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Abstract Cerebral preconditioning constitutes the brain’s ad-
aptation to lethal ischemia when first exposed to mild doses of
a subtoxic stressor. The phenomenon of preconditioning has
been largely studied in the heart, and data from in vivo and
in vitro models from past 2–3 decades have provided suffi-
cient evidence that similar machinery exists in the brain as
well. Since preconditioning results in a transient protective
phenotype labeled as ischemic tolerance, it can open many
doors in the medical warfare against stroke, a debilitating ce-
rebrovascular disorder that kills or cripples thousands of peo-
ple worldwide every year. Preconditioning can be induced by
a variety of stimuli from hypoxia to pharmacological anes-
thetics, and each, in turn, induces tolerance by activating a
multitude of proteins, enzymes, receptors, transcription fac-
tors, and other biomolecules eventually leading to genomic
reprogramming. The intracellular signaling pathways and mo-
lecular cascades behind preconditioning are extensively being
investigated, and several first-rate papers have come out in the
last few years centered on the topic of cerebral ischemic tol-
erance. However, translating the experimental knowledge into
the clinical scaffold still evades practicality and faces several
challenges. Of the various preconditioning strategies, remote
ischemic preconditioning and pharmacological precondition-
ing appears to be more clinically relevant for the management
of ischemic stroke. In this review, we discuss current devel-
opments in the field of cerebral preconditioning and then

examine the potential of various preconditioning agents to
confer neuroprotection in the brain.
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Abbreviations
IT Ischemic tolerance
IPC Ischemic preconditioning
CPC Cerebral preconditioning
HPC Hypoxic preconditioning
RIPC Remote ischemic preconditioning
PPC Pharmacological preconditioning
ADK Adenosine kinase
NCX Na+/Ca2+ exchanger
TACE Tumor necrosis factor-α converting enzyme
HRE Hypoxia-responsive elements
EPO Erythropoietin
VEGF Vascular endothelial growth factor
SIP Sphingosine-1-phosphate
εPKC Epsilon protein kinase C
CCL Chemokine (C–C motif) ligand
SPK Sphingosine kinase
COX Cyclooxygenase
TLR Toll-like receptor
CNS Central nervous system
LPS Lipopolysaccharide
TNF-α Tumor necrosis factor-α
IL Interleukin
ROS Reactive oxygen species
SAH Subarachnoid haemorrhage
iNOS Inducible nitric oxide synthase
nNOS Neuronal nitric oxide synthase
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eNOS Endothelial nitric oxide synthase
NOS Nitric oxide synthase
NO Nitric oxide
cAMP Cyclic adenosine monophosphate
AMP Adenosine monophosphate
AMPA α-Amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid
AMPK Adenosine 5′-monophosphate-activated protein

kinase
JNK c-Jun N-terminal kinase
ERK Extracellular signal-regulated kinase
NF-κB Nuclear factor-κB
NMDA N-methyl-D-aspartate
EA Electroacupuncture
3-NPA 3-Nitropropionic acid
CREB cAMP responsive element binding
HIF Hypoxia inducible factor
HBO Hyperbaric oxygenation
ATP Adenosine triphosphate
MCAO Middle cerebral artery occlusion
OGD Oxygen–glucose deprivation
tPA Tissue plasminogen activator
IPost Ischemic post-conditioning
TGF Transforming growth factor
TGF-α Transforming growth factor alpha
HSP Heat shock protein
MeCP2 Methyl-CpG-binding protein 2
IGF Insulin-like growth factor
PcG Polycomb group
TrxG Trithorax group
TIA Transient ischemic attack
IRI Ischemia-reperfusion injury
IR Ionizing radiation
HCA Hypothermic circulatory arrest
BAIPC Bilateral arm ischemic preconditioning
IAS Intracranial arterial stenosis
AKT Protein kinase B
RHP Repetitive hypoxic preconditioning
p53 Tumor protein p53

Introduction

Beginning of the twenty-first century saw cerebrovascular
diseases, more specifically stroke, as the chief perpetrators
of about 10 % of all deaths round the globe (roughly six
million deaths worldwide) [1]. An episode of stroke usually
results in severe disability and neuronal impairment. More
often than not, the traumatized patients are forced to depend
on others for their survival [2]. Ischemic stroke results from
the occlusion of blood vessels to the brain and accounts for
80–85 % of stroke cases in most parts of the world. When the
cerebral circulation is completely arrested following ischemic

stroke, it leads to weakening of the energy state and ion ho-
meostasis. This results in the depletion of high-energy phos-
phates, membrane depolarization, efflux of cellular potassium,
and influx of sodium, chloride, and water [3]. Irreversible
tissue damage occurs by a host of mechanisms including ionic
perturbations, free radical production, excitotoxicity, inflam-
mation, and ultimately, cell death [4]. The thrombolytic tissue
plasminogen activator (tPA) therapy for acute ischemic stroke
has shown favorable outcomes in patients, but it has a narrow
therapeutic window and may not always be clinically feasible
[4–6].

Because of the ever-present risk of cerebral ischemic inju-
ry, the brain is thought to have developed a backup machinery
to brace itself against ischemic attacks and survive in the event
of an injury. Specific regenerative processes in living organ-
isms have evolved over time that can safeguard the body to an
extent from tissue injury or organ damage [5, 7, 8]. Precondi-
tioning (PC) is one such phenomenon that can exploit the
fundamental characteristic of adaptability in organisms. A
noxious stimulus strong enough to initiate a response but not
somuch as to cause permanent tissue damage is provided. The
aim is to eventually condition the body against subsequent
attacks from a lethal stressor. The targeted tissue or organism
after successful PC tends to show an increased level of toler-
ance against ensuing ischemic attacks. PC works by altering
signaling reactions and molecular pathways to lessen or re-
verse the injury and possibly bring on genetic reprogramming
so that the Btolerant^ phenotype can be protective and long
lasting at the same time.

