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Abstract Extracellular vesicles (EVs), including exosomes,
microvesicles and apoptotic bodies, participate in intercellular
communication, and particularly, in paracrine and endocrine
signalling. The EVs and their specific contents have been
considered hallmarks of different diseases. It has been recently
discovered that EVs can co-transport nucleic acids such as
DNAs, ribosomal RNAs, circular RNAs (circRNAs), long
noncoding RNAs (lnRNAs) and microRNAs (miRNAs).
miRNAs are important regulators of gene expression at the
post-transcriptional level, although they may also play other
roles. Recent evidence supports the hypothesis that miRNAs
can activate Toll-like receptors (TLRs) under certain circum-
stances. TLRs belong to amultigene family of immune system
receptors and have been recently described in the nervous
system. In the immune system, TLRs are important for the
recognition of the invading microorganisms, whereas in the
nervous system, they recognise endogenous ligands released

by undifferentiated or necrotic/injured cells. In the neuronal
disease field, TLRs activity has been associated with amyo-
trophic lateral sclerosis (ALS), stroke, Alzheimer’s and
Parkinson’s disease. Herein, we reviewed the current knowl-
edge of the relationship between miRNA release by EVs and
the inflammation signalling triggered by TLRs in
neighbouring cells or during long-distance cell-to-cell com-
munication. We highlight novel aspects of this communica-
tion mechanism, offering a valuable insight into such path-
ways in health and disease.
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Introduction

To defend themselves against injuries or diseases, organisms
provide ordered responses. For maintaining homeostasis, cells
should be in constant communication. Three different ways of
cellular communication are widely used in the nervous sys-
tem. The best-known method is signal transmission via chem-
ical synapses, initiated by the release of neurotransmitters. The
second mechanism, attracting increasing attention in the re-
cent years, is the cell coupling provided by gap junction chan-
nels [1–4]. The third form of communication is paracrine sig-
nalling, which encompasses several distinct mechanisms [5,
6]. Recent evidence suggests that the extracellular vesicles
(EVs), including exosomes, microvesicles and apoptotic bod-
ies, could be the fourth form of communication, ensuring
short- and long-range exchange of information [7–10].
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EVs and Transport of miRNAs

EVs are small lipid-membrane microvesicles (30–100 nm in
diameter), found in prokaryotic and eukaryotic cells [11]. The-
se vesicles originate from different cellular compartments
such as membranes or endosomes, and are secreted into the
extracellular medium [10, 12, 13]. The endosomes containing
EVs move along microtubules to fuse with the plasma mem-
brane and then release their microvesicles [14].

In the central nervous system (CNS), neurons, microglia,
astrocytes and oligodendrocytes secrete microvesicles into the
extracellular environment. Exosomes have been isolated from
primary cultured neurons in vitro [15, 16].

EVswith different sizes, contents and fromdifferent sources
can freely move through extracellular medium and are fre-
quently found in diverse corporal fluids. EVs have been detect-
ed in the blood [17], urine [18], sweat [19], interstitial liquid,
lung fluid [20], semen [21], colostrum [22] and saliva [23].
Notably, EV contents in the blood of cancer patients have been
used as an indicator of metastasis [7]. The encapsulation of
molecules in EVs enhances the protection against degradation
and dilution in the extracellular space, allowing long-distance
delivery through the bloodstream or interstitial fluid [17].

Interaction of EVs with target cells under physiological
conditions is not well understood. Most of the empirical evi-
dence has arisen from in vitro studies. According to recent
data, EV functions may be executed in three distinct modes
of action: (i) internalisation by target cells and cargo retrieval,
(ii) binding to the cell surface and triggering second messen-
ger pathways and (iii) releasing the components into the ex-
tracellular matrix [24].

Neuronal EVs are predominantly distributed within the
somatodendritic compartment, where they are 50 times more
abundant than in the axons [25]. It is well known that EVs can
transport proteins and lipids [26]. It has been recently discov-
ered that EVs could shuttle noncoding nucleic acids such as
genomic DNAs [27], ribosomal RNAs (rRNAs), circular
RNAs (circRNAs), long noncoding RNAs (lnRNAs) and
microRNAs (miRNAs) [28].

