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Abstract Oligodendrocytes, the myelinating cells of the
central nervous system, mediate rapid action potential con-
duction and provide trophic support for axonal as well as
neuronal maintenance. Their progenitor cell population is
widely distributed in the adult brain and represents a per-
manent cellular reservoir for oligodendrocyte replacement
and myelin plasticity. The recognition of oligodendrocytes,
their progeny, and myelin as contributing factors for the
pathogenesis and the progression of neurodegenerative dis-
ease has recently evolved shaping our understanding of
these disorders. In the present review, we aim to highlight
studies on oligodendrocytes and their progenitors in neu-
rodegenerative diseases. We dissect oligodendroglial biol-
ogy and illustrate evolutionary aspects in regard to their
importance for neuronal functionality and maintenance of
neuronal circuitries. After covering recent studies on oli-
godendroglia in different neurodegenerative diseases
mainly in view of their function as myelinating cells, we
focus on the alpha-synucleinopathy multiple system atro-
phy, a prototypical disorder with a well-defined oligoden-
droglial pathology.
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Introduction

Age-related neurodegenerative diseases are generally charac-
terized by a progressive axonal and neuronal cell loss within
circumscribed or multiple regions of the central nervous sys-
tem (CNS). Extensive efforts have been undertaken to deci-
pher mechanisms underlying the detrimental cascade during
axonal and neuronal degeneration and to exploit avenues to
modify disease progression. Although various common neu-
ropathological features including disturbances in protein ho-
meostasis, mitochondrial functionality, and axonal transport
have been proposed, the precise mechanisms eventually lead-
ing to neuronal dysfunction and death still remain elusive
[1-5]. Such a comprehensive understanding, however, is the
prerequisite for the development of therapeutic approaches
attenuating, halting, or even reversing progressive neurode-
generation. As widespread synaptic and axonal loss ultimately
leading to neuronal cell death is the common hallmark of
neurodegenerative diseases, research addressing disease caus-
ing and modifying factors classically focused on autonomous
neuronal mechanisms. However, glial cells, namely astroglia,
microglia, and oligodendroglia, move more and more into
the focus due to their importance for regulating and main-
taining neuronal functionality. Moreover and regardless
of the distinct disease examined, studying the involve-
ment of glial cells may complement our understanding
of these complex diseases. For instance, neuroinflammatory
processes mediated mainly by astrocytes and microglia are
observed in almost all neurodegenerative diseases [6].
Furthermore, oligodendrocytes (OLGs) and their widely dis-
tributed progenitors profoundly influence and control process-
es shown to be frequently dysregulated in neurodegenerative
diseases including ionic homeostasis and nerve impulse con-
duction [7-11]. Via their densely packed myelin sheaths,
OLGs intimately contact and communicate with axons
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maintaining their integrity as well as regulating axonal and
neuronal functionality [12, 13]. Moreover, OLGs are the only
mature cellular phenotype within the adult CNS with an
existing, widespread, and proliferative progenitor cell popula-
tion. These oligodendrocyte progenitor cells (OPCs) are not
only implicated in OLG replacement and myelin remodeling,
but may also serve as a promising source for neuronal replace-
ment [14, 15].

Whereas the literature on oligodendroglial cells in neuro-
degeneration premillennially comprised only a few studies,
the number of reports on this topic has gradually increased
over the past few years. Acknowledging the growing evidence
of an oligodendroglial contribution to neurodegeneration, the
aim of the present review is to highlight recent studies on
oligodendroglial cells and their precursors in neurodegenera-
tive disorders. For this purpose, we first reflect on basic as-
pects of oligodendroglial biology and myelin evolution. Next,
we link oligodendroglial and myelin dysfunction to neurode-
generation. Finally, we explicitly dissect the current knowl-
edge on OLGs and their progeny in a distinct neurodegenera-
tive disease by exemplarily considering multiple system atro-
phy (MSA) as a prototypical entity with a well-known oligo-
dendroglial pathology and even considered to be an
oligodendrogliopathy.

Function and Biology of OLGs and Their Progeny

OLGs represent with 75 % the majority of all glial cells in the
adult CNS [16]. The main function of OLGs is the production
of myelin, the complex organized and tightly packed enlarged
plasma membrane of OLGs wrapped around axons. By insu-
lating axons and clustering sodium channels at myelin-free
interspaces—the nodes of Ranvier—myelin enables saltatory
action potential conduction. In addition to this well-known
function, OLGs have been implicated in various other func-
tions. For instance, OLGs buffer increased extracellular potas-
sium evoked by neuronal excitation, thereby ensuring ionic
homeostasis in the CNS [7]. Moreover, OLGs provide meta-
bolic and trophic supply at the axon-myelin unit supporting
neurons in maintaining their function [17, 18]. The provision
of lactate as energy source via monocarboxylate transporters
is essential for axonal survival. By secretion of growth factors,
such as glial- and brain-derived neurotrophic factor (GDNF
and BDNF), OLGs not only support axonal functionality, but
also modulate axonal outgrowth [19-21]. These examples
highlight the importance of OLGs and myelin in preserving
neuronal circuitries.

