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Abstract 3-Nitropropionic acid (3-NP)-induced neurotoxic-
ity is an experimental model which mimics the pathology
and motor abnormalities seen in Huntington’s disease (HD)
in human. The present investigation was directed to estimate
the role of rho kinase (ROCK) inhibition in the possible
protective effect of fasudil and simvastatin in 3-NP-
induced striatal neurodegeneration in rats. Animals were
injected s.c. with 3-NP (20 mg/kg/day) for 1 week with or
without administration of fasudil (10 mg/kg/day, p.o.) or
simvastatin (20 mg/kg/day, p.o.). At the end of experiment,
motor and behavioral abnormalities were evaluated. Animals
were then sacrificed for measurement of mitochondrial
membrane potential as well as succinate dehydrogenase
(SDH) and caspase-3 activities in striatum. Moreover, tumor
necrosis factor-alpha (TNF-α) level and protein expressions
of proliferator-activated receptor gamma coactivator 1-alpha
(PGC-1α), ROCK, phosphorylated-Akt (p-Akt), endothelial
and inducible nitric oxide synthase (eNOS and iNOS), Bax,
and Bcl-2 were estimated. Finally, histological changes as

demonstrated by striatum injury score, glial activation, and
percentage of altered mitochondria were assessed. Both
fasudil and simvastatin effectively inhibited 3-NP-induced
behavioral, biochemical, and histological changes through
inhibition of ROCK activity. However, fasudil provided
more amelioration in histological changes, mitochondrial
membrane potential and SDH activity in addition to p-Akt
and PGC-1α protein expressions. The present study high-
lights a significant role of ROCK/p-Akt/eNOS pathway in
the protective effects of fasudil and simvastatin on neurotox-
icity and mitochondrial dysfunction induced by 3-NP in rats.
Thus, specific inhibition of ROCK may be considered a
promising new approach in the management of HD.
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Introduction

Huntington’s disease (HD) is a neurodegenerative disorder
caused by a mutation in the gene encoding the protein
huntingtin. Experimental intoxication with 3-nitropropionic
acid (3-NP) mimics the pathology and motor abnormalities of
HD in humans including neurobehavioral, biochemical, and
selective neurodegenerative changes [1, 2]. 3-NP is a fungal
neurotoxin produced by Arthrinium fungi that grow on sugar
cane, peanuts, and cheese curds [1]. 3-NP produces mitochon-
drial dysfunction, which is suspected to occur quite early in the
course of HD and constitutes a cellular hallmark for neurode-
generation [3, 4]. The primary mechanism underlying 3-NP
toxicity involves the irreversible inhibition of the activity of
respiratory chain complex II via affecting succinate dehydro-
genase (SDH) with subsequent prolonged energy impairments
[5]. Importantly, striatal neurons are particularly dependent on
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mitochondria due to their high energy requirements, and thus
3-NP intoxication preferentially induces striatal lesions and
neurodegeneration similar to those found in HD [2].

Rho kinase (ROCK) plays an important role in regulating
biological events of cells, including proliferation, differentia-
tion, and survival/death [6]. ROCK has been shown to be
widely distributed in the mammalian central nervous system
(CNS). Inhibitors of ROCK have been demonstrated as po-
tential therapies that provide a beneficial management of var-
ious neurological disorders, including multiple sclerosis,
Parkinson’s disease, and spinal and hypoxic/ischemic injury
[7, 8]. Additionally, Akt survival pathway has been identified
as an important molecular mediator for the neuroprotective
effects of ROCK inhibition [9]. Actually, ROCK inhibition
leads to the activation of the phosphatidylinositol 3-kinase
(PI3K)/Akt/endothelial nitric oxide synthase (eNOS) signal-
ing pathway which increases the production and bioavailabil-
ity of endothelium-derived NO [10].

Fasudil, the first-generation of ROCK inhibitors, has been
studied widely in clinical trials for treating pulmonary arterial
hypertension and other cardiovascular and cerebrovascular
diseases [11, 12]. It has also been shown to improve the struc-
ture and function of cardiac mitochondria from rats with type
II diabetes [13]. The safety and the efficacy of fasudil in
treating subarachnoid hemorrhage has been also well
established clinically [14]. Likewise, fasudil has been reported
to reduce neurological deficit, cerebral infarct size, and pro-
duction of proinflammatory cytokines which may contribute
to neuronal apoptosis in experimentally induced cerebral
ischemia/reperfusion [15].