Several research groups have shown a close relationship
between apoptosis process and the release of exosomes-
containing miRNA [29, 30]. Studies about adipose tissue-
derived from MSCs characterised the mRNA and miRNA
cargo of EVs. Factors involved in functions associated with
alternative splicing, apoptosis, and chromosome organization
were found in released EVs. Furthermore, four miRNAs that
target transcription factors, as well as genes that participate in
several cellular pathways, including apoptosis and proteolysis
were also described [31].

It was recently proposed that some of the miRNAs are
expressed at higher levels in the exosomes than in the cells.
In fact, around 30 % of released miRNAs do not reflect the
pool of miRNAs in the source cell, suggesting that miRNA is

not distributed randomly and particular sequences are selected
to occupy a specific cellular microenvironment [32, 33].

Control of miRNA Specificity: New Players
on the Block

miRNAs are small noncoding RNAs of approximately 18–21
nucleotides. They are important post-transcriptional regulators
of gene expression, acting at the level of mRNA, usually pro-
moting its destabilization or decreasing the translation rate
[34–36]. These short oligonucleotides are evolutionarily well
conserved and are involved in many aspects of the biology of
metazoans, from viral infection and replication [37] to cell
proliferation, differentiation [38] and apoptosis [39]. The
number of miRNAs encoded in the genomes varies from a
few to around a thousand in mammals [40, 41]. Computation-
al predictions and genome-wide identification of miRNA tar-
gets estimate that each miRNA regulates hundreds of different
mRNAs, suggesting that approximately 50 % of the human
transcriptome is subject to miRNA regulation [42, 43]. Most
miRNAs are processed from longer hairpin transcripts by the
consecutive actions of the RNase III-like enzymes Drosha and
Dicer [44]. One strand of the hairpin duplex is loaded into an
Argonaute-family protein to form the core of miRNA-induced
silencing complexes (RISCs). RISCs silence the expression of
target genes, predominantly at the post-transcriptional level
[43–45].

The specificity of miRNAs towards mRNAs depends on
the concentrations of both molecule types [46]. The copy
number of a particular miRNA depends not only on the bio-
synthesis level, but also on the balance of stability and degra-
dation. Some recent studies have described the participation of
an atypical RNA polymerase PAPD4 and exoribonuclease
XRN2 [47–50] in miRNA stability and degradation,
respectively.

It has been suggested that miRNAs move between cells of
the same organism via gap junction channels [51–53],
exosomes [32, 54], apoptotic bodies [55] and in the synaptic
cleft, coupled to the enzyme Argonaute 2 [56]. Migrating
miRNAs are apparently stable and retain their activity in the
target cells [57]. Figure 1 reviews the general mechanism of
miRNA formation, maturation and uptake into exosomes.

Defective biogenesis or function of miRNAs have been
identified under various physiological and pathological con-
ditions, e.g., in neurodegeneration and autoimmunity disor-
ders [58]. Several miRNAs are considered to belong to a new-
ly defined class of mediators of inflammation [59, 60]. A
correlation between miRNA-146a levels and the regulation
of Toll-like and interleukin-1 receptor signalling and the con-
sequent impact on immunity has been reported; it supports
this hypothesis [61, 62].
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New Insights Into TLR Pathways and Their
Activation

Several roles of TLRs have recently been postulated. These
receptors are classified as type I membrane-glycoproteins,
mediating adaptive immune responses in the defence against
pathogens [63–65]. The Toll gene was first described in Dro-
sophila melanogaster [66]. Since then, 13 members of the
TLR family have been described in mice and 11 in humans
[67, 68]. As illustrated in Fig. 2, TLRs1-2, TLRs4-6 and
TLRs11-13 proteins are localized on the cell surface, whereas
TLR3 and TLRs 7–9 accumulate in the endosome or lyso-
some compartments and in the endoplasmic reticulum (ER)
as shown in Fig. 3 [69]. Several cell types related to the im-
mune system express TLRs, such as B-lymphocytes [70],
mast cells [71], natural killer cells [72], T-lymphocytes [73],
macrophages, monocytes, neutrophils [74], basophils and ep-
ithelial [75] and endothelial cells [76].