Even though a lot of time and effort has been invested in
deciphering the phenomenon of preconditioning and vast
amounts of data that have been generated, it has not yet hit
the clinical platform on a groundbreaking level as envisaged.
This review aims to illustrate the remarkable potential of ce-
rebral preconditioning (CPC) in the management of ischemic
stroke. First, a deeper comprehension of the various precon-
ditioning stimuli and the degree of induced tolerance acquired
using them is essential. We have tried to enable the exposition
of some of the underlying endogenous repair mechanisms that
take place during preconditioning. Additionally, we have also
attempted to put together a repertoire of current and previous
works that have been carried out through the years in this
promising field.

Understanding Cerebral Preconditioning

Ischemic tolerance (IT) of the brain is a transient protective
phenotype brought about by the application of sublethal stim-
uli (hypoxia, chemicals, etc.), which can increase the resis-
tance of cells or tissues against a subsequent, more rigorous
ischemic event. This form of adaptive status induced by pre-
conditioning is an inherent attribute of certain living tissues,
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ensuring survival and protection from harmful stressors [8, 9].
Preconditioning paradigms in cells are varied and take place in
different windows of time [10]. Acute tolerance is developed
within minutes of exposure to the preconditioning stimuli and
offers only short-term protection; this is called early or rapid
preconditioning. Formed normally through changes in post-
translational modifications, the window of protection is very
small and recedes after a few hours. Delayed or classical pre-
conditioning prevails due to genetic alterations and protein
synthesis and hence is of more significance within the ische-
mic region [11, 12]. It is longer in duration, from a few hours
to several days but usually less than a week. Between the early
and delayed IT, there is usually an unprotected window with
little or no tolerance [11]. These two phases of IT brought
about by preconditioning possibly work by diverse mecha-
nisms and in varied time frames in different tissues of the brain
[12]. Factors that may affect the scope of CPC include age,
gender, and strain of the animals used as models for cerebral
ischemia [11, 13].

An interesting aspect of preconditioning mechanisms is the
apparent lack of specificity to the injury. Most degenerative or
defensive pathways show some level of integration in process-
es like cell death or repair [7]. Neurodegenerative and cere-
brovascular diseases follow similar pathophysiology like in-
flammation, calcium overload, and apoptosis. Even if the un-
derlying causes and symptoms are varied, this feature could be
exploited in therapeutic applications. The means to precondi-
tion the ischemic brain may be varied, whether it is rapid or
delayed PC. When preconditioning is induced by drugs like
anesthetics, which can pulse protective signals within the
brain, it is referred to as pharmacological preconditioning
(PPC) [14–16]. Sometimes, unrelated stressors are capable
of producing similar adaptive mechanisms and may reiterate
parts of ischemia (hypoxia or inhibitor molecules) or other
unrelated conditions like depression and heat stress; this form
of PC characterizes cross-tolerance [12]. Ischemic post-
conditioning (IPost) is the method of inducing tolerance after
occurrence of the event. It works by the periodic applications
of brief ischemic stress following reperfusion and helps in
cerebrovascular regeneration and protection [17].

Over the Years

The concept of preconditioning was gestated during the early
1960s, when researchers stumbled upon cases of brain adapt-
ability [12]. In 1964, for example, the work by Dahl and
Balfour revealed that anoxic preexposure in female rats for
30 s increased the survival time to 90 s in a second spell of
anoxia (compared to 60 s in non-conditioned rats), quite pos-
sibly through enhanced rates of anaerobic glycolysis and in-
creased pyruvate concentration in the brain [18]. In 1976,
Vanucci and Duffy documented an increased tolerance in fetal

rats toward anoxia compared to neonates, hinting at lower
cerebral energy requirements for prolonged survival [19].

The term Bischemic preconditioning (IPC)^ was first de-
scribed for cardiac tissue by Murry et al. in 1986. They had
applied brief periods of simultaneous coronary occlusions and
reperfusions in dogs followed by a longer spell of cardiac
occlusion and found that instead of worsening the insult, the
sublethal strokes had surprisingly resulted in an adaptive con-
formation in the cardiac tissue [20]. This documentation, al-
though not sensational at the time, was later instrumental in
breaching a largely unexplored and novel avenue for research
into the potential of IT and anti-infarct techniques [21]. A
paper on the adaptability of rat brain tissue to anoxia using
an in vitro model of hippocampal slices was also published the
same year [22]. In 1989, it was documented that brief hypo-
thermia contributed toward cerebral protection [23].

In 1990, Kitagawa et al. showed that pretreating adult ger-
bils with mild ischemia resulted in delayed neuronal death in
the CA1 region of the hippocampus and conferred an out-
standing degree of protection against neuronal death [24].
They were also the first to propose the existence of the “ische-
mic tolerance^ phenomenon in the brain, and their work soon
became the benchmark for preconditioning related work in
animal models. Hypoxic preconditioning (HPC) joined the
fray soon after, when Gidday et al. studied hypoxia-induced
protection for the first time in a neonatal rat model, though
hypoxia was already being used in brain research [25–27].
During the late 1990s, a considerable amount of data was
gathered on IPC-induced tolerance in animal models of focal
and global cerebral ischemia (CI), signifying the recognition
of region-specific induction of the preconditioning stimuli for
ensuing neuroprotection [28, 29].

The idea of possible genetic reprogramming following pre-
conditioning gained popularity only in the twenty-first century
[30]. Now, researchers seek to decipher the genomic profile of
the ischemic-tolerant brain and understand the other biochem-
ical reactions induced by PC [31–33].