On the other side, the beneficial effects of statins have been
demonstrated in several neurodegenerative conditions, includ-
ing cerebral ischemia, intracerebral hemorrhage, Parkinson’s
disease, experimental allergic encephalomyelitis, and
Alzheimer’s disease [16]. The pleiotropic effects of statins
include inhibition of isoprenoids synthesis which is required
for post-translational modification and activation of Ras/Rho
family GTPases [17]. Interestingly, the combination of lipo-
philicity and efficacy gives simvastatin a unique pharmaco-
logical profile compared with other statins. Simvastatin has
been shown to be more effective than atorvastatin in amelio-
ration of cerebral blood flow, edema, and blood-brain barrier
permeability during the acute phase of experimental intrace-
rebral hemorrhage [18] and thus was selected to be examined
in the present study.

Although the inhibition of ROCK could be regarded as a
promising avenue for therapeutic intervention in various neu-
rological disorders, its role in 3-NP-induced striatal neurode-
generation has not yet been elucidated. Therefore, the aim of
the present study was directed to assess the role of ROCK
inhibition in the possible protective effect of fasudil and sim-
vastatin against 3-NP-induced striatal neurodegeneration and
mitochondrial dysfunction in rats.

Material and Methods

Animals

Male Wistar rats, weighing 170–210 g, were obtained from
the animal facility of Faculty of Pharmacy, Cairo University,
Egypt. Animals were housed under controlled environmental
conditions at constant temperature (25±2 °C) and a 12/12-h
light/dark cycle. Rats were allowed standard chow diet and
water ad libitum. The investigation complies with the Guide
for Care and Use of Laboratory Animals published by the US
National Institutes of Health (NIH Publication No. 85-23, re-
vised 1996) and was approved by the Ethics Committee for
Animal Experimentation at Faculty of Pharmacy, Cairo Uni-
versity (Permit Number PT [1307]).

Chemicals

3-NP was purchased from Sigma-Aldrich Chemicals Co.,
USA. Fasudil hydrochloride and simvastatin were obtained
from Alfa Aesar, USA, and MSD Pharmaceutical Company,
Egypt, respectively. Other chemicals unless specified were
obtained from Sigma-Aldrich Chemicals Co., USA.

Experimental Design

Rats were randomly divided into four groups. Group I (n=10)
served as normal group. Group II (n=12) was injected with 3-
NP (20mg/kg/day, s.c.) for 7 days [19]. Groups III (n=12) and
IV (n=12) received 3-NP as in group II and fasudil (10 mg/kg/
day, p.o.) [20] or simvastatin (20 mg/kg/day, p.o.) [21], re-
spectively. Fasudil and simvastatin were freshly prepared
and daily administered to rats 1 h after 3-NP injection. The
model of 3-NP-induced neurotoxicity progressed over 7 days
with daily monitoring of animals.

Behavioral and Motor Studies

At the end of treatments, animals were subjected to behavioral
tests with a minimum of 30-min gap between each test.

Examination of Neurological Deficit

Neurological dysfunction was tested using a scoring scale
which was performed as previously described by Mittoux
et al. [22] and Bantubungi et al. [23] with a score of 0–8. This
test scores recumbency, dystonia of hind legs, gait abnormal-
ity, imbalance on a platform, and grasping problems. Total
score of 8 points indicates maximal neurological deficit (ani-
mal showing near-death recumbency) and a score of 0 points
denotes normal performance.
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Open Field Test

Open field task was performed to evaluate spontaneous loco-
motor activity of rats. The apparatus, made of wood and cov-
ered with impermeable formica, had a 100 cm×100 cm white
floor divided by black lines into 16 squares (25 cm×25 cm)
and 40-cm-high white walls. Each rat was placed into the
center and allowed to explore the apparatus for 5 min. Ambu-
lation frequency (the number of squares crossed by the rat)
and rearing frequency (the frequency of standing on its hind
legs) were recorded [24].

Rotarod Activity

Motor coordination was evaluated using the rotarod test. In
brief, the rotarod apparatus consists of a rod 120 cm long and
3 cm in diameter and is subdivided into four compartments by
disks 24 cm in diameter. The rod rotates at a constant speed of
25 rpm. Animals were exposed to a prior training session to
acclimatize them to rotarod performance. The latency for first
fall from the rod was recorded where cutoff time was 180 s.
Each rat performed three separate trials with a 5 min gap, and
the average time of fall was recorded [25].

Limb Withdrawal Test

This test is considered to be an important parameter to mea-
sure functional abnormalities of the hind limbs, which are
indicative for the extent of striatal degeneration [26]. In this
behavioral test, the animal was placed on a 20-cm-high
30 cm×30 cm Perspex platform containing four holes, two
holes of 5-cm diameter for the hind limbs and two holes with
a diameter of 4 cm for the forelimbs. The rat was placed on the
platform by positioning first the hind limbs and then the fore-
limbs into the holes. The time taken by the animal to retract its
first hind limb and the contra lateral hind limb was recorded.
The difference between the retraction times of both hind limbs
was determined. The test was performed three times with a 30-
min interval, and the average values were reported.