During the last decade, these receptors were found in dif-
ferent neural cells. Protein profiles for TLRs 3, 4, 7 and 9 were
documented in human neuronal cells [77, 78], whereas TLRs
2–4, 6–8 and 11–13 were detected in murine neurons [78–81].
TLR2 protein has been detected only in human oligodendro-
cytes [82]; however, expression of TLRs 2–4 has been report-
ed in murine oligodendrocytes [83–85]. Human astrocytes
show TLR3- and TLR4-specific protein expression [86, 87],
whereas TLRs2–5 and TLR9 have been detected in murine
astrocytes [85, 88, 89]. Human microglia expresses TLR1–4

proteins [86, 87, 90], and murine microglia expresses TLR2, 4
and TLR9 proteins [83, 91, 92].

The extracellular domain of TLRs contains leucine-rich
repeat motif that recognises conserved pathogen-associated
molecular patterns (PAMPs) of a broad spectrum of infectious
agents such as bacteria, viruses, yeasts, fungi and parasites
[63]. TLR1 and TLR6 form heterodimers with TLR2, which
can discriminate between triacylated and diacylated lipopro-
teins. TLR2 and TLR4 also form oligomers which interact
with microbial motifs like peptidoglycan (PGN), lipoproteins
and lipopolysaccharide (LPS) [93]. TLR5 is known for sens-
ing flagella of motile bacterial species. TLRs 3 and 7–9 rec-
ognise intracellular pathogen-derived nucleic acid motifs,
double-stranded RNA (dsRNA), single-stranded RNA
(ssRNA) and DNA delivered to the intracellular compart-
ments after the uptake of viruses, other pathogens or infected
cells [94]. TLR9 recognises non-methylated CpG motifs of
bacterial and viral DNA; TLR11 respond to pathogenic bac-
teria such as uropathogenic E. coli, as well as a profilin-like
protein from the parasite T. gondii. However, respective
PAMPs for TLR10, 12 and 13 are still unknown [95–97].

Apart from PAMP detection, recently reported evidence
has disclosed that another class of molecules may trigger
TLRs. TLRs in the CNS are activated by endogenous ligands
released by necrotic cells in injured or stressed tissues [98, 99].
Some of these released molecules act as pro-inflammatory
factors, and are also known as damage-associated molecular
patterns (DAMPs). β-defensin 2, heat shock protein (HSP)

Fig. 1 microRNA (miRNA) biogenesis pathway and exosome uptake. a
miRNAs are generated when primary miRNAs (pri-miRNA) are
transcribed by RNA polymerase II and cleaved by microprocessor (blue
arrows), a multi-protein complex formed by Drosha and Pasha/DGCR8.
This process generates a hairpin structure with approximately 70
nucleotides, known as pre-miRNA. Within neuronal nuclei, pri- and
pre-miRNA may be stabilized by 3′-terminal adenylation performed by
PAPD4. Exportin 5 transports both pri- and pre-miRNAs to the
cytoplasm. In the cytoplasm of the neuronal soma, pre-miRNA is

cleaved by Dicer, producing an RNA duplex whose strands are
separated, and one of them is incorporated into the RNA-induced
silencing complex (RISC, green arrows). b Alternatively, pri-miRNAs
andmiRNA processing proteins, such as Drosha andDGCR8/Pasha, may
be assembled with proteins of RNA transport granules. These molecules
are then transported to specific neuronal compartments, where mature or
precursor miRNAs are enveloped in vesicles or exosomes to be released
elsewhere
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60, HSP70, high-mobility group protein B1 (HMGB1), ox-
ygen radicals and urate crystals are considered DAMPs for
associated TLR1/2 and/or TLR2/6, the TLR proteins that
form oligomers [100]. The ssRNA acts as DAMP for
TLR3 [101]. Similarly, β-defensin 2, HSP60, HSP70,
HSP72, HMGB1, fibrinogen/fibrin, surfactant protein, mini-
mally modified LDL (cholesterol) and pancreatic elastase
activate TLR4. An RNA-immune complex was identified
as DAMP for TLR7 and 8, whereas CpG chromatin-IgG
complexes, the DNA immune complexes, are possible li-
gands for TLR9 [101–104]. The association of TLRs with
their specific PAMPs or DAMPs leads to receptor activation
and initiation of the cascade of intracellular signalling, cul-
minating with NF-κβ activation and changes in gene
expression.