Developmentally, OLGs derive from OPCs arising at the
ventricular zone and are detected as early as embryonic day
12.5 in the rodent brain. Upon migration during serial waves
toward the CNS, OPCs differentiate and give rise to
myelinating OLGs [22]. The sequence of differentiation and

myelination is a tightly controlled biological process regulated
by extrinsic stimuli and a complex transcriptional network.
Extrinsic stimuli promoting OPC differentiation and
myelination include hormones (e.g., thyroid hormone [23]),
growth factors (e.g., BDNF [24]), cytokines (e.g., interleukin-
6 [25]), and enzymes (e.g., matrix metalloproteinases [26]). In
contrast, several stimuli are described preventing OPC differ-
entiation and myelination, for instance, distinct growth factors
(e.g., platelet-derived growth factor (PDGF) [27]) and myelin
itself [28]. Transcription factors regulating oligodendroglial
differentiation and myelination include amongst others mem-
bers of the sox family (e.g., sox10 [29]), Oligl and Olig2 [30],
effectors of the Wnt and Notch signaling pathways [31, 32],
and the recently identified myelin gene regulatory factor
(MYREF) [33].

Although most myelin is produced and laid down during
early infancy, OPCs persist in the adult CNS where they are
also referred to as NG2 glia (due to their characteristic expres-
sion of the neural/glial antigen-2 (NG2)), polydendrocytes,
and synantocytes [15, 34]. OPCs are widely distributed in
the adult CNS constituting for up to 9 % of all white matter
cells and up to 3 % of all gray matter cells in the rodent brain
[35]. Lifelong, OPCs keep their potential to proliferate, mi-
grate, and differentiate into mature, myelinating OLGs. Upon
demyelination, OPCs undergo this sequential maturation ulti-
mately leading to remyelination [36-38]. Notably, functional
differences regarding the differentiation potential between
gray and white matter OPC were recently described as white
matter-derived OPCs more rapidly differentiated upon trans-
plantation compared to gray matter-derived OPCs [39].
Interestingly, OPCs not only represent an endogenous source
for OLG replacement, but also contribute to CNS plasticity
[40]. Recent studies demonstrate that OPCs mediate adaptive
myelination and motor skill learning in the adult rodent brain
[41, 42]. However, this view on OPCs and myelin plasticity
was recently challenged in the human brain by analyzing the
integration of nuclear bomb test derived (14)C into human
myelin [43]. Referring to this study, myelin remodeling con-
ducted by mature OLGs appears to be the main driver of
myelin plasticity in the human brain while OPCs make only
a minor contribution. Such discrepancy may be related to a
significant difference in oligodendroglial biology between
humans and rodents.

It is still controversial, whether OLGs are the sole fate of
OPCs [44]. Fate-mapping studies in the adult mouse brain
demonstrate a few OPC-derived neurons in addition to new-
born OLGs [45-47]. Several other reports, however, argue
against the neurogenic potential of OPCs [48—50]. The ability
of OPCs to obtain neuronal phenotypes might depend on dis-
tinct differences between physiological and diseased microen-
vironments [44]. Nevertheless, OPCs may serve as cellular
reservoir and, thus, as a promising therapeutic target not only
for OLG replacement, but also for neuronal regeneration as
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indicated by studies using genetic or pharmaceutical modifi-
cation to induce the neurogenic potential of OPCs [51, 52]. In
addition to their role as progenitors, further regulatory func-
tions have been proposed for OPCs. For instance, it was re-
cently demonstrated that OPCs—synaptically linked to neu-
rons—react activity-dependent to neuronal input with cleav-
age of the NG2 proteoglycan, thereby modulating the neuro-
nal network [53]. Taken together, OPCs, OLGs, and myelin
represent multifunctional constituents essential for the integ-
rity of neuronal circuits. In the following section, we dissect
evolutionary and developmental aspects of oligodendroglia
and myelin to underline their importance for the extraordinary
achievements and the functionality of the human brain.

Evolutionary and Developmental Aspects of Human
Myelin

Undoubtedly, the most important function of OPCs and OLGs
is the production of myelin. In fact, myelin represents the most
recent crucial step during evolution of the vertebrate CNS
appearing first in hinged-jawed placoderms [54]. The rise of
myelination is the evolutionary response to the growing size
of the vertebrate brain, and thus, it ensures proper neuronal
connectivity by facilitating action potential conduction.
Myelinated axons require lower currents for signal transduc-
tion, and thus, smaller ionic imbalances have to be balanced
upon neuronal excitation leading to a major energy
economization [55]. Moreover, by accelerating conductivity,
myelination is fundamental for the evolution of higher brain
functions such as cognition [56]. In addition to myelin, action
potential velocity is mainly determined by the axonal diame-
ter. Without the evolution of myelin, axons extraordinary large
in diameter would have been required to allow for increasing
conductivity. Therefore, spatial optimization is also attributed
to myelin [55]. Hence, myelin is an essential factor contribut-
ing to the extraordinary accomplishments on neuronal net-
works in higher organisms such as humans. Considering the
fact that neurodegenerative diseases are unique to humans—
since not observed in nonhuman primates and other mam-
mals—the development of age-related neurodegenerative dis-
eases may be linked to distinct features of the human brain—
such as myelin. Intriguingly, the complexity and upscaling of
the human brain are rather reflected by the exceptionalism of
its myelin than by increased neuronal and glial cell numbers.
Whereas the gray matter volume proportionally evolved in
nonhuman primates and humans, the white matter volume
especially in the prefrontal cortex is disproportionally larger
in humans [57, 58]. In fact, myelination correlates not only
with the evolution of advanced brain functions, but also with
functional brain development and maturation in each individ-
ual. For instance, myelination starts around 25 weeks of ges-
tational age and peaks during early infancy, thus coinciding
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with the rapid cognitive and emotional development during
childhood [59—-62]. Moreover, neocortical myelination not on-
ly more rapidly progresses in the developing human brain, but
also protracts far more into the adulthood in humans compared
to nonhuman primates at least partly explaining the extraordi-
nary cognitive, emotional, and social achievements linked to
the human brain [63, 64]. Importantly, myelin levels gradually
increase until the fifth decade in the human brain before pro-
gressively declining in the aging brain as suggested by mag-
netic resonance imaging (MRI) analyses [65]. As this progres-
sive breakdown of myelin inversely correlates with the in-
creasing risk for the development of neurodegenerative disor-
ders, we next link oligodendroglia/myelin dysfunction to the
onset of neurodegeneration.