String Test for Grip Strength

The latency to hold the grip on a horizontal wire is considered
an indirect measure of grip strength [27]. The rat was allowed
to hold (with the forepaws) a steel wire (2 mm in diameter and
35 cm in length), stretched horizontally at a height of 50 cm
over a cushion support. The length of time for which the rat
was able to hold the wire was recorded.

At the end of behavioral tests, animals were weighed and
euthanized where the whole brain was quickly excised,
washed with ice-cold saline and dried. Brain was then dissect-
ed and two striata were isolated and weighed. For each group,

two sets were conducted: one for biochemical investigations
and the other (n=3) for histological examinations.

Biochemical Measurements

The first striatum was used for mitochondrial separation.
Meanwhile, the second striatum was divided into two parts,
one of which was homogenized in ice-cold saline to prepare
10 % homogenate for the determination of tumor necrosis
factor-alpha (TNF-α) as well as caspase-3 activity, whereas
the other part was used for western blot analysis. The protein
contents of tissue homogenate and mitochondrial fractions
were determined using the method of Lowry et al. [28].

Isolation of Mitochondria

Striatum was homogenized in isolation buffer using mito-
chondria isolation kit (Sigma-Aldrich Co., USA). The mito-
chondrial pellet was prepared according to manufacturer’s in-
structions. A part of fresh mitochondrial suspension was used
for estimation of mitochondrial membrane potential whereas
the other part was used for assessment of SDH activity.

Mitochondrial Membrane Potential

Mitochondrial membrane potential was measured in freshly
isolated mitochondria using the JC-1 assay kit (Sigma, USA)
according to the manufacturer’s instruction. The relative fluo-
rescence of the sample was measured at 590 nm after excita-
tion at 490 nm using a spectrofluorophotometer (Shimadzu
RF-1501, Japan). Results were expressed as JC-1 transfer rate
in mitochondria (fluorescence intensity/min/100 μg protein).

Succinate Dehydrogenase Activity

Succinate dehydrogenase activity (SDH), an indicator of
complex II activity, was estimated according to the meth-
od of Sharman and Bondy [29]. SDH was assayed using
phenazine methosulfate as an artificial electron acceptor
from succinate and recording the increase in absorbance
of ferrocytochrome-c. SDH activity was calculated as
nmol succinate oxidized/min/mg protein.

Tissue Tumor Necrosis Factor-Alpha

Tissue TNF-α content was estimated using rat TNF-α ELISA
kit (Elabscience Biotechnology Co., Ltd., Wuhan, China).
The procedure of the used kit was performed according to
the manufacturer’s instructions, and the results were expressed
as pg/mg protein.
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Caspase-3 Activity

Tissue caspase-3 activity was estimated using caspase-3
colorimetric assay kit (R&D Systems, Inc., USA). The
absorbance was read at 405 nm using a microplate reader
(BioTek instruments, USA). The results were expressed as
nmol p-nitroanilide (pNA)/h/mg protein.

Western Blot Analysis

Part of the striatum was homogenized in lysis buffer and
quantified for protein levels using a protein assay kit
(Thermo Fisher Scientific Inc., USA). Protein expression
was assessed as previously described by Ahmed et al.
[30] using primary antibodies against peroxisome
proliferator-activated receptor gamma coactivator 1-alpha
(PGC-1α) and rho kinase 1 (ROCK1) from GeneTex, Inc.
(Irvine, CA, USA) as well as phosphorylated-Akt (p-Akt),
endothelial nitric oxide synthase (eNOS), inducible nitric
oxide synthase (iNOS), Bax, Bcl-2, and beta-actin (β-
actin) from Thermo Fisher Scientific Inc. (Rockford, IL,
USA). The amount of protein was quantified by densito-
metric analysis of the autoradiograms using a scanning la-
ser densitometer (Biomed Instrument Inc., USA). Results
were expressed as arbitrary units after normalization for
β-actin protein expression.