Several adapter proteins containing Toll-interleukin-1
(TIR) domain associate with TLRs when activated. Most of
the TLRs are coupled with myeloid-differentiation factor 88
(MyD88), similar to MyD88 adapter. TLR3 is an exception; it
is the only TLR coupled with an adapter-inducing IFNβ of the
TIR domain (TRIF) [105, 106]. The binding of these proteins
triggers the signalling cascade that leads to activation of nu-
clear factor kappaβ (with NF-κβ). As a result, genes encoding

pro-inflammatory tumour cytokines, such as tumour necrosis
factor (TNF), interleukin 1 (IL-1), IL-6, IL-8, IL-12 and
chemokines, are overexpressed. Although cytokine produc-
tion is critical for host defence, it can also lead to irreversible
tissue damage [107].

Some new data suggest that miRNAs regulate the TLR-
signalling pathway at several steps, including the regulation
of TLR mRNA expression, direct activation of the receptor,
binding to TLR or TLR-specific signalling pathway compo-
nents and TLR-induced transcription factors and functional
cytokines [97, 101–104, 108].

Since miRNAs are short single-stranded RNA molecules,
they can mimic viral RNA, and consequently, bind directly to
TLRs. It has been reported that in the immune system, the
natural killer cells (NK) can detect miRNAs via TLR1 activa-
tion [109, 110]. Specific miRNA sequences in miR-122 and
miR-15b have been identified as ligands of TLR1 that can
activate the transcription factor NF-κβ. The adapter proteins
interleukin-1 receptor-associated kinase 1 (IRAK1) and TNF
receptor-associated factor 6 (TRAF6) are important compo-
nents of the myeloid-differentiation primary response gene
(MYD88)-dependent pathway. MYD88 is an adapter protein
used by almost all TLRs (except TLR3) to activate NF-κβ.

Fig. 2 Neural cell types and their Toll-like receptor (TLR) expression. a
Different nervous system resident cells express Toll-like receptors.
Protein profile for TLR 3, 4, 7 and 9 has been documented in different
neural phenotypes from humans, whereas protein profile for TLRs 2–4,
6–8 and 11–13 has been reported for murine neurons. In human
oligodendrocytes, only TLR2 protein is detected; however, TLRs 2–4
are found in murine oligodendrocytes. Human astrocytes show TLRs
3–4 protein accumulation, whereas TLRs 2–5 and 9 are detected in
murine astrocytes. Human microglia contains TLR1–4, whereas murine
microglia has a specific TLR2, TLR4 and TLR9 protein profile. b In the
cellular membrane, TLR1/TLR2 and TLR2/TLR6 form oligomers and
are associated with adapter proteins containing Toll-interleukin-1 receptor
(TIR) domain. TLRs activate protein adapters such as TIR-domain-
containing adapter protein (TIRAP), myeloid-differentiation primary

response gene 88 (MyD88) and, consequently, interleukin-1 receptor-
associated kinase (IRAK). TRLs also activate TNF receptor-associated
factor (TRAF)-6 adapters, leading to the activation of TRAF-family-
member-associated nuclear factor-ΚB (NF-κβ) activator (TANK)-
binding kinase-1 (TBK-1) and Iκ-B kinase (IKK), ending with the
activation of NF-κβ and release of cytokines. TLR4 forms oligomers
with another TLR4 and is associated with TIRAP, MyD88 and IRAK
proteins or translocating chain-associated membrane protein (TRAM),
TIR-domain-containing adapter-inducing interferon-β (TRIF) and
TRAF6, to activate the NF-κβ pathway or the map kinase (MAPK)
pathway via p38 and c-Jun N-terminal kinase (JNK), leading to
activation of neuroprotective transcription factors (AP-1). TLRs 5, 11,
12, and 13 form homo-oligomers. Their specific signalling pathways
have not been determined

Mol Neurobiol (2016) 53:2016–2028 2019



IRAK1 and TRAF6 are also targets of miR-146. Taganov
et al. have suggested that miR-146 downregulates the signal-
ling pathway MyD88/NF-κβ after microbial infection [61,
111]. miR-155 controls the expression of inhibitor of NF-κβ
kinase subunits beta (IKKβ) and epsilon (IKK ), reducing
NF-κβ activity [112].

