMP) 9 was increased after OGD (48 h) in microglia; treat-
ment with either MMP inhibitor AG3340 (prinomastat) or
minocycline reduced OGD-induced (48 h) gelatinolytic
activity as well as neural injury [107]. Moreover, histone
deacetylase inhibitors trichostatin A and suberoylanilide
hydroxamic acid inhibited lipopolysaccharide-induced
microglial activation by decreasing the secretion of IL-6,
macrophage inflammatory protein-2, and NO. This effect
may be mediated by the NF-κB pathway [108].

Hemorrhagic Stroke

Fewer studies have used OHSCs to model hemorrhagic
stroke. Nicaraven is an agent that is especially beneficial in
vasospasm or brain damage caused by subarachnoid hemor-
rhage (SAH) [109]. In the only study that used OHSCs to

model SAH, nicaraven was reported to protect neurons from
30-min OGD and/or NMDA-induced cell death by inhibiting
poly (ADP-ribose) synthase and scavenging free radicals
[109]. To our knowledge, no published study has used OHSCs
to investigate the pathophysiology of intracerebral hemor-
rhage. Hemoglobin, a main component of blood, has been
reported to bind with NO and block long-term potentiation
of CA1 neurons [110]. Other blood components that may have
an impact on neuronal toxicity, such as thrombin, have been
studied with OHSCs. However, such studies are usually con-
sidered to benefit ischemia, but not hemorrhage [111]. Throm-
bin has been reported to protect neurons from OGD at low
concentrations (50 pM, 0.01 U/ml), but it reduced neuronal
survival at higher concentrations (50 nM, 10 U/ml) [111]. The
molecular mechanism by which thrombin causes injury may
relate to FXa (perinuclear activated factor X), which catalyzes
the conversion of prothrombin to thrombin in neural tissue
after ischemia [112]. Protease nexin-1 and L-JNKI1 were able
to prevent the neuronal injury caused by thrombin [113, 114].

Application to TBI

TBI is one of the most common neurologic disorders and is
generally graded into mild, moderate, and severe. Based on a
Centers for Disease Control and Prevention (CDC) report, an
estimated 1.7 million people sustain acute TBI in the USA
annually, and approximately 53,000 people die of TBI-
related injury [115]. TBI consists of the primary injury, which
occurs at the moment of impact, and secondary injury, which
is characterized by brain swelling, hypoxia, hypotension, and
a complex cascade of neuroinflammatory and metabolic
events that lead to death or neurologic damage over time
[116]. Although specific therapy for TBI is lacking, under-
standing the pathogenesis of TBI-induced brain injury is nec-
essary. Here, we summarize studies that have used OHSCs to
investigate TBI and the techniques and analytical tools that
were used.

Induction of TBI in Slice Cultures

TBI can be mimicked in organotypic slice cultures by several
methods. In one, a stainless steel cylinder (0.9 g) is rolled on
the slices to mimic the primary traumatic injury of head-
impact accidents [36]. In another model, a metal stylus or
weight (0.137 g) is held 2 or 7 mm above the slice and then
allowed to fall onto a localized area [36, 117]. This model
induces secondary injury, enabling the researcher to follow
the spread of cell injury, hypoxic damage, and brain swelling
[118]. The third method is stretch injury, known to generate an
equibiaxial strain injury [117, 119]. The frequency and speed
of the strain are controlled by a linear actuator, linear encoder,
and motion control board. The device allows up to 100 %
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control of tissue strain and strain rate (up to 150 s−1) [120].
Cell damage after injury closely correlates with strain [121].
Of note, although 5 and 10% biaxial lagrangian strain induced
minimal cell death, as determined by PI staining [122, 123],
the maximal evoked response and the excitability of neural
networks were decreased [48].

Cell Death (PI Staining)

PI uptake is used to indicate cell damage. When a mechanical
TBI model was used, PI was increased significantly at 72 h.
Application of dexmedetomidine by 2 h provided optimal
protection, and MEK1-ERK was considered to be involved
in mediating dexmedetomidine’s protective effect [124].