Oligodendroglial and Myelin Dysfunction: a Link
to Neurodegeneration?

Considering the facts that myelin (i) represents an essential
factor for human brain connectivity, (ii) is extraordinarily
evolved in humans compared to nonhuman primates and other
mammals, and (iii) progressively declines in the aging human
brain, oligodendroglial dysfunction significantly contributes
to the distinct vulnerability of the human brain for neurode-
generative diseases. Although it is not very likely that myelin
dysfunction and oligodendroglial failure are primarily in-
volved in the etiology of neurodegenerative diseases, interin-
dividual variability in OLGs, their progenitors, and/or myelin
may define the topographical level of resilience for axonal and
neuronal loss. From another point of view, preserved oligo-
dendroglial and myelin functionality may be a crucial prereq-
uisite for the prevention of axonal and neuronal degeneration,
e.g., under oxidative or metabolic stress. This causal relation-
ship is supported by several recent studies linking oligoden-
droglial and myelin dysfunction to axonal and neuronal
degeneration.

Strong evidence for an essential contribution of
dysmyelination/demyelination to neurodegeneration is de-
rived from studies on multiple sclerosis (MS), one of the
best-characterized demyelinating disorders of the CNS [66].
Although the initial MS pathology is tightly linked to autoim-
mune processes followed by focal demyelination, it is impor-
tant to note that axonal damage and loss of neuronal integrity
represent the structural correlates for the progression of func-
tional deficits in MS patients [67, 68]. Both in human MS
brains and the cuprizone-induced demyelinating model for
MS, severe axonal degeneration is observed as a consequence
of myelin loss [69, 70]. Intriguingly, while no significant ax-
onal damage is observed in remyelinated shadow plaques,
severe axonal degeneration is present in active and inactive
demyelinated lesions [71]. This indicates that myelin regener-
ation supports axonal survival. In line, the group of Nave and
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colleagues demonstrated that the formation of compact myelin
is not sufficient for axonal survival. Mice lacking the myelin-
specific proteolipid protein 1 assemble physiological myelin
sheaths, but develop axonal swellings leading to axonal de-
generation. The accumulation of membranous dense bodies
and mitochondria within these swellings suggests a profound
axonal transport deficiency which may be attributed to the
breakdown of the trophic and metabolic support provided by
OLGs [72]. Indeed, a more recent study describes pronounced
axonal injury upon OLG-specific ablation of monocarboxyl-
ate transporters which mediate lactate/pyruvate transport at the
myelin-axon junction [18]. These studies in the context of MS
highlight the importance of myelin for maintaining axonal
integrity and functionality by providing trophic and metabolic
support [18, 72, 73].

Furthermore, a notable role was also described for OPCs in
MS. Kuhlmann and colleagues observed an accumulation of
OPCs in early MS lesions whereas significantly fewer OPC
numbers were detected in chronic demyelinated plaques.
While Olig2/NogoA double-positive maturating OLGs were
present in early lesions, such cells were rarely observed in
chronic lesions [74]. Moreover, OLGs which failed to
myelinate axons were detected in chronic demyelinated
plaques [75]. Considering that axonal damage frequently
and predominantly occurs within demyelinated plaques, these
findings strongly indicate that a deficiency in both OPC mat-
uration and remyelination contributes to axonal and finally
neuronal degeneration in MS [74, 75]. One possible explana-
tion for this self-repair failure is the elevated burden of oxida-
tive and nitrosative stress in MS brains, as these factors were
demonstrated to impair OPC maturation [76—78]. In fact, the
susceptibility toward oxidative and nitrosative stress is an in-
teresting crosslink between MS and age-related neurodegen-
erative disease and might act as common denominator in sev-
eral neurological conditions with white matter alterations [76,
717, 79].