However, it has been recently discovered that TLRs 7–9
recognise specific miRNAs as agonists in the CNS. For ex-
ample, miRNA let-7 is an abundant regulator of gene expres-
sion, highly expressed in microglia cells and in neurons,
which interacts with TLRs [29]. miRNA-21 and 29a have
been also described as agonists of TLRs 7–8 in rat and human
macrophages. The binding of these miRNAs to TLRs induces
the secretion of TNF-α and IL-6, leading to the activation of
NF-κβ signalling and secretion of pro-inflammatory cyto-
kines [113]. Besides secretion of cytokines, the regulation of
TLR signalling by miRNAs occurs at different levels. Various
molecules involved in the TLR pathway are targeted, such as
TLR-signallingmolecules, TLR-induced transcription factors,
regulators of the TLR-signalling pathway and the expression
of TLRs themselves [97, 114].

Considering the role of TLRs and assuming that exosomes
carry miRNAs, we can hypothesise that miRNAs are signal-
ling molecules with important functions in NS diseases
(Fig. 3) [115].

miRNAs Activating TLRs in Neurological Diseases

Neurological diseases, including Alzheimer’s disease (AD),
Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS),
are characterised by neuronal cell loss. These diseases are ex-
pected to become more common due to extended life expec-
tancy. Despite significant research efforts, the primary causes of
neurodegeneration remain largely unknown. It has been
recognised that these disorders emerge as a result of different
genetic programming and environmental influences [116].

miRNAs have been associated with pathological alter-
ations during the course of many neurological diseases, in-
cluding AD, PD, ALS and stroke, suggesting that miRNAs
may be a contributing factor in neurodegeneration [116]. It has
been recently reported that miRNA levels are altered in the
blood of AD, PD, ALS and stroke patients. These small RNAs
may be used as biomarkers to enable an early diagnosis and
identify new therapeutic targets [117].

It is not clear whether inflammation in the CNS contributes
to the progress of neurological diseases. However, increasing
evidence highlights the participation of TLR-dependent path-
ways in neuronal diseases [118]. Neuroinflammation is ob-
served as consequences of trauma, infections, tumours and
neurodegenerative diseases and involves microglia, pericytes
and reactive astrocytes as well as T-lymphocytes,

Fig. 3 Long-distance cell–cell communication: microRNAs (miRNAs)
and Toll-like receptors (TLRs). a Neurons and glial cells can release
exosomes to the extracellular space. These exosomes could shuttle
proteins and miRNAs for long distances via the blood vessels or act in
the neighbouring cells. b In both types of cells, miRNAs are previously
enveloped in exosomes or vesicles in order to be released. c When the
vesicles fuse with the cell membrane, their content binds to the endosome
TLRs. TLR3, TLR7, TLR8 and TLR9 oligomerise with the same
receptors. TLRs 7–9 couple with myeloid-differentiation primary

response gene 88 (MyD88), which activates interleukin-1 receptor-
associated kinase (IRAK) and TNF receptor-associated factor (TRAF6).
These processes culminate in the activation of the nuclear factor-κβ (NF-
κβ). The TLR3 is coupled with TIR-domain-containing adapter-inducing
interferon-β (TRIF), which activates TRAF3 and receptor-interacting
serine-threonine kinase RIP1 protein, leading to apoptosis. Our
hypothesis is that these TLRs could recognise mature miRNAs,
triggering inflammatory signalling under various conditions, including
neurogenesis and diseases
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macrophages and dendritic cells crossing the brain-blood bar-
rier, which is damaged in the inflamed brain (reviewed in
[119]). Innate immunity providing an onset of the inflamma-
tory response involves the actions of TLRs and the liberation
of pro-inflammatory cytokines. Short neuroinflammatory re-
sponses are considered to be neuroprotective and may contrib-
ute neuronal development; however, when persisting they re-
sult in neurodegeneration [120]. In this regard, crucial func-
tions may be attributed to endogenous miRNAs as ligands of
TLR-promotion of neuroinflammation, as these are responsi-
ble for fine-tuning activity levels of TLRs and subsequent
kinetics of innate immune response.

In agreement with the hypothesis of a chronic
neuroinflammatory process, the involvement of TLR activa-
tion has been documented in AD [29, 121], PD [121, 122],
ALS [123] and stroke [124]. The analysis of EVs is now an
increasingly popular topic in the field of neurodegeneration;
these vesicles may transport pathogenic proteins such as
alpha-synuclein (α-syn) and amyloid precursor protein
(APP) that are involved in PD and AD, respectively.

