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Abstrac t Gang l io s ide s ( s i a l i c a c id - con t a in ing
glycosphingolipids) are abundant in neurons of all animal
species and play important roles in many cell physiological
processes, including differentiation, memory control, cell sig-
naling, neuronal protection, neuronal recovery, and apoptosis.
Gangliosides also function as anchors or entry points for var-
ious toxins, bacteria, viruses, and autoantibodies. GM1, a gan-
glioside component of mammalian brains, is present mainly in
neurons. GM1 is one of the best studied gangliosides, and our
understanding of its properties is extensive. Simple and rapid
procedures are available for preparation of GM1 as a natural
compound on a large scale, or as a derivative containing an
isotopic radionuclide or a specific probe. Great research inter-
est in the properties of GM1 arose from the discovery in the
early 1970s of its role as receptor for the bacterial toxin re-
sponsible for cholera pathogenesis.
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Introduction

In this article, we review and speculate on various aspects of
GM1 structure and function that are relevant to future studies

of the physiological roles of endogenous gangliosides and the
potential therapeutic effects of GM1 administration.

Structure and Nomenclature of GM1

The structure of gangliosideGM1 (referred to hereafter simply
as BGM1^; Fig. 1a) was established in 1963 [1]. GM1 is a
monosialo-glycosphingolipid (GSL) belonging to the
gangliotetrahexosyl series, with formula β-Gal-(1–3)-β-
GalNAc-(1–4)-[α-NeuX-(2–3)-]β-Gal-(1–4)-Glc-(1–1)-Cer,
or II3-α-NeuX-Gg4Cer according to International Union of
Pure and Applied Chemistry (IUPAC)–International Union
of Biochemistry (IUB) nomenclature [2]. BNeuX^ in these
formulas signifies any sialic acid structure. Sialic acid is the
trivial name used for all derivatives of neuraminic acid, the 5-
amino-4,6,7,8,9-pentahydroxy-2-oxononanoic acid also
known as 5-amino-3,5-dideoxy-D-glycero-D-galacto-non-2-
ulopyranosonic acid. Many sialic acid structures have been
identified. In mammals, the most common are the 5-N-ace-
tyl-derivative (Neu5Ac), the 5-N-glycolyl-derivative
(Neu5Gc), and the 5-N-acetyl-9-O-acetyl-derivative (Neu5,9,
Ac2) [3]. Neu5Gc is not present in healthy humans. The term
BGM1^ was proposed by Svennerholm [4] in 1980 as a re-
placement for the original term BGtet1,^ was subsequently
approved by IUPAC–IUB, and is now commonly used world-
wide [2]. In the term GM1, G indicates a ganglioside structure
(i.e., a sialic acid-containing GSL), M indicates that the gan-
glioside contains a single sialic acid unit, and 1 indicates the
Gg4 neutral series, i.e., β-Gal-(1–3)-β-GalNAc-(1–4)-β-
Gal-(1–4)-Glc oligosaccharide structure. The alternative term
BGM1a^ is sometimes used to avoid confusion following the
discovery of α-NeuX-(2–3)-β-Gal-(1–3)-β-GalNAc-(1–
4)-β-Gal-(1–4)-Glc-(1–1)-Cer, and IV3-α-NeuX-Gg4Cer
structure (BGM1b^). Nomenclature and formulas of major
ganglioside series structures are summarized in Table 1.
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The term GM1 refers to the general structure as above, but
provides no information on the structures of the sialic acid and
ceramide components.

The hydrophobic moiety of all sphingolipids, including
GM1, is ceramide. BCeramide^ is a trivial name for a family
of structures with various numbers of carbon atoms, hydroxyl
groups, and unsaturations. Naturally occurring GM1

comprises a number of species that differ in their ceramide
structure. Ceramide consists of a basic long hydrophobic
chain (hereafter termed long-chain base [l.c.b.]; trivial name:
sphingosine [Sph]), linked to a fatty acid. In the nervous sys-
tem, l.c.b. comprises a mixture of C18- and C20-l.c.b. [5, 6]
(trivial names: C18- and C20-Sph), 2-amino-1,3-dihydroxy-
octadec-4-ene, and 2-amino-1,3-dihydroxy-eicos-4-ene pres-
ent in a variable ratio. C20-Sph is barely detectable in the fetus
[7] but becomes the major Sph species in the adult [6]. In
tissues outside the nervous system, C20-Sph is absent or a
very minor species. Of the four possible configurations of
Sph, only the 2S,3R structure (Fig. 2) occurs in nature [8, 9].
Small percentages of sphinganines (2-amino-1,3-dihydroxy-
octadecane and 2-amino-1,3-dihydroxy-eicosane) are some-
time present.