Experimental Models

CPC and IT have been studied extensively in a variety of
reliable experimental models. Primary neuronal cells (usually
murine cell lines and human neuroblastoma cells) or
organotypic slice cultures are commonly used to mimic PC
in vitro [34–37]. Mammalian models using mice, rats, gerbils,
pigs, and genetic model systems like Drosophila strains have
shown a certain line of defense against injury by precondition-
ing in vivo [24, 38–41]. Rodents are routinely employed ex-
perimental models for both focal and global cerebral ischemia
to enable a clearer understanding of the scope and duration of
stress required to induce PC.
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In focal preconditioning, PC is induced through the occlu-
sion of the middle cerebral artery for a few minutes with
equally spaced reperfusions in between. In contrast, global
preconditioning is brought about by a single, shorter
(<5 min) occlusion, in all the four cerebral vessels of the fore
brain. Subsequently, permanent ischemia of a longer duration
is established. While the sublethal ischemia may last for an
hour or more in focal models, it is generally in the order of a
few minutes for global IPC. The degree of protection against
ischemia has a distinctive time frame: heightened protection
for a few minutes with subsequent decline and remote protec-
tion that sets in after a day and quite possibly lasts a week [17,
42].

Varying durations of focal and global ischemia together
produce different experimental setups for better comprehen-
sion of IT paradigms.

Global-Global Four-vessel occlusion in rats and two-vessel
occlusion in rats, gerbils, and mice before final ischemia have
been described [24, 43–45].

Global-Focal Four-vessel occlusion with hypotension,
followed by permanent focal ischemia in hippocampal neu-
rons and astroglial cells, induced neuroprotection in rats [46].

Focal-Focal Transient middle cerebral artery occlusion
(MCAO) followed by permanent MCAO in rats [47].

Focal-Global MCAO at distal site followed by global ische-
mia in rats or unilateral MCAO before transient forebrain
ischemia in gerbils [29, 48].

Key Players in Cerebral Preconditioning

Preconditioning stimuli triggers protective responses through
various sensors and signaling molecules and thus generate a
protective phenotype within the brain. IT mechanisms involve
interconnected biological pathways that minimize neuronal
damage and promote restorative cascades [12]. These cas-
cades are typically specific to the applied stimulus and deter-
mined by its duration. A PC mechanism engages both neuro-
nal and non-neuronal pathways [10].

Glutamate Pathway Glutamate excitotoxicity is a chief cul-
prit behind nerve cell injury following stroke [49, 50]. Gluta-
mate receptors are affected when adenosine triphosphate
(ATP) levels drop following oxygen deprivation during ische-
mia. This results in impaired synaptic plasticity and accumu-
lation of glutamate [51]. High levels of glutamate, in turn,
overactivate N-methyl-D-aspartate (NMDA) receptors, which
leads to increased calcium influx in a series of events ending
in excitotoxic neuronal death [49]. Mild activation of NMDA

receptors is required for induction of IT, possibly through an
adaptive pathway involving nuclear factor-κB (NF-κB) and
tumor necrosis factor-α (TNF-α) [10, 52]. NMDA precondi-
tioning involves exposure to small doses of NMDA before the
final insult [53, 54]. NMDA activation was reported to confer
neuroprotection by inhibition of stress-activated c-Jun N-
terminal kinase (JNK), activation of extracellular signal-
regulated kinase (ERK½) and protein kinase B (Akt1), and
regulation of normal cyclin adenosine monophosphate
(cAMP) responsive element binding (CREB) activity [54,
55]. In neuronal cortical cultures, tolerance was achieved with
glutamate preconditioning and blocked by NMDA and α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptor antagonists [54, 56]. It has been found that
upregulation of glial glutamate transporter-1 (GLT-1) expres-
sion assists in inducing IT [57].

Nitric Oxide (NO) Synthase The other popular player in the
NMDA stimulation cascade is nitric oxide (NO) [58, 59]. That
NO is a crucial member is evident from both in vivo and
in vitro models of PC, but the exact mode of action remains
unclear. In a newborn rat model, tolerance due to HPC was
chiefly attributed to endothelial NOS (eNOS) led NO media-
tion, rather than neuronal NOS (nNOS) [60]. Similarly, rat
hippocampal slices exposed to anoxia displayed protection
from a final anoxic insult, and the tolerance disappeared in
the presence of NOS inhibitor (7-nitroindazole) [61]. In a fo-
cal ischemia model using eNOS and nNOS knockout mice, no
reduction in infarct volume was observed after rapid IPC,
compared to their preconditioned wild-type counterpart [62].
Inducible NOS (iNOS) was found to be involved in isoflurane
PC-induced neuroprotection in in vivo and in vitro conditions,
as well as during IPC [16, 63, 64]. eNOS has been recently
implicated as a mediator of neurovascular protection against
subarachnoid hemorrhage (SAH)-induced vasospasm,
through HPC in mice, showing for the first time that PC is
beneficial for other forms of stroke as well [65].