Alzheimer’s Disease

AD is the most common cause of dementia in the modern
world [125]. The main characteristics of the disease are the
accumulation of extracellular senile plaques (composed of
amyloid-β peptide, Aβ), intracellular neurofibrillary tangles
(NFTs) containing hyperphosphorylated tau protein, activated
microglia, astrocytes and degenerating neurons [126].

Several appraisals of AD pathogenesis have revealed that
the catabolism of APP occurs in the endosome; the pathogenic
proteins, such as Aβ and tau, are secreted from the exosomes
into the extracellular space [127–129]. TLR2, 4 and 9 are
overexpressed in an animal model of AD [130]. These recep-
tors could be activated by Aβ as they mediate the microglial
inflammatory response and are associated with Aβ-plaque
clearance from the brain [131–133].

Studies using blood samples from AD patients have iden-
tified 60 miRNAs differentially expressed in these patients
in comparison with healthy individuals [134, 135]. miR-191
has a regulatory role in cellular processes such as cell pro-
liferation, differentiation, apoptosis and migration; it targets
important transcription factors, chromatin remodellers and
cell cycle-associated genes [136]. It is likely that this
miRNA is a key player in the initiation and progression of
several diseases.

Type III RNase Dicer enzyme is responsible for the
maturation of miRNA. Aberrant expression or malfunction
of this regulator in adult forebrain impairs the expression of
several miRNAs, ultimately causing pathological
hyperphosphorylation of NFT-forming tau protein, leading
to neuronal death [137].

The levels of miRNA let-7 are enhanced in AD patients. It
has been suggested that let-7 activates the RNA-sensing
TLR7, and thus, induces neurodegeneration in these patients
[29]. The results of experiments with TLR7-KO mice have
shown that these mice are resistant to neurodegenerative fac-
tors [29]. It is not clear how the let-7 miRNA reaches the
endosome TLR7 receptor in the CNS. However, studies of
the metastatic gastric cancer have revealed that let-7 miRNA
is secreted into the extracellular environment via exosomal
transport [133].

Inflammation has been held responsible for many neuro-
logical diseases as it increases cell damage and causes neuro-
nal death. Further studies of the receptors associated with the-
se processes and molecules triggering the inflammation are
necessary to understand these serious disorders.

Parkinson’s Disease

PD is characterised by a selective degeneration of dopaminer-
gic neurons in the substantia nigra pars compacta (SNpc)
with various symptoms affecting the motor system such as
tremor, stiffness, bradykinesia and postural instability [138].
The cellular hallmark of PD is the accumulation of proteina-
ceous intracellular inclusions termed Lewy bodies (LB), pri-
marily composed of fibrillar alpha-synuclein (α-syn) and
ubiquitinated proteins, in the surviving neurons [139].

The aggregation of α-syn activates microglia, increasing
dopaminergic neurotoxicity [140, 141]. However, the precise
molecular mechanism of the process is still unclear. Increased
secretion of exosomes is one mechanism for α-syn action.
These activated exosomes express a high level of major his-
tocompatibility complex (MHC) II and TNF-α, which then
promote apoptosis in the recipient cells [142]. α-syn can also
be encapsulated in exosomes released by neuroblastoma and
cause neuronal cell death [129].

Some cancer studies report that protein-transporting
exosomes can also transport miRNAs [117]. The levels of
miR-205, miR-184 and let-7 are correlated with the expres-
sion ofα-syn and leucine-rich repeat kinase2 (LRRK2), coded
by the two main genes associated with PD [143]. A recent
report has also indicated that let-7 represses the expression
ofα-syn and is downregulated in PDmodels [144]. Increasing
evidence suggests the existence of a close relationship be-
tween PD and TLRs. It has been recently shown that extracel-
lular α-syn increases the expression of TLR1, TLR2, TLR3
and TLR7 [145, 146].

Recent studies have described TLR2 as an endogenous
receptor for α-syn that is released from damaged neurons,
responsible for microglial activation observed in PD [121].
However, TLR4-KO mice are less vulnerable to 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication than
wild-type mice. After MPTP administration, these TLR4-
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KO animals also have fewer ionised calcium-binding adaptor
molecules 1 (Iba1)+ and MHC II+ activated microglial cells
and lower levels of microglia/macrophage-specific calcium-
binding protein. These results suggest that the TLR4 pathway
is involved in PD [108].