In the nervous system, stearic acid accounts for >90 % of
total fatty acid content. In extranervous tissues, a variety of
fatty acid structures with 14–24 (or more) carbons may be
present.

O

OH

O

OH

HO

OH

O

OH OH

NHAc

O

O
O

OH

O

OH

O

-
OOC

OH

HO

OH

OH

O

OH

HO

OH

O

H HN

O

AcHN

Four neutral sugars: 1                     The sequence: G

One sialic acid: M

R
Ganglioside GM1

R = Ceramide

a

b c
Fig. 1 a Structure of the GM1 ganglioside; b,c the two conformers of disaccharide portion Gal/GalNAc

Table 1 Nomenclature and formulas of major glycosphingolipid series
structures

Series Abbreviation Structural formula

GalCer ß-Gal-(1–1)-Cer

GlcCer ß-Glc-(1–1)-Cer

LacCer ß-Gal-(1–4)-ß-Glc-(1–1)-Cer

Ganglio-3 Gg3Cer ß-GalNAc-(1–4)-ß-Gal-(1–4)-ß-Glc-(1–1)-
Cer

Ganglio-4 Gg4Cer ß-Gal-(1–3)-ß-GalNAc-(1–4)-ß-Gal-(1–
4)-ß-Glc-(1–1)-Cer

Ganglio-5 Gg5Cer ß-GalNAc-(1–4)-ß-Gal-(1–3)-ß-
GalNAc-(1–4)-ß-Gal-(1–4)-ß-Glc-(1–1)-
Cer

Globo-3 Gb3Cer α-Gal-(1–4)-ß-Gal-(1–4)-ß-Glc-(1–1)-Cer

Globo-4 Gb4Cer ß-GalNAc-(1–3)-α-Gal-(1–4)-ß-Gal-(1–
4)-ß-Glc-(1–1)-Cer

Globo-5 Gb5Cer ß-Gal-(1–3)-ß-GalNAc-(1–3)-α-Gal-(1–
4)-ß-Gal-(1–4)-ß-Glc-(1–1)-Cer

Isoglobo-3 iGb3Cer α-Gal-(1–3)-ß-Gal-(1–4)-ß-Glc-(1–1)-Cer

Lacto (Paraglobo)
Lc4Cer ß-Gal-

(1–3)-ß-
GlcNAc-(1–3)-ß-Gal-(1–4)-ß-Glc-(1–1)-
Cer

Neolacto-4 nLc4Cer ß-Gal-(1–4)-ß-GlcNAc-(1–3)-ß-Gal-(1–
4)-ß-Glc-(1–1)-Cer

Neolacto-6 nLc6Cer ß-Gal-(1–4)-ß-GlcNAc-(1–3)-ß-Gal-(1–
4)-ß-GlcNAc-(1–3)-ß-Gal-(1–4)-ß-
Glc-(1–1)-Cer Fig. 2 Four possible configurations of the sphingosine molecule. Only

the 2S,3R,4E configuration occurs in mammals
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Chemistry and Availability of GM1

Research on the biological properties of GM1 in cells is based
on its availability as a natural compound or as a synthetic
molecule containing a specific tracer. Techniques have been

developed for preparation of GM1 per se, of GM1 with ho-
mogeneous ceramide moiety (see Fig. 3), of isotopically la-
beled GM1, and of GM1 containing photoreactive, fluores-
cent, or paramagnetic probes (see Fig. 4) [10–37].