Histological Examinations

Assessment of Striatal Damage

For light microscopic examination, part of striatum was
separated, rinsed in ice-cold saline, and immediately
fixed in 10 % formalin for 24 h. Specimens were proc-
essed for paraffin embedding, and 5-μm sections were
prepared. Sections were stained with hematoxylin and
eosin (H&E) and examined microscopically (magnifica-
tion ×100). Images were captured and processed using
Adobe Photoshop (version 8.0). Histological changes
were evaluated semiquantitatively and scored from 0 to
3 based on the extent of striatal degeneration,
perivascular edema, and the degree of neutrophil infil-
tration. The total of these scores were then recorded for
each individual animal (maximum score of 9). A total
of six fields were scored from each sample and aver-
aged. Scores from different sections were then summed
up to obtain an average score per field for each group
[31].

Immunohistochemical Detection of Glial Cells Activation

Evaluation of astroglial alteration was carried out using
paraffin-embedded tissue sections of 4-μm thickness. To

reveal the antigens, sections were pretreated with the pro-
teolytic enzyme proteinase K (Dako, Copenhagen, Den-
mark) and were then washed in phosphate-buffered saline
(PBS) for 5 min. Subsequently, sections were preblocked
with 5 % bovine serum albumin for 30 min and were
incubated with a primary antibody against glial fibrillary
acidic protein (anti-GFAP) (Dako, Copenhagen, Denmark)
for 60 min at 37 °C. After washing in PBS, a secondary
antibody (Dako, Copenhagen, Denmark) was applied for
60 min followed by the addition of horseradish peroxidase
conjugated streptavidin for 60 min. The reaction was visu-
alized with 3,3′-diaminobenzidine (DAB) chromagen
(Dako, Copenhagen, Denmark). The slides were then coun-
terstained with hematoxylin, mounted, and examined.
GFAP immunoreactive percentage areas in individual sec-
tions were traced and measured using an image analysis
system (Image-Pro Plus; Media Cybernetics, Silver Spring,
MD, USA).

Electron Microscopic Examination

Small pieces of striatum were separated, rinsed in ice-cold
saline, and cut into fragments (diameter=1 mm). Frag-
ments were rapidly fixed overnight in 2.5 % glutaralde-
hyde prepared in 0.1 M sodium phosphate buffer, pH 7, at
4 °C. They were postfixed in 1 % osmium tetroxide for
2 h and then dehydrated with graded series of alcohol
solutions. Tissues were embedded in epoxy resin and ul-
trathin sections (50 nm) were mounted on copper mesh
grids, and stained with uranyl acetate and lead citrate be-
fore being examined with a JEOL JEM-1400 electron mi-
croscope (Jeol Ltd., Tokyo, Japan) and photographed.
Electron micrographs were taken systematically at ×10,
000 magnification. Images were analyzed by two investi-
gators. Percentage of altered mitochondria was calculated
after examining the morphology of about 200 mitochon-
dria in different areas for each animal and average value
was calculated for each group [32].

Statistical Analysis

All data obtained were presented as mean±SEM. Re-
sults were analyzed using one-way analysis of variance
test (one-way ANOVA) followed by Tukey’s multiple
comparison test for all parameters except neurological
scores, ambulation frequency, and rearing frequency
which were done using nonparametric one-way ANOVA
followed by Dunn’s multiple comparison test. Statistical
analysis was performed using GraphPad Prism software
(version 6.04). For all the statistical tests, the level of
significance was fixed at p<0.05.
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Results

Effect of Fasudil and Simvastatin on 3-NP-Induced
Changes in Mortality as Well as Body and Striata
Weights

3-NP induced an increase in mortality (33.33 %) together
with a significant decrease in final body and striata weights.
Fasudil and simvastatin significantly decreased mortality to
8.33 and 16.67 %, respectively. Moreover, both treatments
completely alleviated changes in final body and striata
weights (Table 1).

Effect of Fasudil and Simvastatin on 3-NP-Induced
Behavioral and Motor Changes

3-NP intoxication caused behavioral and motor abnormalities
as demonstrated using neurological score as well as open field,
rotarod performance, limbwithdrawal and string strength tests
Both fasudil and simvastatin treatments significantly amelio-
rated the aforementioned behavioral and motor changes
(Table 1).

Effect of Fasudil and Simvastatin on 3-NP-Induced
Changes in SDH Activity, Mitochondrial Membrane
Potential, and PCG-1α Protein Expression

3-NP-treated group showed severe mitochondrial dysfunc-
tion as demonstrated by the significant decrease in SDH
activity, mitochondrial membrane potential, and PGC-1α
protein expression. Treatment with fasudil caused a signif-
icant increase in SDH activity and reverted mitochondrial
membrane potential and PGC-1αprotein expression back
to normal values. Meanwhile, simvastatin-treated group
showed only a significant increase in mitochondrial mem-
brane potential and PGC-1α protein expression as com-
pared to 3-NP group (Fig. 1).