Pioneering studies of Bartzokis and colleagues demonstrat-
ed a potential link between myelin breakdown and the onset of
neurodegenerative diseases including Alzheimer’s disease
(AD) and Huntington’s disease (HD). Using MRI approaches,
disturbances of myelin integrity occurring during normal age-
ing are severely exacerbated in AD and HD [80-82].
Furthermore, increased tissue iron levels—in complex with
ferritin which, in turn, is produced in the CNS mainly by
oligodendroglia—were measured in AD, HD, and
Parkinson’s disease (PD) [9, 11, 82, 83]. Altered tissue iron
levels increase the concentration of reactive oxygen interme-
diates [84]. In turn, this provokes changes in the proteins’
tertiary structure favoring their aggregation propensities and,
eventually, neurodegeneration. Therefore, increased tissue
iron is considered as risk factor for the development of neu-
rodegenerative diseases further connecting oligodendroglia to
neurodegeneration [10, 85]. In addition, white matter

abnormalities detected by diffusion tensor imaging (DTI) have
been proposed as early event in AD and HD [86-88]. In line,
amyloid-beta plaque deposition was recently linked to focal
demyelination accompanied by a profound oligodendroglial
cell loss, suggesting that demyelination contributes to im-
paired cortical processing in AD [89]. Studies deciphering
oligodendroglial pathology in transgenic mouse models sup-
port the notion of an oligodendroglial contribution to AD
pathogenesis [90, 91]. In this context, Behrendt and col-
leagues noted an increased proliferation of OPCs in a mouse
model of AD [91]. While this observation favors a cellular
response to AD pathology and a potential mechanism for my-
elin repair, OPC survival, maturation, and myelin sheath for-
mation were negatively influenced by the presence amyloid-
beta peptides [92, 93]. Similarly as described in MS, these
findings favor a deficiency in remyelination also in AD.

Increased numbers of OPCs indicative for a myelin regen-
eration failure were also observed in the motor cortex and the
spinal cord of amyotrophic lateral sclerosis (ALS) patients, an
adult-onset neurodegenerative disease with affection of both
the upper and lower motor neuron [94]. Additionally, mice
carrying mutations in the SODI1 gene linked to ALS display
reactive OPC proliferation upon extensive OLG loss and de-
myelination even prior to the onset of motor symptoms [49,
94]. The increased number of OPCs was associated with an
enhanced differentiation. However, newly generated OLGs
exhibited alterations like reduced myelin basic protein
(MBP) levels and, thus, were not able to form functional my-
elin. Indeed, fate-mapping approaches demonstrated that new-
ly formed OLGs were dysmorphic and accumulate with dis-
ease progression [95]. Intriguingly, selective ablation of the
SODI1 mutation in OPCs and OLGs prolonged survival and
delayed disease onset [94]. In line, the ubiquitous reduction of
monocarboxylate transporters in OLGs of ALS patients and
SOD1 mice implies that the metabolic support of neurons by
OLGs is impaired in ALS [18]. These findings indicate an
early involvement of oligodendroglia in ALS pathology by
increasing neuronal vulnerability.

Taken together, these studies highlight the contribution of
myelin dysfunction to neurodegeneration but are, by far, not
comprehensive. As the group of neurodegenerative disorders
is rather complex and heterogeneous, we next focus on MSA
as a neurodegenerative disease with well-known oligoden-
droglial features.

Oligodendroglial and Myelin Dysfunction in MSA
Clinic and Epidemiology of MSA
The term MSA was introduced in the late 1960s combining

three initially distinct syndromes: striatonigral degeneration,
olivopontocerebellar ataxia, and Shy-Drager syndrome [96].
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Indeed, considering the broad spectrum of affected systems,
MSA patients symptomatically present with a heterogeneous
array of autonomic dysfunction, parkinsonism, cerebellar
ataxia, and pyramidal features [97]. MSA is a rare neurode-
generative syndrome with a prevalence ranging between 1 and
5 per 100,000. The incidence is highest in the population older
than 50 years reaching a maximum of 3 per 100,000/year [98,
99]. Based on a recent multicenter study in Europe, the mean
age of onset is 56 years, while the mean survival was estimat-
ed to be about 10 years ranging between 2 and 18 [100]. Thus,
MSA is a rapidly progressing neurodegenerative disorder,
however, with still unknown etiology. Using whole genome
sequencing, a recent study conducted in a Japanese cohort of
MSA patients identified heterozygous mutations in the COQ2
gene to cause MSA [101]. However, two follow-up studies in
China and in the USA did not detect any heterozygous COQ2
mutations [102, 103]. Nevertheless, common and rare variants
of the COQ2 gene were associated with an increased risk for
the development of MSA [101-103]. Given these controver-
sial results for the role of the COQ2 locus in MSA, larger
cohort studies may help to define the genetic component in
MSA. Overall, there is an urgent need for identifying genetic
and/or environmental factors underlying MSA pathogenesis,
in particular, due to the lack of interventions for MSA patients.

Human Studies on Oligodendroglia and Myelin in MSA

Neurodegenerative changes in MSA involve predominantly
the striatonigral or olivopontocerebellar systems leading to
the clinical subtypes MSA-P (with predominant parkinson-
ism) and MSA-C (with predominant cerebellar features), re-
spectively [104, 105]. In MSA-P, atrophy and gray-greenish
discoloration of the putamen as well as loss of pigment from
the substantia nigra reflect the involvement of the striatonigral
pathway. Atrophy of the cerebellum, pons, and inferior olives
is observed in MSA-C brains. Lesions, however, are not re-
stricted to these anatomical regions but involve, in particular,
the autonomic nuclei within the spinal cord and brain stem
reflecting the broad spectrum of autonomic dysfunction ob-
served in MSA [106]. The neurodegenerative changes are
accompanied by white matter abnormalities in the aforemen-
tioned anatomical regions. Reduced myelin staining and MBP
protein levels were detected [107, 108]. Furthermore, patches
of degraded myelin were reported [109]. It is noteworthy to
point out that white matter changes are readily detected in
MSA patients during lifetime by employing DTI [110, 111].
Specifically, white matter abnormalities were detected in the
putamen and middle cerebellar peduncles [112-115].