Methods for synthesis of GM1 and many other GSLs have
been developed, but yields are very low and practical synthe-
sis of large amounts has not been achieved. Large-scale prep-
aration of GM1 is, therefore, still based on extraction of total
ganglioside mixture from tissues [12, 13], followed by gangli-
oside fractionation and GM1 purification by diethyl-
aminoethanol or silica gel column chromatography [10,
12–17]. GM1 is present in all mammals, but there is no tissue
in which GM1 is the sole ganglioside component. Within
mammalian tissues, the brain contains the higher ganglioside
quantity, 1–2 g gangliosides per kg fresh tissue [38], and is,
therefore, the best source for preparation of gangliosides, par-
ticularly GM1. The major gangliosides found in the mamma-
lian central and peripheral nervous systems are summarized in
Table 2.

The major ganglioside components of mammalian brain
(∼95 % of total content) are GM1, GD1a, GD1b, GT1b, and
GQ1b [39, 40]; the remaining ∼5 % consists of minor com-
ponents such as GM4, GM3, GD3, GM2, GD2, Fuc-GM1,
Fuc-GD1b, GT1a, and GP1c, whose proportions vary depend-
ing on species [41, 42]. Gangliosides containing N-glycolyl
neuraminic acid (Neu5Gc) are present in some animal species
[43]. Gangliosides [10, 44] and ganglioside lactones [11] con-
taining 9-O-acetyl-N-acetyl neuraminic acid (Neu5,9Ac2) are
components of some brain ganglioside mixtures, but are often
lost as a result of alkaline treatments during ganglioside mix-
ture preparation and purification. GM1 is 10–20 % of total
brain ganglioside content, and after sialidase treatment, the
value is near 95 % [18, 19].

Fig. 3 Reversed-phase HPLC of GM1 containing C18:1 and C20:1 Sph
and >90 % stearic acid. Upper curve: Natural GM1. GM1 is separated
into two species containing C18:1 Sph (left peak) and C20:1 Sph (right
peak). Lower curve: Separation of natural GM1 by oxidation at position 3
of Sph followed by reduction with 3H-labeled sodium borohydride. This
chemical procedure results in partial inversion of the configuration at
position 3, yielding the unnatural 2S,3S,4E compound. GM1 is
separated into four species containing 2S,3R4E-C18:1 Sph (left peak),
2S,3S4E-C18:1 Sph, 2S,3R4E-C20:1 Sph, and 2S,3S4E-C20:1 Sph,
respectively. Chromatography was performed using a preparative C18
reversed-phase column and acetonitrile/sodium phosphate (5 mM,
pH 7) buffer (3:2 v/v) at a flow rate of 7.5 ml/min. Mass detection at
195 nm; radioactivity detection by solid scintillator

X= OH, O3H, 

R=CH3CO, FA, 3H or 14C -FA,  photoac�vable FA, doxyl FA, NBD-FA, NR-FA, adipo-GM1, BODIPY
R1=CH3CO, C3H3CO
R2=CH3CO, C3H3CO, bio�n, BODIPY

NH N3

O2N

Fig. 4 Examples of synthetic GM1. FA fatty acid, NBD nitrobenzodiazol, NR Nile Red
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Structural Properties of GM1

In relevant biological environments, GM1 has a negative
charge because of the presence of sialic acid. The pKa value
for free sialic acid is 2.6 [45]. The exact pKa value for the
sialic acid residue of GM1 has not been reported. The number
of negative charges present in GM1 micelles in water solution
was experimentally determined to be only 16 % of the expect-
ed number [46], most likely as a result of polyelectrolyte effect
and masking of negative charges by positive ions. In any case,
the GM1 pentasaccharide chain is very hydrophilic because of
the presence of sialic acid and the general hydrophilicity of
sugars. The hydrophobic lipid moiety in combination with the
hydrophilic saccharide chain gives the GM1 ganglioside
structure a generally well-balanced amphiphilic character.
The amphiphilic equilibriummay be disrupted byminor struc-
tural differences in the hydrophilic or hydrophobic moiety.
Gangliosides, in general, display characteristics very different
from those of glycerophospholipids, amphiphilic compounds

with a strong hydrophobic character essential for the organi-
zation of membrane bilayers. The physicochemical properties
of gangliosides play an important role in defining and modu-
lating membrane organization (see Cellular organization and
topology of GM1) [47–49].