Immune System A stroke-like event can trigger the innate
immune system. A series of inflammatory cells like leuko-
cytes, microglia, etc. are recruited into the infarct zone in a
time-dependent manner and eventually damage the brain tis-
sue [66, 67]. The immune response is setup by a signaling
pathway initiated by non-catalytic toll-like receptors (TLRs)
that recognize foreign molecules and lead to the induction of
transcription factor NF-κB. The nuclear factor then leads to
the transcription of cytokines and chemokines to establish the
inflammatory cascade [68, 69]. In the early phases of post-
ischemia, reactive oxygen species (ROS) are rapidly released
from the cells and microglia activate pro-inflammatory cyto-
kines like IL-6, IL-1β, and TNF-α that worsen the injury [67].
However, these very cytokines also serve as mediators of IT in
brain [70]. PC pathways could either promote anti-
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inflammatory cascades or inhibition of pro-inflammatory mol-
ecules. Genomic reprogramming of TLR signaling can bring
about tolerance by controlling the inflammatory response and
mediating anti-inflammatory mechanisms [71, 72]. Endotoxin
preconditioning with 1.0 mg/kg lipopolysaccharide (LPS) for
four consecutive days in mice showed that LPS receptor
(TLR4) was required for the activation of central nervous
system (CNS) microglia, which could significantly reduce
neuronal death and impart protection to neurons [73]. Inter-
estingly, while LPS functioned by suppressing TNF-α signal-
ing, in endotoxin PC, the same TNF-α was required for the
activation of preconditioning effect of LPS, suggesting diver-
gent roles for this cytokine in neuroprotection [74]. LPS in-
duced activation of TLR4 and pretreatment with IL-6 and IL-
1, and post-treatment with IL-10 after ischemia is also associ-
ated with reduced neuronal injury in various in vivo and
in vitro settings [70, 75–78].

Enzymes and Receptors Enzymes, like stress-activated ki-
nases, are the other group of proteins activated in response to a
sublethal insult in the brain. It has been reported that the acti-
vation of anti-apoptotic factor Akt/protein kinaseB can sup-
press the action of JNK signaling during IPC [45].
Cyclooxygenase-2 (COX-2), an isoform of the cyclooxygen-
ase enzyme required for the oxidation of arachidonic acid into
prostanoids, participates in the neuroinflammatory cascade
during ischemic injury [79]. COX-2 messenger RNA
(mRNA) levels were upregulated in rats following MCAO,
indicative of its role in mediating delayed neuronal death
[79]. Obstruction of the COX-2 pathway has been proposed
as a therapeutic strategy in case of global cerebral ischemia
after Sprague Dawley rats subjected to HBO showed reduced
COX-2 expression. Also, addition of the selective COX-2
inhibitor NS-398 abrogated the protection observed before
[80]. Downregulation of COX-2 following the induction of
ITwas previously reported in gerbils as well [81]. Interesting-
ly, COX-1 is seen to have a protective function during cerebral
injury, signifying opposing roles for the two isoforms [82].

The lipid kinase sphingosine kinase 2 (SPK-2) is an impor-
tant mediator of IT, as studied in mice preconditioned with
isoflurane and hypoxia [83]. A mechanism has recently been
proposed in which preconditioning with cobalt or hypoxia
promotes SPK-2 catalytic activity, producing the signaling
molecule sphingosine-1-phosphate (SIP). SIP upregulates
chemokine (C–C motif) ligand 2 (CCL2) to bring about tol-
erance post-ischemia [84].

Epsilon protein kinase C (εPKC) facilitates the localization
of regulatory enzyme SIRT1 (a known IT mediator) to the
neuronal mitochondria, rendering direct protection to the or-
ganelle during the delayed phase of IPC induced tolerance
in vivo [85, 86]. The adenosine surge following stroke is
thought to be part of an integral neuroprotective strategy of

the brain and upregulation of adenosine receptors were ob-
served after ICP [87]. Adenosine kinase (ADK) negatively
regulates the nucleoside adenosine and is a central molecule
in the augmentation of brain injury. Underexpression of cere-
bral ADK in transgenic mice induced cortical protection and
overexpression resulted in its abolishment. Therefore, this en-
zyme is being projected as a promising target for developing a
stroke therapeutic. ADK knockdown by a viral system was
also found to be defensive against stroke in mice [88].

Other probable targets for PC strategies include the mem-
brane transporter, Na+/Ca2+ exchanger (NCX) and its iso-
forms NCX1 and NCX3, and adenosine 5′-monophosphate-
activated protein kinase (AMPK). NCX1 is upregulated by
hypoxia inducible factor (HIF-1) and NCX3 mediated by
pAKT (serine/threonine protein kinase) signaling [89, 90].
MCAO in male mice led to a spike in pAMPK levels 4 h after
IPC and reduction after 72 h, suggesting that downregulation
of AMPK contributes toward delayed PC [91]. Finally, the
roles of many key players like HIF-2α, SIRT1, and CREB
suspected of being part of the preconditioning cascade are
now established [85, 92, 93].

Transcriptional Regulation Another method by which
preconditioning leads to IT is through the activation of
transcription factors. Recent research on intracellular en-
zyme and protein levels after exposure to various stressors
has shed light on the mechanisms by which modifications
at gene level are brought about during PC. For instance,
exposure to prolonged and intermittent normobaric
hyperoxia in rats at different time frames resulted in tol-
erance induced by activation of NF-κB [94]. NF-κB is the
transcription factor for TNF-α, which is triggered by the
tumor necrosis factor-α converting enzyme (TACE). In
this study, increased expression of TACE and serum
TNF-α was observed along with greatly reduced infarct
volume [94]. Another central player in the development of
IT in the brain is the HIF-1, a transcription factor activat-
ed in response to low oxygen concentration in the cell.
One of more popular molecules to be linked to HPC, HIF-
1 enables the upregulation of survival genes in oxygen-
depressed environment. HIF is a heterodimer composed of
two proteins HIF-1α and HIF-1β. Under hypoxic stress,
HIF-1α binds to HIF-1β, and together, they attach to the
hypoxia-responsive elements (HRE) present on the HIF
target genes [95]. This transcriptional complex now pro-
motes the transcription of protective genes like erythro-
poietin (EPO), vascular endothelial growth factor
(VEGF), and glucose transporters [95–98]. Another mem-
ber of the HIF family of transcription factors is the HIF-
2α subunit, which has been found to mediate the tran-
scriptional upregulation of EPO mRNA in astrocytes
[92]. Although its role for a possible preconditioning sig-
naling cascade has not been deeply explored, the HIF-2α-
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mediated transcriptional regulation provides an interesting
feature of tissue-specific protective mechanisms in the cell
and may contribute to IT in astrocytes [92, 99]. Other
modulators for transcriptional regulation during CPC in-
clude JNK and Akt/FoxO signaling pathways [41, 100,
101]. Early activation of transcription factor AP-1 with
increased DNA binding affinity was implicated in the in-
duction of IT in vivo [102]. AP-1 is a dimeric protein
consisting of important components c-Jun and c-Fos
which functions in both neuroprotection and cell death.
In a transgenic MCAO mouse model, c-Jun was associat-
ed with increased AP-1 DNA binding activity [103].