In 1989, Papp and Lantos described the accumulation of
insoluble glial cytoplasmic inclusions (GCls) as the patholog-
ical hallmark of MSA. GClIs were primarily observed within
mature OLGs and were thus suggested to be causal for the
widespread myelin loss associated with both axonal and
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neuronal degeneration in MSA [108, 116]. Notably, the vast
myelin loss observed in MSA patients is not accompanied by
a severe loss in numbers of mature OLGs [117]. Alterations in
the glial compartment within the white matter, however, are not
restricted to oligodendroglial cells but include astrocytes and
microglia. For instance, the extent of reactive astrocytosis par-
allels the degree of neurodegeneration in the striatonigral and
olivopontocerebellar projections [104, 118, 119]. Furthermore,
activated microglia phagocytosing myelin are detected within
the white matter tracts and are closely associated with the dis-
tribution of GCIs [120]. Neuronal cytoplasmic inclusions
(NCIs) and neuronal nuclear inclusions (NNIs) are also present
in MSA, however, less frequently as GCIs [121]. After reveal-
ing GClIs in oligodendroglial cells as defining neuropathologi-
cal feature of MSA, Papp and Lantos linked the regional GCI
pattern to neurological deficits in MSA patients, suggesting that
GCI formation in OLGs is rather early and causally involved in
MSA pathogenesis [122, 123]. Further support for the pivotal
role of GClIs in the pathogenesis of MSA is derived from the
correlation of the anatomical distribution between GCls and
neurodegeneration [104, 124, 125]. Moreover, GCI load in-
creases with disease progression [104, 122, 125].

Three almost simultaneously published studies 10 years
after the initial description of GCIs revealed alpha-synuclein
as the main proteinaceous constituent of GCIs [126—128].
MSA shares the aggregation of alpha-synuclein as a major
pathological hallmark with PD and dementia with Lewy bod-
ies (DLB) leading to the classification of these diseases as
synucleinopathies [129]. Several additional proteinaceous
components of GCIs were defined (for an overview, see
Table 1); alpha-synuclein oligomers and fibrils, however,
form the central core of GClIs [152]. The group of Jensen
and colleagues described disturbances in the interaction be-
tween p25-alpha and one of the major myelin proteins, MBP,
in the brains of MSA patients as an early event during GCI
formation [109]. P25-alpha, also known as tubulin
polymerization-promoting protein due to its microtubule-
binding activity, is an OLG-specific phosphoprotein.
Although its exact function in the myelin sheath is still un-
known, p25-alpha expression begins along with MBP and is
thus considered as a marker for myelinating OLGs. An ubig-
uitous cytoplasmic relocalization of p25-alpha which usually
strongly interacts with MBP in the myelin sheath was detect-
ed. Concomitantly, MBP protein levels severely decreased,
indicating that p25-alpha redistribution induces demyelin-
ation. In addition, p25-alpha was shown to induce alpha-
synuclein aggregation and GCI formation [109, 153, 154].

Additional studies investigating OLG and myelin function-
ality support the notion of an early oligodendroglial and my-
elin involvement in MSA. Alterations in the lipid composition
restricted to affected regions in MSA brains were recently
reported [155]. In line, increased expression of the ATP-
binding cassette transporter 8 (ABCAS8) involved in lipid
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Table 1 Overview of proteins
and their major function identified Protein Main function/cellular process Reference
as components of glial
cytoplasmic inclusions in Alpha-synuclein Presynaptic vesicle release [126]
multiple system atrophy Cyclin-dependent kinase 5 (CDKS5) Cell cycle regulation [130]
Mitogen-activated protein kinase (MAPK) Signal transduction [130]
Midkine Neurotrophic factor [131]
Rab5 Endocytosis regulation [132]
Rabaptin-5 Endocytosis regulation [132]
P39 CDKS activator [133]
Elk1 Transcription factor [134]
Tau Microtubule associated protein [135]
14-3-3 proteins Signal transduction [136]
Clusterin/apolipoprotein J Several functions incl. apoptosis [137]
Synphilin-1 Alpha-synuclein interacting protein (SNCAIP)  [138]
Dorfin Protein degradation [139]
Small ubiquitin-like modifier (SUMO-1) Protein degradation [140]
Alpha B-crystallin Protein folding [141]
Negative regulator of ubiquitin-like Negative regulation of NEDDS§ [142]
proteins 1 (NUB-1)
Parkin co-regulated gene (PACRG) Regulation of cell death [143]
P25-alpha Tubulin polymerization [109]
DARPP32 Regulation of signal transduction [144]
HtrA2/Omi Apoptosis [145]
Protein disulfide isomerase (PDI) Protein folding [146]
Metallothionein-II1 Metal binding [147]
Gamma-tubulin Microtubule nucleation [148]
Histone deacetylase 6 (HDACG6) Tubulin deacetylation
208 proteasome subunits Protein degradation
Heat shock protein 70 (Hsp70) Protein folding
Heat shock protein 90 (Hsp90) Protein folding
62-kDa protein/sequestosome 1 (p62/SQSTM1)  Autophagy
NBRI Autophagy [149]
F-box only protein 7 (FBXO7) Ubiquitination [150]
X-linked inhibitor of apoptosis protein (XIAP)  Regulation of apoptosis [151]

transportation in OLGs of MSA patients favors a pivotal oli-
godendroglial dysfunction in MSA as overexpression of
ABCAS clevates alpha-synuclein and p25-alpha expression
[156]. Moreover, GCI-negative OLGs already display in-
creased activity of the endoplasmatic reticulum-associated un-
folded protein response [157]. The demonstration of altered
oligodendroglial nuclei in absence of GCls further indicates a
general oligodendroglial dysfunction preceding alpha-
synuclein aggregation and GCI formation. However, most
research focused on the pathogenic role of alpha-synuclein
in OLGs during MSA progression [158].