Metabolism and Gene Expression

Most TBIs are mild [125]. Di Pietro et al. [117] compared the
mRNA levels of various genes after a 10 % (mild) and 50 %
(severe) stretch in slice cultures. They found that more genes
were differentially expressed after mild TBI than after severe
stretch, 210 vs 161 for upregulated genes and 789 vs 426 for
downregulated genes. These genes were involved in a variety
of cellular processes, such as multicellular organismal devel-
opment, nucleosome organization, and chromatin assembly.
Interestingly, severe stretch injury also activated neurodegen-
erative pathways such as the RhoA (Ras homolog gene fam-
ily, member A) signaling pathway. The same investigators
also investigated the metabolism of mild TBI [119]. HPLC
results showed that ATP, ATP/ADP, and mitochondrial func-
tion were decreased, and gene microarray data indicated
downregulation of transcriptional and translational genes at
24 h after mild TBI. These data indicate that a hibernation-
type response was activated after mild TBI [119].

Activation of Microglia

After TBI, quiescent microglial cells with ramified processes
become activated and take on an amoeboid morphology.
In vivo, monocytes, neutrophils, and lymphocytes accumulate
at the site of the lesion as a result of a breached blood–brain
barrier [126–128]. These inflammatory cells release cytokines
that contribute to secondary brain damage. Inflammatory cells
also activate the complement cascade, which increases vascu-
lar permeability and secondary neuronal insults in both rodent
and human brain [129, 130]. Activated microglia and blood-
sourced macrophages are very hard to differentiate morpho-
logically or by surface markers in vivo. Therefore, Bellander
et al. [131] used OHSCs to evaluate the contribution of acti-
vated microglia to complement production after TBI. Their
findings support the premise that microglia play a key role
in complement activation after TBI, even in the absence of
blood cells.

ROS

After TBI, secondary injury induces an extended cascade of
pathological sequelae, including damage by ROS, reactive
nitrogen species, and lipid peroxidation. Each contributes to
damage of protein, DNA/RNA, cell membrane phospholipid
architecture, and integrity of the blood–brain barrier [132,
133]. Various antioxidant agents have been shown to be pro-
tective in TBI models, including U-83836E, a potent and se-
lective scavenger of LOO (*) radicals [134]; phenelzine, a
scavenger of lipid peroxidation [135]; and deferoxamine,
which inhibits iron toxicity [136]. Most of these investigations
were performed in vivo. Recently, one ex vivo study on cul-
tured rat hippocampal slices by Hughes et al. [38] showed that
genipin protected against oxidative stress induced by tert-bu-
tyl hydroperoxide when it was administered at 1, 6, or 24 h
after injury. No protection was detected when treatment was
delayed by 36 h. ROS injury occurs soon after TBI. Huang
and Huang [137] summarized 143 published in vivo and
in vitro TBI studies and found that in most, ROS was sampled
at 30 min to 1 h after acute TBI. However, ex vivo brain slice
culture might provide a good model to investigate ROS as
early as several minutes after TBI.

Epilepsy After TBI

TBI causes epilepsy and chronic seizures that are triggered by
hyperexcitable networks [138, 139]. Extracellular electro-
physiological recordings revealed that cortical oscillatory ac-
tivity after TBI was suppressed [140]. Only 28 % of slices
showed evoked activity 48 h after TBI, and the network ac-
tivity recovered to baseline at 15 days after TBI [140]. The
level of cyclooxygenase-2 and prostaglandin E2 (PGE2) in-
creased after TBI [47]. In contrast to acute, postsynaptic ap-
plication of PGE2, which decreases excitatory synaptic trans-
mission in cultured slices, long-term (48 h) exposure to PGE2
upregulated presynaptic excitatory synaptic transmission,
which may evoke a cascade of events that leads to
epileptogenesis [47].

In early studies of TBI in OHSCs, researchers investigated
fiber sprouting and functional regeneration. GAP-43 (growth-
associated protein-43), a marker of axonal growth, was
expressed by newly sprouted axons after transection of the
CA3-CA1 transition [141]. Elevated local connection by in-
creased presynaptic boutons caused hyperexcitability, which
contributed to the genesis of seizures. TBI induced secretions
of neurotrophic factors such as epidermal growth factor, brain-
derived neurotrophic factor, and glial cell-derived neurotroph-
ic factor [142, 143]. These factors might promote axonal con-
nections by improving sprouting [144, 145]. Experiments in
slice cultures have recently shown that interfering with the
actions of these factors to reduce axonal sprouting might
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reduce the risk of hyperexcitability and epilepsy development
[146].