Bone morphogenic protein-7 (BMP-7) has been found to
mediate IT through IPC in rats [104]. In an MCAO model of
preconditioning involving BMP-7, neuroprotection was made
possible through the activation of p38/MAPK signaling path-
way [105].

Genomic Reprogramming PC-induced transcriptional re-
sponse is now responsible for an altered genomic profile in
the tolerant organism, distinct from stroke models without
preconditioning. Identification of genes involved and
expressed in the neuroprotective phenotype of IT becomes
mandatory for the complete understanding of IT [30].

BGenomic reprogramming^ not only involves activation of
genes for neuronal protection and regeneration but also sup-
pression of those that are directly involved in the degenerative
pathway during stroke. The genetic response is tailored ac-
cording to the stimulus, whether it is a PC triggering agent
or an ischemic event following PC. Different regulatory mol-
ecules such as transcription factors, transducers, sensors, and
effectors, as well as numerous post-translational modifica-
tions, all contribute toward Breprogramming^ of the genetic
architecture after a PC incentive [12]. A multitude of genes
from different families participate in the ischemic response
which is different from a PC reaction. Genetic repression is
also equally important in the preconditioned brain [8, 12].

Genomic upregulation during IPC was studied in adult rats
using GeneChip technology and subsequent protein synthesis
of molecules inducing tolerance, like heat shock proteins (e.g.,
HSP70) and transforming growth factor (TGF-α) was con-
firmed [31]. DNA microarray technology has been an invalu-
able tool for resolution of the genetic profile of IT. Microar-
rays were used to study differential gene expression patterns in
oxygen–glucose deprived rat hippocampal slices and
microRNA expression and regulation of its target MeCP2 in
IPC-stimulated mouse cortex [32, 106]. It was also found to be
beneficial in an adult mouse model of HPC, where upregula-
tion of cell survival genes like HIF, insulin-like growth factor
(IGF), etc., and region-specific expression patterns within the
same brain were made apparent [33].

Preconditioning Agents

PC agents are characterized by their effectiveness in mimick-
ing an ischemic environment without permanent neuronal
damage. IPC is normally seen as the prototypical PC stimuli
since its first application in cardiac tissue in 1986 [20] and
later in the brain [24]. IPC is now widely used in different
rodent models of focal and global ischemia, which has en-
abled a deeper comprehension of the quality and duration of
stress required to induce PC in the brain [11].

Cross-tolerance, brought about by stressors other than is-
chemia, like oxidative stress, cortical spreading depression,
heat shock, etc., could be the frontrunner in CPC studies, quite
naturally because of the risk involved in inducing ischemia,
however mild, in stroke patients [10, 12]. Also, many of these
Bnon-ischemic^ agents appear to function through an overlap-
ping array of molecular pathways that could imply at some
sort of common response evoked when the brain is under
stress [12].

Hypoxic Preconditioning (HPC) HPC is among the more
frequently used preconditioning stimuli for in vivo models
of IT. Even though neurons are highly sensitive to hypoxia,
they have over time, evolved certain protective mechanisms
that helps the brain, the most crucial organ in the body, survive
during extreme conditions. That a large number of animals
like many amphibians and few mammals, display varying
degrees of hypoxic resistance is a proof of this trait [9]. The
clue here is the differential rates of ion metabolism and ATP
turnover that is enhanced in hypoxia-sensitive mammals,
compared to naturally low states in tolerant species of certain
fishes and turtles [107, 108]. Mention should be made of the
1994 work by Gidday et al. in perinatal rats exposed to a 3 h
hypoxic (8 % oxygen) episode followed by hypoxia ischemia
after 24 h that revealed no damage to the neurons of the “con-
ditioned” animals; this later helped establish a time-framed
regime for CPC in animal models of stroke [25]. Similarly,
when adult rats were placed in a chamber of normobaric hyp-
oxia (8 % O2 during 1, 3, or 6 h) and subjected to focal
permanent ischemia after an interval of 24 h, they showed a
30 % reduction in infarct volume and tolerance lasting 3 days
[97]. Observations from rodent models have suggested that
exposure to hypobaric hypoxia can lead to the reversal of
GLT-1 protein downregulation caused by global brain ische-
mia [57]. A recent study has revealed that HPCmay even play
a role in angiogenesis following acute cerebral infarction,
which could potentially explain its neuroprotective conduit
[109].

Oxygen–Glucose Deprivation (OGD) Murine cortical cul-
tures exposed to short periods of oxygen–glucose deprivation
(OGD) exhibited 30–50 % less neuronal death than controls
after exposure to a longer period of OGD, although the
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window of protection existed only between a 7- to 72-h gap
(from preconditioning to final insult) and depended on the
duration of PC [110]. Ischemia modeled in vitro by OGD is
particularly useful for studying the mechanism of IT in neu-
ronal cell cultures and brain tissue and has helped ascertain
that PC does not affect systemic flow following stroke [56,
110]. It has been shown that OGD-induced tolerance in corti-
cal cultures may induce a signaling cascade involving neuro-
nal nitric oxide synthase (NOS) activation for subsequent neu-
roprotection [58].