Biochemical and histological studies characterized modifi-
cations and solubility of alpha-synuclein demonstrating its
abundant alterations in the brains of MSA patients
[159-163]. For instance, the accumulation of nitrated alpha-
synuclein is observed in MSA, PD, and DLB, and thus, oxi-
dative modifications of alpha-synuclein appear to be common

in synucleinopathies [163]. Several groups aimed to decipher
the origin of abnormal alpha-synuclein accumulation in OLGs
of MSA patients. It is still a matter of debate whether alpha-
synuclein is pathologically overexpressed or taken up by
OLGs in MSA. Whereas some studies imply the absence of
elevated alpha-expression expression, various other reports
argue for an elevated alpha-synuclein expression in OLGs of
MSA patients [ 164—168]. It is important to note that mutations
or multiplications of alpha-synuclein gene are not detected in
MSA patients [169—171]. Polymorphisms within the alpha-
synuclein locus, however, are commonly observed in MSA
patients possibly explaining altered expression of alpha-
synuclein in OLGs of MSA patients [172, 173]. This contro-
versy is supported by studies in animal and cell culture models
providing explanations for both the exogenous and the endog-
enous origin of alpha-synuclein within OLGs of MSA patients
[174-181]. Considering these studies, it is reasonable to
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hypothesize that both autonomously expressed and taken up
alpha-synucleins contribute to the cellular phenotype ob-
served in MSA brains.

Although representing a potential cellular source for OLG
replacement, studies on OPCs in MSA patients are rare. Two
studies recently reported increased numbers of OPCs in MSA
patients [182, 183]. May and colleagues additionally demonstrat-
ed the presence of alpha-synuclein accumulation within a small
number of striatal OPCs [183]. Thus, alpha-synuclein accumu-
lation within precursor cells may disrupt OLG replacement and
myelin regeneration contributing to the profound myelin loss
observed in MSA. Summarizing the spectrum of imaging and
postmortem studies conducted in MSA patients, oligoden-
droglial and myelin dysfunction is a general feature occurring
early during pathogenesis or even being causal for MSA.

Preclinical Studies on Oligodendroglia and Myelin
in MSA

Because aggregated alpha-synuclein is the major constituent
of GCls, generation of preclinical in vivo and in vitro MSA
models targets alpha-synuclein expression. Until now, three
transgenic mouse lines have been generated, in which alpha-
synuclein overexpression in mature OLGs is achieved by driv-
ing expression under the control of different myelin gene pro-
moters, namely the 2',3'-cyclic-nucleotide-phosphodiesterase
(CNP) [184], the proteolipid protein (PLP) [185], and the
MBP promoter [186]. Independent of the promoter used for
oligodendroglial alpha-synuclein expression, typical patho-
logical hallmarks observed in MSA patients including motor
impairment and profound myelin loss are recapitulated in all
three models [184—186]. Dopaminergic cell loss in the
substantia nigra is observed in PLP and MBP mice, while
MBP-driven alpha-synuclein expression additionally leads to
a reduction of striatal neurons and tyrosine-hydroxylase-
positive fibers [185—187]. In contrast to motor dysfunction,
nonmotor symptoms including impaired olfaction as well as
cardiovascular and urogenital dysfunction are less mirrored in
transgenic mice [188—192]. In the PLP-driven model, howev-
er, oligodendroglial lesions and neuronal cell loss were recent-
ly described in multiple regions controlling autonomic func-
tions matching the occurrence of cardiovascular dysfunctions
in this model [189, 193].

The presence of axonal and neuronal cell loss, albeit being
far more moderate than observed in MSA patients, as well as
similarities to the neurological phenotype in oligodendroglial
alpha-synuclein mice, strengthens the view on a causal role of
oligodendroglia in MSA pathogenesis. Demonstrated in the
CNP model, oligodendroglial alpha-synucleinopathy also in-
duces neuronal alpha-synuclein aggregation by release of the
secretory protein cystatin C and, thus, potentially triggers neu-
rodegeneration in a direct manner [194]. Additional evidences
for a pivotal role of alpha-synuclein in MSA etiology are
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derived from distinct mouse lines expressing different levels
of alpha-synuclein under the control of the MBP promoter.
With increasing levels of alpha-synuclein overexpression, the
degree of myelin loss and striatal fiber integrity aggravates. A
high level of alpha-synuclein overexpression even causes pre-
mature death of transgenic mice resembling the fast disease
progression in MSA patients [186]. The involvement of OPCs
in MSA is also recapitulated in the MBP model as increased
numbers of newborn OPCs were recently described [183]. In
this study, the increased number of OPCs was concomitant with
a severe myelin loss. Since the numbers of mature OLGs were
not altered, this observation suggests a maturation deficit of
OPCs preventing OLG replacement and remyelination.