Fig. 1 Effect of fasudil and simvastatin on 3-NP-induced changes in
SDH activity (A), mitochondrial membrane potential (B), and PCG-1α
protein expression (C). Each value represents the mean of five to eight
experiments±SEM. *p<0.05 vs. normal, #p<0.05 vs. NP

Table 1 Effect of Fasudil and Simvastatin on 3-NP induced changes in mortality as well as body and striata weights, neurological score, open field,
rotarod, limb withdrawal and string tests

Groups Mortality
%

Final body
weight (g)

Striata weight
(g)

Neurological
score

Open field test Rotarod test (s) Limb
withdrawal test
(s)

String test (s)

Ambulation
frequency

Rearing
frequency

Normal 0 % 204.29±3.50 0.131±0.007 0.00±0.00 86.2±9.65 17.8±1.53 178.50±1.15 1.00±0.00 81.17±6.91

NP 33.33 % 176.57±3.71* 0.094±0.008* 5.38±0.71* 11.57±2.79* 2.14±0.88* 19.86±4.63* 7.63±1.03* 10.13±1.97*

Fasudil 8.33 % 197.75±7.12# 0.118±0.006# 0.38±0.18# 53.00±9.18# 8.71±1.89*# 100.25±17.95*# 1.37±0.26# 41.44±5.98*#

Simvastatin 16.67 % 203.50±3.77# 0.126±0.007# 0.88±0.29# 48.66±3.79# 6.33±1.15*# 123.43±20.11#` 1.62±0.32# 79.43±9.53#

Each value represents the mean of 8-11 experiments±S.E.M. * p<0.05 vs. normal, # p<0.05 vs. NP
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Effect of Fasudil and Simvastatin on 3-NP-Induced
Changes in ROCK, p-Akt, and eNOS Protein Expressions

Treatment with 3-NP caused a marked increase in ROCK
protein expression and a significant decrease in both p-Akt
and eNOS protein expressions. Simvastatin treatment signifi-
cantly decreased ROCK protein expression whereas it signif-
icantly increased both p-Akt and eNOS protein expressions.
On the other hand, fasudil succeeded to provide more amelio-
ration regarding p-Akt protein expression (Fig. 2).

Effect of Fasudil and Simvastatin on 3-NP-Induced
Changes in iNOS Protein Expression and TNF-α Level

3-NP induced a state of inflammation as demonstrated by the
significant elevation of iNOS protein expression and TNF-α
level. Both fasudil and simvastatin succeeded to normalize
iNOS protein expression and TNF-α level (Fig. 3).

Effect of Fasudil and Simvastatin on 3-NP-Induced
Changes in Caspase-3 Activity as Well as Bax and Bcl-2
Protein Expressions

The previously mentioned state of inflammation in 3-NP
group was associated with elevation of apoptotic markers as
demonstrated by the significant increase in caspase-3 activity
and Bax protein expression together with the significant de-
crease in Bcl2 protein expression. Both fasudil and simvastat-
in normalized caspase-3 activity and Bax protein expression.
On the other hand, Bcl-2 protein expression was significantly
reduced with simvastatin treatment and completely normal-
ized with fasudil treatment (Fig. 4).

Fig. 2 Effect of fasudil and simvastatin on 3-NP-induced changes in
ROCK (A), p-Akt (B), and eNOS (C) protein expressions. Each value
represents the mean of five to eight experiments±SEM. *p<0.05 vs.
normal, #p<0.05 vs. NP

Fig. 3 Effect of fasudil and simvastatin on 3-NP induced changes in
iNOS protein expression (A) and TNF-α level (B). Each value represents
themean of five to eight experiments±SEM. *p<0.05 vs. normal, #p<0.05
vs. NP
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Effect of Fasudil and Simvastatin on 3-NP-Induced
Histological Changes

3-NP group showed a marked elevation of striatum injury
score as evidenced by remarkable neuronal degeneration and
edema. However, neutrophil infiltration was unremarkable.
Extensive astroglial activation was also demonstrated by a
marked increase in GFAP immunoreactivity. Additionally, 3-
NP induced considerable mitochondrial damage as revealed
by the significant increase in percentage of altered mitochon-
dria. Treatment with simvastatin significantly ameliorated stri-
atum injury score and astroglial activation as well as percent-
age of altered mitochondria compared to 3-NP group. On the

other hand, fasudil treatment more or less normalized the
aforementioned parameters (Fig. 5).

Discussion

3-NP-induced neurotoxicity is an experimental model which
induces severe striatal damage over several days. It is used as
an experimental model of neurodegeneration, which mimics
some of the pathology seen in HD in human [33]. The aim of
the present work was to address the role of ROCK inhibition
in the possible protective effect of fasudil and simvastatin in 3-
NP-induced striatal neurodegeneration and mitochondrial
dysfunction in rats.