Hyperoxic Preconditioning Preconditioning with periodic
exposure to normobaric hyperoxia (95 % O2) in rodents for
a prolonged period was observed to subdue neurologic dam-
age and reduce infarct volume [94]. Hyperoxia has been
shown to induce IT in MCAO models of rats and mice, pos-
sibly through a combination of cellular reactions and bio-
chemical changes brought about by genetic reprogramming
[111].

Hyperbaric oxygenation (HBO) also functions as stimuli;
in a global ischemia model, Sprague Dawley rats were pres-
surized in a hyperbaric chamber for an hour for each treatment
and after different patterns of administration showed reduced
cellular apoptosis [112]. HBO-PC was found to induce toler-
ance against MCAO through the mediation of SIRT-1 proteins
[113] and resulted in the downregulation of COX-2 in a mu-
rine model of global cerebral ischemia [80].

Hypothermia and Hyperthermia Hypothermia is seen to be
safe and practical in surgical procedures based on data from
randomized clinical trials [114, 115]. Brief periods of hypo-
thermia can confer rapid tolerance in focal ischemic models,
though there is no perceivable impact of increasing the dura-
tion of the stimulus [116]. The underlying cause of delayed
tolerance conferred through hypothermic preconditioning is
different and supposedly depends on de novo protein synthe-
sis when stimulus is prolonged [116, 117]. It has been shown
in rodent models that elevated temperatures can also bring
about a certain degree of protection against ischemic injury.
Seven-day-old Wistar rats were partially submerged in a hot
water bath, and brain temperatures increased to 41.5–42 °C,
measured using a digital thermometer. Twenty-four hours
post-conditioning, the newborns subjected to a 2-h hypoxic-
ischemic insult showed mitigation of neuronal damage after
the stroke [118]. In mouse astrocytes, 6 h of hyperthermia
(38–40 °C) rendered protection from ischemia/reperfusion in-
jury (IRI) [119].

Chemi ca l /Pharmaco l og i c a l Pre cond i t i on ing
(PPC) Exogenously delivered agents that diminish disruption
of energy metabolism induct chemical preconditioning [12].
Inhibition of oxidative phosphorylation in the CA1 region of

rat hippocampal slices led to the reduction in oxygen-free
radicals post-hypoxia, in what is considered to be the first
instance of chemical preconditioning (1997) [120]. Many
chemical PC agents, including inhalational anesthetics like
isoflurane, act on adenosine receptors [121]. A short ischemic
event leads to the release of adenosine, which is instrumental
in the activation of ATP-sensitive K+ channels in the brain.
PPC with adenosine receptor agonist can confer adenosine-
mediated neuroprotection, though it was marginally less than
IPC [122].

Isoflurane, halothane, and other inhalational anesthetics
could promote the antagonism of NMDA and AMPA recep-
tors, leading to a subsequent protective phenotype during PPC
[121]. The neuroprotective mechanism of such chemicals and
their potential role as preclinical and clinical PC agents are
steadily being uncovered [121, 123–126]. Isoflurane precon-
ditioning in the instances of OGD, glutamate-induced cell
death, and NMDA or AMPA neurotoxicity, has mitigated
the effects of ischemic injury [127]. Isoflurane precondition-
ing with 2 % isoflurane for half an hour in adult male rats
reduced brain infarct sizes after permanent focal ischemia
[128]. Resveratrol is an effectual activator of Sirtuin proteins
[129]. This naturally occurring phytoalexin has been found to
mimic IPC in vitro through seemingly converging cellular
pathways [15]. Sevoflurane is considered to possess neuropro-
tective potential in both focal and global ischemic models
[127]. Male Wistar rats subjected to sevoflurane treatment
both before focal cerebral ischemia and at the start of reperfu-
sion displayed reduced brain damage as assessed by smaller
infarct size and better motor coordination. This in vivo model
also demonstrated the preconditioning and early post-
conditioning effect of sevoflurane to confer neuroprotection
[126]. Halothane could be potentially neuroprotective but has
no clinical feasibility due to the likelihood of hepatotoxicity
and other systemic side effects [127]. An alternative would be
to use combined inhaled anesthetics for extended neuropro-
tection [130].

3-Nitropropionic acid (3-NPA) has been reported to reduce
infarct volume in rats subjected to focal ischemia [131]. LPS
preconditioning involves injecting low doses of this potent
bacterial endotoxin in rodents before the final insult (hypoxia
ischemia, MCAO), which later imparts IT in the brain [75,
132]. Yet, another mode of CPC involves estrogen precondi-
tioning [36]. Nitrous oxide (N2O) administration in focal
models of ischemia has shown little neuroprotective effect,
and it seems to be almost ineffective in case of global ische-
mia. Moreover, when used in conjugation with other inhala-
tional anaesthetics, it may even repress the neuroprotective
effects of such compounds [127].

Remote Ischemic Preconditioning (RIPC) In RIPC, a short
ischemic spell is carried out in a different limb or organ; thus,
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IT is induced remotely in the brain [133, 134]. This mecha-
nism offers an edge over other methods in terms of clinical
applications because it drastically reduces the risk involved
with cerebral occlusion, through an elementary route for PC
delivery. PPC is second to RIPC, because using drugs may not
generate the necessary degree of resilience and may produce
adverse side effects in patients if left unchecked. Reduced IL-
17 expression and increased tolerance was observed in a
MCAO rat model after limb ischemic preconditioning possi-
bly through anti-inflammatory mechanisms [135]. In a por-
cine model of hypothermic circulatory arrest (HCA), RIPC
of the hindlimb was found to protect the neurons from IRI
[133]. Similar results were observed in murine models as well
[136]. RIPC has been shown to prevent decline of postopera-
tive cognitive function in patients undergoing cardiac surgery
[137]. But, one of the most significant findings in recent years
is the safety and feasibility of inducing RIPC in critically ill
patients without any adverse effects or danger, implying that at
least one type of PC strategy is a step closer to clinical trials,
even useful for other forms of stroke as well [138].