Several studies additionally triggered oligodendroglial dys-
function in transgenic mice overexpressing alpha-synuclein.
In order to analyze the contribution of proteolytic failure to
oligodendroglia linked pathology in MSA, Stefanova and col-
leagues systemically inhibited proteasomal activity in PLP-
driven alpha-synuclein transgenic mice. Triggered by in-
creased proteolytic stress, oligodendroglial alpha-synuclein
accumulation was enhanced, and myelin dysfunction and neu-
ronal cell death associated with an altered motor phenotype
were detected supporting the increased vulnerability of OLGs
in MSA [195]. An early involvement of proteolytic failure in
OLGs during MSA pathogenesis is further supported by
in vitro evidences for altered autophagic and proteasomal
functionality in OLGs upon alpha-synuclein expression
[196]. In line, by enhancing oxidative modifications of
alpha-synuclein using the mitochondrial inhibitor 3-
nitropropionic acid (3NP), neuropathology and neurological
deficits exacerbated in both the PLP- and the MBP-driven
transgenic MSA model implying increased susceptibility of
alpha-synuclein-bearing OLGs toward oxidative stress [187,
197]. In cultured OLGs, alpha-synuclein aggregation was pro-
moted under oxidative conditions, while increased intracellu-
lar alpha-synuclein per se exerted no toxic effect [198-201].
In line, OLG overexpressing alpha-synuclein only underwent
apoptosis when co-expression of p25-alpha triggered alpha-
synuclein aggregation [202, 203]. Sole overexpression of
alpha-synuclein does not promote apoptosis during dif-
ferentiation of cultured OPC [174]. Additionally, reduced pro-
duction of reactive oxygen species using selective inhibition
of the myeloperoxidase resulted in a profound attenuation of
alpha-synuclein pathology, motor impairment, and neurode-
generation [204]. Interestingly, while 3NP injections in wild-
type mice caused neuropathological alterations mimicking
MSA pathology, alpha-synuclein knockout mice were resil-
ient toward 3NP-induced pathology [205, 206]. These studies
imply that alpha-synuclein accumulation and oxidative stress
are concomitantly involved in MSA pathogenesis. The selec-
tive vulnerability of oligodendroglial cells toward oxidative
stress may be partially explained by their extraordinary meta-
bolic requirements for myelin maintenance [207].
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Ubhi and colleagues aimed to decipher the contribution of
neurotrophic support provided by OLGs for neurodegenera-
tion in the MBP model for MSA. A specific reduction in
oligodendroglial-derived GDNF levels was described in
MBP mice, while BDNF and insulin-like growth factor-1
levels were similarly reduced in mice expressing alpha-
synuclein under neuronal promoters. Restoration of GDNF
levels either upon intracerebroventricular infusion or mediated
by fluoxetine administration attenuated neurodegeneration,
suggesting that reduced trophic support by OLGs significantly
contributes to axonal and, ultimately, neuronal degeneration in
MSA [208, 209].

Despite the recognition of distinct pathological aspects
linked to alpha-synuclein and OLGs in MSA as well as the
generation of preclinical models suitable for testing therapeutic
interventions, modeling MSA-like pathology by using myelin
gene promoter-driven alpha-synuclein expression bears certain
limitations. As the currently used MSA mouse models consti-
tutively express human alpha-synuclein, developmentally
expressed alpha-synuclein may profoundly contribute to the
pathology observed in transgenic mice limiting the validity of
interpretations drawn in such studies. Supporting this view,

alpha-synuclein is transiently upregulated during development
of cultured OLGs [180]. Moreover, two recent studies highlight
the detrimental impact of intracellular alpha-synuclein on OPC
maturation [174, 183]. In two independent cell culture models,
alpha-synuclein overexpression dramatically impaired the mat-
uration of the OPC-like central glia-4 (CG4) cell line and pri-
mary rat-derived OPCs demonstrated by reduced upregulation
of MBP protein during maturation. Decreasing the level of
intracellular alpha-synuclein, however, restored the maturation
potential of primary OPCs indicating a tight link between
alpha-synuclein and OPC differentiation [174]. Given this in-
terference of alpha-synuclein with OPC maturation, it would be
important to establish transgenic mouse lines conditionally ex-
pressing alpha-synuclein in order to better model MSA as an
age-related neurodegenerative disorder. In fact, the observation
of increased OPC numbers, the presence of alpha-synuclein
accumulation within a subset of striatal OPCs in MSA patients,
and the interference of alpha-synuclein with OPC maturation
suggest that not only mature OLGs are affected in MSA de-
manding the generation of transgenic models expressing alpha-
synuclein controlled by more immature oligodendroglial pro-

moters, e.g., PDGF receptor alpha [174, 182, 183].

Table2 Pathological alterations detected in or associated with (A) oligodendrocyte progenitor cells, (B) oligodendrocytes, and (C) myelin in multiple

system atrophy and its preclinical models

A. Oligodendrocyte progenitor cells (OPCs)
Alpha-synuclein accumulation in OPCs
Increased numbers of OPCs

Impaired maturation of alpha-synuclein-expressing OPCs

B. Oligodendrocytes (OLGs)
GClIs
Alpha-synuclein as major GCI component
Modification and insolubility of alpha-synuclein
Correlation between GCls distribution and neurodegeneration
Moderate loss of OLGs

Increased activity of unfolded protein response
Altered morphology of oligodendroglial nuclei
Autophagic and proteasomal dysfunction
Increased vulnerability toward proteolytic stress