In the current study, 3-NP induced a significant increase in
mortality together with a significant decrease in final body and
striata weights. The decrease in body weight could be related to
anorexia and decreased food intake associated with motor def-
icit in 3-NP group [31]. Following 3-NP intoxication, behav-
ioral and motor abnormalities were also evidenced using neu-
rological score as well as open field, rotarod performance, limb
withdrawal and string strength tests. Earlier studies have dem-
onstrated that 3-NP treatment produced significant reduction in
spontaneous locomotor activity, loss of grip strength, and in-
crease in retraction time in limb withdrawal tests [34, 35], in-
dicating striatal degeneration and motor impairment [26]. Fur-
thermore, the current findings are in tune with the report of
Kumar et al. [36] which showed that 3-NP administration re-
duced the locomotor and rotarod activities in rats, suggesting
that the effects of 3-NP most probably mimic the late stages of
HD-like behavior. Deficiencies in behavioral and motor activ-
ities could be related to excessive generation of free radicals
and increased brain protein oxidation [37] that might also con-
tribute to the onset of symptoms associated with HD and other
movement disorders, such as dystonias and Parkinsonism [38].
Importantly, neurological disorders and the decrease in striata
weight, observed herein, were correlated with the histological
changes evidenced by increased striatum injury score and
marked astroglial activation that in turn could provide the un-
derlying structural basis for the neurological deficits.

3-NP-treated group showed severe mitochondrial dysfunc-
tion as manifested by the significant decrease in SDH activity,
mitochondrial membrane potential, and PGC-1α protein ex-
pression. These biochemical alterations are consistent with
mitochondrial ultrastructural changes as evidenced by signif-
icant increase in percentage of altered mitochondria. Previous-
ly, 3-NP has been demonstrated to produce an early loss of the
mitochondrial membrane potential using cultured neurons
[39]. 3-NP, being an irreversible inhibitor of SDH, the princi-
pal component of mitochondrial complex II, impairs energy
production leading to neurodegeneration. Interestingly, striatal
neurons are highly sensitive to impairment in energy metabo-
lism which could explain the link between mitochondrial

Fig. 4 Effect of Fasudil and Simvastatin on 3-NP-induced changes in
caspase-3 activity (A) as well as Bax (B) and Bcl-2 (C) protein expressions.
Each value represents the mean of 5–8 experiments±S.E.M. * p<0.05 vs.
normal, # p<0.05 vs. NP
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defects and the preferential vulnerability of the striatum to
acute poisoning with mitochondrial toxins (cyanide, sodium
azide, and 3NP) in experimental and clinical studies [40].

Furthermore, reduction of PGC-1α protein expression and
disruption of mitochondrial transmembrane potential in 3-NP
group could indicate an impairment of mitochondrial function
that precedes the initiation of apoptosis. PGC-1α plays a cen-
tral role in regulating the expression of mitochondrial genes
involved in a wide variety of biological responses, including
mitochondrial biogenesis in brain tissues [41]. Formerly, pos-
itive correlations between PGC-1α and mitochondrial bioen-
ergetics in neurodegenerative progression were documented
in experimental and clinical studies [42–44].

Treatment with fasudil or simvastatin showed significant
decrease in mortality together with significant improvement in
body and striata weights as well as behavioral and motor ab-
normalities indicating amelioration of 3-NP-induced neuro-
toxicity and neurological deficit. In an experimental model
of Parkinson’s disease, fasudil treatment exhibited a marked
improvement in motor performance which was correlated
with inhibition of ROCK activity [45]. Blocking the ROCK
pathway has been reported to markedly inhibit the polyQ

protein aggregation and decrease its toxicity in Drosophila
model of HD [9]. On the other hand, simvastatin was previ-
ously shown to protect striatal neurons and to enhance motor
functions in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-intoxicated mice [46].

Concerning mitochondrial function, treatment with fasudil
caused a significant increase in SDH activity and reverted
mitochondrial membrane potential and PGC-1α protein ex-
pression back to normal values. Meanwhile, simvastatin-
treated group showed only a significant increase in mitochon-
drial membrane potential and PGC-1α protein expression.
Fasudil, a selective ROCK inhibitor, has previously increased
SDH activity, improved the structures of cardiac mitochon-
dria, and inhibited the dissipation of mitochondrial transmem-
brane potential in rats with type 2 diabetes [13]. Similarly,
simvastatin attenuated oxidant-induced mitochondrial dys-
function in cardiac myocytes through a “mitohormesis mech-
anism” involving the preservation of mitochondrial mem-
brane [47].