Other Agents of PC Many random players elicit IT in animal
models. Consecutive electroacupuncture in mice for 20 min
daily for 3 days at acupoints GV20 and GV14 exhibited re-
duction in infarct volume and improved neurological and mo-
tor function after focal ischemia [139]. Other IT inducing
stimuli include exercise and cortical spreading depression as
demonstrated in rats [140, 141].

Epigenetic Regulation

Regulators of epigenetic modifications and their role in ische-
mic brain have been studied to assess the prospects of gener-
ating a tolerant phenotype through genomic reprogramming
[142]. As one of the main epigeneticmechanisms, DNAmeth-
ylation has been thought to enhance cerebral damage follow-
ing ischemia or traumatic brain injury [143, 144]. Expression
of HDAC9 mediates increased risk of large vessel ischemic
stroke [145]. Neuroprotection can be conferred by pharmaco-
logical inhibitors of epigenetic modulation [143, 146]. Inhibi-
tion of DNA methyltransferases is neuroprotective in focal
models of ischemia [142]. Histone modifications also have
an impact on the ischemic brain. Preconditioning by inhibition
of histone acetyltransferase and histone deacetylase (HDAC)
in mice models of focal ischemia has shown mitigation of
damage [142]. HDAC inhibitors maintain histone acetylation
levels and alter the transcriptional activity. Transcriptional re-
pression is now understood to be a characteristic of an IT brain
[147]. Deacetylation of NF-κB and tumor protein p53 by
SIRT-1 provides neuroprotection, probably by inhibiting in-
flammatory and apoptotic pathways [148]. The effects of acet-
ylation of histones on neuroprotection are, however, yet to be

confirmed. The abundance of epigenetic modulators like his-
tones and polycomb group (PcG) proteins were found to be
increased following MCAO in vivo [147]. This opens up a
new perspective of preconditioning-induced IT, involving epi-
genetic regulation in response to brain injury. PcG action is
countered by the activation of trithorax group (TrxG) proteins.
Hence, studies on PcG/TrxG system and its role in neuropro-
tection might prove to be beneficial in the future [149]. Sim-
ilarly, microRNA (miRNA) regulates the expression of epige-
netic mediators like PcG [150]. miRNAs are the best studied
examples of ncRNAs, which constitute another player in the
epigenomic pathway [142]. In IPCmodels, there is a tendency
for upregulation of miRNAs, but their expression is selective-
ly regulated [151]. SUMO-I conjugation levels were hiked in
cells preconditioned for tolerance against neuronal damage
through OGD [184]. SUMOylation regulates the recruitment
of HADC to promoters and augments the deacetylase activity
of SIRT-1 during post-translational changes. In another study,
it was found that preconditioning induced by cortical spread-
ing depression (CSD) can also epigenetically regulate
retrotransposable elements through histone modifications
[152].

Recent Developments in CPC

Needless to say, CPC like any other field of scientific research
is now in an era of advanced technology and innovative pos-
sibilities. This is made clear from the large number of publi-
cations that come out every year illustrating newer and im-
proved paradigms for CPC in stroke research. We describe a
few of the noteworthy developments in CPC in the past few
years. Repetitive hypoxic preconditioning (RHP) is an
upgraded version of HPC which was found to produce long-
term protection in mice through repeated exposure to hypoxia
followed by focal ischemia; the benefits were seen to last for
weeks after the final insult [153]. Similarly, repetitive IPC was
found to be beneficial in adult rats exposed to both IPC and/or
MCAO [154]. Transplanting hypoxia-preconditioned stem
cells into rats helped enhance various survival and regenera-
tive mechanisms [155]. Metformin, a well-known anti-diabet-
ic drug, has been used to induce PC in rats with promising
results, further expanding the scope of PPC [156]. The effects
of anti-inflammatory drugs like indomethacin and PC
methods like ionizing radiation (IR) have also been newly
investigated in the context of CPC [157, 158]. Limb precon-
ditioning was seen to be well tolerated in patients with unilat-
eral middle cerebral artery stenosis as well as healthy volun-
teers [159]. Particularly encouraging is a recent commentary
that endorses RIPC as holding the key for stroke treatment.
However, it warns of the shortage of sufficient preclinical
trials and other complications that might hinder progress and
must be dealt with before this vision becomes a reality [160].
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Clinical Concerns and Future Prospects

From its largely flourishing trials in the experimental scenario,
CPC has the potential to transform stroke research in humans,
provided all the issues and impracticalities are effectively ad-
dressed. In spite of its apparent popularity and the extensive
research that is currently underway, CPC is yet to be launched
on an effective scale for human clinical trials.