The available experimental evidence points to a close rela-
tionship between EVs release, miRNA and TLR signalling in
PD. However, further studies in this area should be conducted
to clarify the specific roles of these molecules in this disease.

Amyotrophic Lateral Sclerosis

ALS is a chronic neurodegenerative disease, characterised by
progressive loss of motor neurons, leading to muscle atrophy,
paralysis and death usually within 3 to 5 years after diagnosis
[147]. Several studies have demonstrated the involvement of
non-neuronal cells in ALS pathogenesis, including microglia
and astrocytes, increasing the release of superoxide dismutase
1 (SOD1), nitrate and nitrite [148].

SOD1 is secreted via exosomes frommouse motor neuron-
like (NSC-34) cells overexpressing the wild-type and a mutant
enzyme, used as in vitro model for ALS [149]. It has been
demonstrated that exosomes cargo may include several differ-
ent classes of molecules [32]. As we have previously men-
tioned, in addition to SOD1, exosomes may transport
miRNAs. Several miRNAs such as miR-146b, miR-29b, let-
7a/b, miR-27b, miR-21, miR-210 and miR-155 have their
expression upregulated in ALS [150, 151]. Furthermore, the
levels of miR-9 are enhanced in this disease in the ventral horn
of the spinal cord, the locus of neurodegeneration [152].
Among those miRNAs, miR-155, miR-146b and miR-125b
are typical components of the innate immune system, and
most of them converge in NFΚB-mediated immune cell re-
sponse [151].

The aetiology and pathogenesis of ALS still remain un-
clear, although available evidence suggests that inflammation
plays a critical role in this process [153]. Studies of high ex-
pression of SOD1 in mice have shown elevated levels of
TLR1, 2, 7 and 9 [123]. TLR2 and TLR4 gene expression
levels are upregulated in ALS patients. TLR2 is predominant-
ly detected in the microglia, whereas the TLR4 is strongly
expressed in astrocytes. The activation of TLRs may contrib-
ute to the progression of inflammation and can explain the
resultant motor neuron injury in ALS [154]. A study using
combined inhibitory antibodies against TLR2 and TLR4 has
shown significant microglial suppression [155].

An effective therapy for this disease is still undiscovered.
However, the results showing that in ALS patients both, neu-
ronal and non-neuronal cells, release EVs concomitantly with
the activation of TLRs add to our knowledge of ALS and
immune responses.

Stroke

Stroke is one of the most common causes of adult disability,
and its prevalence augments with ageing population, despite
the advances in prevention and acute interventions [156].
Stroke injury mechanisms include the excitotoxicity, mito-
chondrial dysfunction, oxidative stress [157] and inflamma-
tion [158].

Molecular chaperones and some members of the Bcl-2
family (apoptosis regulatory proteins) that protect mitochon-
drial function have been suggested as miRNA targets [157].
miRNA expression following stroke and other types of hyp-
oxia-ischemia/reperfusion injuries varies regionally and tem-
porally. The regional distribution of miR-181 and miR-121
differs depending on the distribution of blood flow [157].

Altered expression of several miRNAs (miR-140, miR-145
and miR-331) has been reported 3 days after ischemia/
reperfusion; a progressive increase in the levels of miRNAs
has been observed 3 h following reperfusion [159]. miR-200b,
miR200c and miR-429 are elevated after 3 h of reperfusion in
a model of ischemic preconditioning [160]. In a rat model of
stroke, the levels of miR-290 [161], miR-10a, miR-182, miR-
200b and miR-298 [162] increase in the blood and brain 24 h
after ischemia/reperfusion; increased plasma levels of miR-
124 are observed 6 h after reperfusion [163]. The level of
miR-210, known as the major hypoxia-inducible miRNA or
hypoxamir [164], is positively correlated with improved prog-
nosis in stroke patients [165].

miRNAs are differentially expressed in the blood of pa-
tients with acute ischemic stroke; the levels of miR-122,
miR-148a, let-7i, miR-19a, miR-320d and miR-4429 de-
crease, whereas miR-363 and miR-487b levels increase. The-
se miRNAs are predicted to regulate several genes in path-
ways previously identified by gene expression analyses, in-
cluding TLR signalling and NF-κβ signalling [158]. Several
of these miRNAs have a known biological function. miRNA
let-7 regulates TLR signalling in monocytes and modulates
the differentiation of dendritic cells [166]. miR-122 regulates
the expression of peroxiredoxin 2, a DAMP involved in im-
mune activation after stroke [167]. miR-148 fine-tunes the
immune response by altering cytokine production (IL6,
TNF-a, IL-12, TNFSF7) [162, 168], although their biological
effects in neuronal cells are unknown.