Conclusion, Limitations, and Prospects

Chronic hippocampal slice cultures have become a valuable
platform to study both normal and diseased brain functions.
Because OHSCs preserve the entire structure of hippocampus
as it relates to neurogenesis, synaptogenesis, and axogenesis,
it can be used as an ex vivo model of stroke and TBI to
investigate not only acute neuronal cell death, but also
neurogenesis and neuroplasticity [1]. As discussed in this re-
view, OHSCs have a number of advantages as an ex vivo
system. It is a fast, simple, and precisely controlled system;
it preserves the three-dimensional neuronal network and there-
fore is closer to an animal model than is cell culture; it reduces
the number of animals needed; slices can be cocultured with
slices from different brain tissue or with specific cell popula-
tions to assess the interactions between them, and the effects
of compounds and drugs can be investigated without concern
about their ability to pass through the blood–brain barrier [1,
147].

Compared to the tri-culture system that artificially assem-
bles various cell types (endothelial cells, pericytes, and astro-
cytes or endothelial cells, neurons, and astrocytes) in vitro,
OHSCs contain all cell types and can be used to study cell-
cell interactions under a variety of pathologic conditions.
However, as an ex vivomodel, the OHSC system shares many
disadvantages with in vitro systems. For example, it lacks the
influence of factors such as blood perfusion, cerebrovascular
autoregulation, intracranial pressure, and neurovascular cou-
pling, which are involved in pathophysiology of both stroke
and TBI. Moreover, OHSCmay have limitations for the study
of calcium ions after stroke or TBI given the multiple homeo-
static processes (Na+-Ca2+ exchange, mitochondrial and en-
doplasmic reticular calcium accumulation, protein binding,
etc.) involved in the maintenance of intracellular calcium, es-
pecially when compounded by mitochondrial abnormalities.
Importantly, OHSCs are only suitable for examining the short-
term effect of drugs on various injuries because the slices
cannot survive for more than 3 weeks in vitro and will die
within 3 days after intense or prolonged injury. It is also im-
portant to remember that the results obtained from OHSCs are
only an approximation of what occurs in hippocampus of the
mature animal brain. Studies have shown that neurons in
OHSCs have more branches, higher order of dendrites, and
more complicated synapses than those in acute slices [11]. Our
group also observed that the morphology of astrocytes and
microglia in OHSCs differ from that in frozen brain sections.
Considering the cell reprogramming that could occur in an
artificial environment with environmental pressures that differ
from those in vivo, potential epigenetic changes in protein

expression should make researchers evaluate their results
more carefully. Although acute OHSCs may be more repre-
sentative of mature brain than chronic OHSCs, acute slices
have been used mostly for electrophysiology studies [148],
rather than the examination of pathologic aspects described
in this review. Only a few studies have reported using acute
slice systems for stroke and TBI research [149–151]. More-
over, acute slices might have their own limitations. A recent
study [152] indicated that astrocytes in acute slices exhibit
structural and functional differences from those in vivo, in-
cluding upregulated expression of GFAP, nestin, connexin 43,
and AQP4; increased interstitial space volume; and different
Ca2+ responses. Thus, acute and chronic OHSCs have their
own advantages and disadvantages with regard to stimulating
in vivo conditions. Of course, in vivo animal models are still
ultimately necessary to evaluate the anatomic and functional
outcomes of a therapeutic strategy.

Although most molecular biology techniques can be used
in OHSCs with minor modifications, technical difficulties
need to be resolved, such as how to quantify the morphology
scientifically with 5–7 layers of cells, how to extract proteins
with fewer slices, and how to decrease the variation in PI
staining. Additionally, it is not yet clear whether gender and
age of the pups, percentage of serum in the medium, and
in vitro culture time affect certain experimental results.

To date, a limited number of studies have used OHSCs to
study TBI, and even fewer publications focus on hemorrhagic
stroke. Given its advantages, it might be beneficial to use this
valuable platform more often for TBI and hemorrhagic stroke
research.
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