Recent studies have provided evidence that some mecha-
nism analogous to PC might already be functioning in the
human brain. Transient ischemic attacks or Bwarning
strokes,^ are ephemeral episodes of focal ischemic attacks.
TIAs are characterized by a short and non-lethal blockage of
blood supply to the brain without infarction which, although
share the same symptoms as stroke, do not cause permanent
damage. TIAs are clinically relevant because they are thought
of as preindicators of a more severe ischemic event [161].
TIAs can confer some degree of IT, as understood from the
few clinical studies in stroke patients. One of the earliest
works in this field was carried out in a German case-control
study in stroke patients, where an association was found be-
tween previous incidence of TIA and reduced severity in sub-
sequent stroke [162]. Around the same period, another study
in stroke patients with and without prior transient attacks dem-
onstrated that ipsilateral TIAs of 10–20 min duration before
cerebral ischemia produced a positive outcome [163]. In an-
other retrospective study involving 65 patients, smaller lesions
and reduced infarct volumes within 12 h after onset of stroke
were linked to those patients with prodromal TIAs [164].
There are several more reports of IT like status after TIAs in
different case control scenarios, which might be probed fur-
ther to understand their preconditioning effects [165–167]. A
contradictory study based in Northern California using a co-
hort of more than 1000 stroke patients, however, showed no
association between TIA and disability from stroke. They also
reported higher disability (instead of delayed preconditioning)
in some patients in whose cases stroke occurred 1–7 days after
TIA, underlying some of the limitations of medication-
induced PC after TIA [168]. Heterogeneity among patients
and diversity among the causes of TIAs and stroke constitute
the limitations in understanding TIA-induced IPC. Exact time
frames from the onset of TIA to the final insult, medications
that can interfere with or trigger TIAs, extending survival
periods for more than 1 week (as is usually the case), and
the ever present threat of sudden ischemia are some of the
other problems that are to be tackled before full-fledged clin-
ical adaptation. Identification of novel biomarkers of TIA and
PC can help in detecting IT in stroke patients. Heat shock
proteins (HSPs) are a class of stress proteins already implicat-
ed as mediators of CNS injury, brain ischemia, and hypoxia,
characterized by their rapid response in tissues exposed to near
lethal stressors [169]. Increased expression of Hsp70 has been
observed in a rat model of focal cerebral ischemia [28].

Similarly, upregulation of Hsp70, Hsp27, and Hsp90 was not-
ed in adult rats preconditioned with a 10-min transient middle
cerebral artery occlusion [31]. Other candidates for precondi-
tioning research include TNF-α/IL-6, VEGF, and EPO [92,
170–172].

It is not easy nor always realistic to choose one particular
stimuli from the many as the best agent of preconditioning.
Every PC agent has its characteristic set of advantages as well
as limitations and must be evaluated based on scenarios where
they work best. From a clinical point of view, RIPC is some-
times seen as a more promising PC strategy, because of im-
proved safety (being generally non-invasive) and better toler-
ance of the organs to IRI [134, 173]. Many even believe that
this PC mechanism might be the future choice of clinical is-
chemic treatment [160]. Recently, bilateral arm ischemic pre-
conditioning (BAIPC) was found to reduce the occurrence of
stroke in patients with symptomatic atherosclerotic intracrani-
al arterial stenosis (IAS) [174]. Limb preconditioning was
found to be safe in patients with subarachnoid hemorrhage
(SAH), and in a phase I clinical trial of RIPC-SAH, patients
reported protection from ischemia for up to 2 days following
RIPC [138, 175]. It has already proved beneficial in the heart
and, hopefully with more research, can be mimicked in the
brain as well [176, 177]. Similarly, inhalational anesthetics are
worth further scrutiny, being already in use in surgical set-
tings. Extensive research is required particularly on the use
of volatile anesthetics like sevoflurane, isoflurane, etc., keep-
ing in mind the ongoing debate among many experts on
whether these chemicals are more neurotoxic than neuropro-
tective [178].

Despite the promising strategies, CIPC is not yet universal-
ly popular and experts must address the Janus-faced position
that it holds. Since preconditioning involves application of
non-lethal but noxious stressors, one can question whether it
is wise to create one pathological problem to solve another
[179]. It is important to analyze whether complete elucidation
of the internal repair mechanisms and molecular pathways of
PC can guarantee therapeutic benefits in the immediate future
[180]. Research in the area of ischemic neuroprotection is
challenging and not always successful, and somemaintain that
preclinical trials need to be perfected first before actual adap-
tation into the clinical context [181]. PC strategies have
worked well in murine models and tissue cultures, but the
question remains of their safety index in humans. The next
big challenge is to choose the most effective method from the
multitude of PC agents, in terms of its protective margin and
correct dosage for use in clinical settings. More detailed ex-
amination of different facets of CPC is required, like possible
side effects of pharmacological agents used in PPC and long-
term tissue damage during limb IPC [182]. Mitochondrial
preconditioning is another promising strategy worth further
exploration [183]. CPC can be an answer to many cerebral
maladies, not just stroke, once all the issues are resolved.
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Conclusion

Cerebral IPC constitutes the ischemia-tolerant phenotype of
the brain achieved by episodes of brief, sublethal ischemia,
administered before the onset of longer and more severe
events of stroke. The end result is the induction of IT, a state
of transient neuroprotection in the brain. Outcomes of various
preconditioning experiments have provided us with multiple
possibilities through which neuroprotection can be conferred
prior to a possibly lethal episode of ischemia. This knowledge
base is invaluable not only in the treatment of stroke but also
for other cerebrovascular diseases and traumatic brain injuries.
Though there are many methodologies to attain IT, there is a
need for combinational studies, which compares the impact of
various preconditioning stimuli and any adverse or unwanted
side effects they may have on a healthy brain. By reviewing
current and previous work in the field, we can easily deduce
that the outcomes of different PC mediators vary significantly
based on the severity and duration of the stimuli introduced,
dosage of various chemical modulators, and the locales of an
injury. Differences in temporal separation between subsequent
stimuli have also given multiple results in many rodent and
mammalian models. CPC strategies should be scientifically
anatomized in terms of the type and nature of preconditioning
regime. With each PC agent, various factors, such as the en-
dogenous mechanisms of repair and signaling pathways for
neuronal survival, the duration of tolerance and exact window
of protection after the final insult, the safety margin and pos-
sible side effects in humans, should be carefully analyzed. Of
all PC techniques, RIPC and PPC require special mention, as
they seem to hold more promise for a clinical setting. More
studies with broader span and different combinations of stim-
uli should be conducted over the next few years to establish a
paradigm to use CPC as a prime therapeutic approach for
combating stroke and related neurological disorders.
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