Studies focusing on stroke therapies with multipotent mes-
enchymal stromal cells (MSCs) have reported that these cells
can release exosomes-containing miR-133b. These exosomes
are transferred to the adjacent astrocytes and neurons, where
they regulate gene expression, with subsequent benefits for
neurites remodelling and functional recovery after stroke
[169]. However, several studies have indicated the participa-
tion of TLRs in stroke [170, 171]. TLR9 gene expression is
upregulated in ischemia-neuronal damage and may play a
critical role in the induction of inflammatory response and
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apoptosis [172, 173]. Studies using TLR7 and TLR9
preconditioned with unmethylated cytosine-phosphate-
guanine rich oligonucleotide (CpG) have shown some neuro-
protective effects [174].

Other reports reveal a significant increase in TLR8 gene
expression 6 h post-ischemia. The levels of pro-inflammatory
cytokines such as IL-6 and IL-1β also change along with
TLR8 levels. Treatment with a TLR8 agonist activates pro-
apoptotic c-Jun N-terminal kinases (JNK) and increases neu-
ronal cell death after stroke [80].

TLR2 and TLR4 gene expression is also upregulated under
the stress or damage conditions such as ischemia or hypoxia
[172, 173]. These oligomerised receptors can detect danger-
ous proteins like HSP and low molecular weight hyaluronan.
HMGB1 and fibrin/fibrinogen are predominantly detected by
TLR4 [175]. Studies using LPS for preconditioning have
found that it re-programmes the cellular response (through
activation of its receptor TLR4), possibly reflecting the endog-
enous processes that protect the brain against additional injury
[176]. Following a cerebral focal ischemia injury, TLR2- and
TLR4-KO mice have smaller infarcts than wild-type animals
[177, 178]. miR-19b negatively regulates inflammation in
humans and activates the expression of TLR2 and TLR4,
promoting the inflammatory response in ischemic stroke [24,
25]. In neonatal hypoxic-ischemic (HI) mice brain, the activa-
tion of TLR3 can increase susceptibility to injury [124]. It is
now widely accepted that miRNAs activate TLRs in the im-
mune system. However, more studies are needed to determine
the mechanisms of their action in the neuronal cells. We also
need to confirm the relationship between EVs and the trans-
port of these miRNAs in stroke.

Conclusions and Future Directions

In cancer research, EVs have been considered important bio-
markers for the detection of metastases. The information
transfer by EVs may constitute a novel mechanism of inter-
cellular shuttling of molecules related to apoptosis. It is pos-
sible that EVs have similar roles in different systems, espe-
cially in the nervous system. The recent discovery of the abil-
ity of exosomes-containing miRNAs to reach TLRs in the
endosomes of surrounding cells offers a new insight into var-
ious regulation mechanisms employed under physiological
condition and in disease.

Investigation of the possible relationships between
exosomes, miRNAs and TLRs in the nervous systems is still
in its infancy. However, we can hypothesise that miRNAs
entering the cells via exosomes may regulate the activation
of TLRs. Furthermore, TLR tolerance, a hyporesponsive state
of the receptor, characterised by reprogramming of TLR-
mediated signal transduction [179], may achieved by intracel-
lular delivery of miRNA using exosomes. Positive effects

based on TLR tolerance have been observed in an animal
model of stroke. If this hypothesis is confirmed, it will provide
a new insight into the regulation of TLRs and new therapeutic
strategies for CNS inflammation-related diseases.

A recent study has demonstrated an effective delivery of
functional siRNA into mouse brain by systemic injection of
exosomes [180]. Systemic exosome administration could be
an alternative way to deliver the active components of cell-
based therapy to the CNS [181]. Further detailed investigation
of cellular communications mediated by EVs holds great
promise for drug delivery and interference-RNA applications.
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