ROCK may play a crucial role in regulating biological
events of cells, including proliferation, differentiation, and
survival/death [6]. Inhibition of ROCK activation has been

Fig. 5 Effect of fasudil and simvastatin on 3-NP-induced histological
changes. A–D Specimens stained with H&E ×100. A Normal group
showed no neuronal loss and neuropil with unremarkable changes. B NP
group showed extensive neuronal degeneration (thin short arrow), marked
perivascular and perineuronal edema (thick short arrow), and glial
proliferation. C Fasudil group showed minimal neuronal degeneration
(thin short arrow) and focal edema (thick short arrow). D Simvastatin
group showed moderate neuronal degeneration (thin short arrow) and
evident edema (thick short arrow). E–H Specimens stained with GFAP
×100. E Normal group showed normal GFAP immunostaining of the

inactivated astrocytes. F NP group showed marked increase in reactivity
(strong and diffused brown GFAP immunostaining) of the activated
proliferated plump astrocytes. G Fasudil group showed mild increase in
reactivity of the activated proliferated astrocytes. H Simvastatin group
showed moderate increase in reactivity of the activated proliferated
astrocytes. I Striatum injury score. J Image analysis of GFAP
immunoreactivity (% area). K Normal and altered mitochondria. L
Percentage (%) of altered mitochondria. Each value represents the mean
results of three animals±SEM. *p<0.05 vs. normal, #p<0.05 vs. NP
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shown to promote axonal regeneration and neuron survival
in various in vivo and in vitro studies, thereby considered as
an efficacious approach for generating neuroprotection in
several neurological disorders [7]. Herein, 3 NP-induced
ROCK activation was significantly suppressed following
fasudil and simvastatin administration. Beforehand, experi-
mental spinal cord injury was associated with increase in
ROCK activity which was markedly attenuated by fasudil
treatment [48]. It is worthy to note that the potent ROCK
inhibition by fasudil could be mediated via competition for
ATP binding site in the ROCK catalytic domain [49]. On the
other hand, the effect of simvastatin could be attributed to
pleiotropic effects of statins via reduction of isoprenoids.
Blocking the isoprenylation of Rho family GTPases (i.e.,
RhoA) causes its accumulation in the cytosol and hence its
inactivation, which prevents ROCK signaling [17].

Akt survival pathway has been identified as an important
molecular mediator for neuroprotective effects of ROCK in-
hibition [45]. In the present study, inhibition of ROCK by
fasudil or simvastatin increased Akt phosphorylation and up-
regulated eNOS protein expression. In harmony, Tönges et al.
[45] have stated that the neuroprotective effect of fasudil was
mediated via the activation of Akt signaling after ROCK in-
hibition, implying its vital role in the regulation of both neu-
ronal survival and integrity in a mouse model of Parkinson’s
disease. Similarly, atorvastatin, as an example of statins, was
reported to induce the phosphorylation of Akt in cultured pri-
mary cortical neurons promoting neurogenesis and angiogen-
esis after an ischemic insult [50]. Progressive alterations of
Akt have been reported to occur during neuronal dysfunction
or prior neurodegeneration [51]. Interestingly, Akt activation
in HD has been shown to increase the phosphorylation of
mutant huntingtin and abolish its toxic effects [52, 53].

It is worthy to note that ROCK activation, as seen in 3-NP-
treated group, not only downregulates eNOS expression by
decreasing its mRNA stability but it also inhibits eNOS phos-
phorylation and activity [54]. Alternatively, ROCK inhibition
leads to rapid phosphorylation and activation of Akt via PI3K,
which in turn activates eNOS and increases NO production.
Moreover, the neuroprotective effects of ROCK inhibitors are
absent in eNOS knockout mice, indicating the critical role of
eNOS in mediating the beneficial effects of ROCK inhibition
[17]. In this context, several studies have documented that both
fasudil and statins, by inactivating ROCK, lead to increased
Akt phosphorylation, eNOS expression and activity [10, 55].

Despite the important role of NO in neurophysiological
function, NO in high concentration can act paradoxically as
a neurotoxin primarily due to its oxidative properties and its
ability to produce peroxynitrite, a highly destructive reactive
oxygen species [56]. High levels of peroxynitrite lead to neu-
ronal cell death by causing typical free radical damages and
energy depletion secondary to mitochondrial impairment. Ac-
tivation of iNOS and peroxynitrite in response to a number of

proinflammatory mediators has been implicated in a number
of CNS disorders, such as cerebral ischemia, Alzheimer’s
disease, and HD, contributing to neuronal death [57–59].