Increased vulnerability toward oxidative stress

Reduced neurotrophic support

C. Myelin
Mpyelin loss

Altered lipid composition
Altered expression of lipid transport proteins
Protein redistribution

System/tissue Reference
Human: postmortem [183]

Human: postmortem [182, 183]

In vivo: MBP model [183]

In vitro: primary and permanent cells [174, 183]
System/tissue Reference
Human: postmortem [66, 108, 116]
Human: postmortem [126-128, 152]
Human: postmortem [159-163]
Human: postmortem [104, 122-125]

Human: postmortem
In vivo: CNP and PLP models
Human: postmortem
Human: postmortem

[117]
[184, 193, 195]
[157]
[158]

In vitro: primary cells [196]

In vivo: PLP model [195]

In vivo: MBP and PLP models [192, 197, 204-206]
In vitro: primary and permanent cells [198-201]

In vivo: MBP model [208, 209]
System/tissue Reference

Human: postmortem, diffusion tensor imaging [107-115]

In vivo: MBP, and CNP, PLP models [183, 184, 186, 195]
Human: postmortem [155]

Human: postmortem [156]

Human: postmortem [109]
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Impact of Oligodendroglial and Myelin Dysfunction
for MSA Etiology and Progression

Our current concept on MSA pathogenesis mainly derives
from human studies using postmortem brain tissue and pre-
clinical in vitro and in vivo approaches modeling MSA using
forced alpha-synuclein expression. The collection of the
aforementioned studies (for an overview, see Table 2) shaped
our view on MSA assuming a primary oligodendrogliopathy
underlying MSA etiology and progression [210]. While con-
clusions drawn after postmortem analyses in human brains are
usually limited to observations on end-stage MSA pathology,
experimental models help us to better understand distinct as-
pects of disease pathogenesis. The pathological sequence il-
lustrated in Fig. 1 summarizes clinical and preclinical data
discussed in the present review. Nevertheless, this detrimental
cascade described below is still incomplete and may be spec-
ulative to some extent.

Compared to healthy controls (Fig. 1a), MSA brains are
characterized by a profound myelin and neuronal cell loss
accompanied by a severe inflammation such as widespread
astrogliosis and microgliosis (Fig. 1d) [117, 211].
Additionally, OPCs contribute to MSA pathology as recent
studies demonstrate the presence of alpha-synuclein accumu-
lation within OPCs and increased OPC numbers in MSA pa-
tients. Experimental evidences suggest that OLGs are dys-
functional early or even initially during MSA pathogenesis
(Fig. 1b). This dysfunction may be related to an increased

vulnerability of OLGs toward environmental factors (for ex-
ample, oxidative and proteolytic stress) due to a distinct ge-
netic predisposition. Subsequently, disturbed protein homeo-
stasis within OLGs leads to myelin dysintegrity and the for-
mation of insoluble GCIs consisting mainly of aggregated
alpha-synuclein causing demyelination. Neuroinflammation
was observed as a consequence of alpha-synuclein overex-
pression and OLG/myelin dysfunction in MSA mouse models
(Fig. 1c) [186, 212, 213]. Triggered by these inflammatory
processes and the recently described deficiency in OPC mat-
uration and putatively in remyelination, OLG dysfunction and
myelin loss lead to axonal and neuronal degeneration
representing the ultimate pathological correlate for the severe
clinical phenotype observed in MSA patients.

Concluding Remarks

In the present review, we highlight the growing understanding
on OPCs and OLGs in the context of neurodegenerative dis-
eases. In concert with other glial cells, the contribution of
OLGs and their progeny to the widespread axonal and neuro-
nal degeneration is more and more recognized. We aimed to
illustrate that oligodendroglial dysfunction is observed in sev-
eral neurodegenerative diseases, however, being extraordinary
in MSA. In this synucleinopathy characterized by its fast and
deleterious disease course, the importance of OPCs, OLGs,
and myelin for maintaining and supporting neuronal

Models
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Fig. 1 Schematic illustration of the putative pathological sequence
underlying MSA pathogenesis. a The cellular composition of the
healthy human central nervous system is depicted. b Dysfunction of
myelinating oligodendrocytes with subsequent alpha-synuclein
aggregation and glial cytoplasmic inclusion formation is considered as
the primary pathological event in MSA. ¢ Oligodendrocytic dysfunction
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and myelin loss induce reactive microgliosis and astrogliosis mediating
neuroinflammatory processes. Alpha-synuclein accumulation is also
observed in oligodendrocyte progenitors preventing replacement of
dysfunctional oligodendrocytes. d Ultimately, severe axonal and
neuronal degeneration is observed in the central nervous system of end-
stage MSA patients
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circuitries is evident. Thus, MSA represents a model disease
as well as a platform to study the detrimental consequences of
oligodendroglial failure for neuronal functionality and sur-
vival. Future studies addressing the pathophysiology of
OPCs/OLGs and myelin in different neurodegenerative dis-
orders will broaden our understanding of these diseases and
potentially open novel avenues for interventional strategies.
As OLGs are the only adult cell population with a widespread
and proliferative progenitor population, promoting OLG re-
placement and remyelination may be a promising therapeutic
target. In similarity to the extensive efforts already undertaken
in the context of MS, enhancing OLG and myelin regenera-
tion in MSA and other neurodegenerative diseases including
AD and ALS may support axonal and neuronal maintenance
and, thus, attenuate or even halt disease progression.
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