In the present study, decrease in eNOS protein expression
was associated with significant increase in both iNOS protein
expression and TNF-α level in 3-NP group. Downregulated
eNOS protein expression by ROCK activation plays a key role
in the activation of the inflammatory cascade due to decreased
endothelium-derived NO which facilitates increased neutrophil
adhesion [60]. However, the preservation of eNOS by ROCK
inhibition, as demonstrated herein by fasudil and simvastatin,
may block early leukocytes adhesion and consequently dimin-
ish the local production of proinflammatory cytokines.

Fasudil, the only ROCK inhibitor used clinically, has well
established anti-inflammatory and immunomodulatory bene-
fits [12]. The administration of fasudil protected against
ischemia-induced neuronal cell loss in mice via reducing the
proinflammatory factors such as interleukin-1 beta (IL-1β),
IL-6, and TNF-α [6]. Statins were also shown to exert anti-
inflammatory effects by regulating proinflammatory
molecules in astrocytes and macrophages [61]. This effect
was proposed to be due to nuclear factor kappa B inhibition
as a direct consequence of ROCK inhibition and p-Akt
activation which would lead to reduction of proinflammatory
cytokines secretion [62].

Furthermore, statin, as previously mentioned, could atten-
uate ROCK activation and the subsequent inflammatory re-
sponse in CNS via lowering of isoprenoids [17]. Owing to
their antioxidant and anti-inflammatory effects, statins could
block not only ROS-mediated brain damage but also the re-
lease of proinflammatory cytokines as well as NO synthesis
[63]. Thus, statins increase the beneficial NO production by
eNOS, while reducing NO overproduction by iNOS.

This encountered state of inflammation in 3-NP group was
associated with increased apoptotic machinery as evidenced by
the significant increase in caspase-3 activity and Bax protein
expressions together with the significant decrease in Bcl-2 pro-
tein expression. ROCK activation may act as an upstream event
that is involved in the neuronal apoptosis. Importantly, ROCK-
induced caspase activation is initiated by an early ROCK-
dependent increase in Bax expression. Bax upregulation
appears to be sufficient to shift the balance in Bcl-2 protein
expression, induce mitochondrial permeabilization, initiate ac-
tivation of caspase-3, and ultimately induce cell death [64].
Moreover, iNOS overexpression and increased TNF-α level,
as shown in this study, may contribute to neuronal apoptosis.
iNOS upregulation causes reduction in mitochondrial mem-
brane potential and strongly induces neuronal apoptosis via
NO-induced activation of caspase-3 leading to apoptotic cell
death [65, 66]. Concurrently, proinflammatory cytokines such
as TNF-α act directly on neurons to induce apoptosis [67].

The current data showed a significant amelioration of apo-
ptotic markers following both fasudil and simvastatin
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treatments. Fasudil has been previously demonstrated to alle-
viate neuronal apoptosis and caspase-3 activation with im-
provement of neurological deterioration in brain ischemic in-
jury through ROCK/Akt pathway [68]. ROCK cleavage is an
essential step for apoptosis given that pharmacological inhibi-
tion of its kinase activity effectively abrogates apoptosis in a
number of cell types [69]. Moreover, the increase of Akt ac-
tivity by ROCK inhibition may contribute to the antiapoptotic
effect of fasudil. Activated Akt promotes cell survival and
suppresses apoptosis by phosphorylation and inhibition of
several downstream substrates [70]. It is worthy to note that
the anti-inflammatory effect of fasudil may also help to ex-
plain its potent antiapoptotic effect.

On the other side, Hunt et al. [71] have reported that statins
treatment activated the antiapoptotic signaling pathways caus-
ing a reduction in caspase-3 expression and thereby promoting
neuroprotection. Expression of the prosurvival molecule, Bcl-
2, was also shown to be upregulated in neurons upon in vitro
and in vivo treatments with simvastatin [71, 72]. As with
fasudil, Akt pathway seems to play a crucial role in the
antiapoptotic effect of simvastatin in the present study.

In conclusion, this study revealed for the first time the role
of ROCK/p-Akt/eNOS pathway in the protective effects of
fasudil and simvastatin in 3-NP-induced neurotoxicity and
mitochondrial dysfunction in rats. This protection was mani-
fested by amelioration of behavioral, biochemical and histo-
logical changes. Inhibition of ROCK activity led to the main-
tenance of Akt activity, with subsequent amelioration of mi-
tochondrial function, eNOS and iNOS protein expressions as
well as inflammatory and apoptotic markers. Thus, specific
inhibition of ROCK may be considered a promising new ap-
proach in the management of HD.
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