GM1 is soluble in water, in which it forms aggregates
through a hydrophobic effect. The geometry of the GM1
monomer is dictated by the large hydrophilic head and re-
quires the strong curvature allowed by micellar aggregates
[46, 50]. GM1 forms small ellipsoidal micelles, also termed
toroidal-like micelles, whose parameters [46] are summarized
in Table 3. GM1 micelles are formed at very low concentra-
tions, with a critical micellar concentration (c.m.c.) in the
range of 10−8–10−9 M according to both experimental and
theoretical determination [49, 51]. At any GM1 concentration,
the free monomers in equilibrium with the aggregates cannot
exceed the c.m.c. value.

Aggregative properties are related to GM1 structure.
The hydrophilic chain of GM1(Neu5Gc) is more flexible
and packable than that of GM1(Neu5Ac). The structure
of ceramide determines the amphiphilic balance and,
consequently, the physicochemical properties of GM1.
In a change from C18 to C2 acyl chain, the c.m.c. in-
creases to 2.3×10−5 M, accompanied by over threefold
order of magnitude increase in the monomer concentra-
tion [49]. Very minor changes in ceramide structure are
sufficient to modify ganglioside aggregative properties.
Aggregative properties are highly relevant to the effect
of exogenously administered gangliosides on cell mem-
branes. Exogenous GM1 is associated rapidly with cells,
becoming a component of the plasma membrane bilayer
and then entering the natural GSL metabolic pathway.
Only GM1 monomers enter the plasma membrane,
whereas GM1 micelles bind to the cell surface through
interactions with proteins and reach lysosomes following
endocytosis [52]. GM1 micelles bind rapidly with a variety
of proteins, forming fairly stable complexes (Fig. 5). GM1
complexes with albumin have been studied in detail [53,
54]. An increase of c.m.c. reduces the half-life of GM1 mi-
celles and increases the rate of release of monomers. The half-
life of micelles of calf brain GM1 was estimated as ∼8–10 h
[55].

Gangliosides are stably inserted into the outer layer
of plasma membranes through lipid–lipid interactions.
The position of gangliosides at the water/lipid interface
is stabilized by hydrogen bonds with neighboring
glycerophospholipids, involving both ceramide amide
and carbonyl protons.

The conformation of the GM1 oligosaccharide chain has
been studied in detail by nuclear magnetic resonance (NMR)
and molecular modeling [56–60]. NMR studies have been
performed on GM1 monomer, small micelles of lipid-
modified GM1, and mixed micelles of natural GM1

Table 2 Structures of gangliosides in the mammalian nervous system

GM4 Neu5AcGalCer

GM3 II3Neu5AcLacCer

GD3 II3(Neu5Ac)2LacCer

O-acetyl-GD3 II3[Neu5,9Ac2-(2–8)-Neu5Ac]LacCer

GM2 II3Neu5AcGg3Cer

GD2 II3(Neu5Ac)2Gg3Cer

GM1a II3Neu5AcGg4Cer

GM1b IV3Neu5AcGg4Cer

Fuc-GM1 IV2αFucII3Neu5AcGg4Cer

GalNAc-GM1 II3Neu5AcGg5Cer

3′-LM1 IV3nLc4Cer

GD1a IV3Neu5AcII3Neu5AcGg4Cer

GalNAc-GD1a IV3Neu5AcII3Neu5AcGg5Cer

GD1α IV3Neu5AcIII6Neu5AcGg4Cer

GD1b II3(Neu5Ac)2Gg4Cer

GD1b-lactone II3[Neu5Ac-(2–8,1–9)-Neu5Ac]Gg4Cer

Fuc-GD1b IV2αFucII3Neu5Ac2Gg4Cer

GT1a IV3(Neu5Ac)2II
3Neu5AcGg4Cer

GT1b IV3Neu5AcII3(Neu5Ac)2Gg4Cer

9-O-acetyl-GT1b IV3Neu5AcII3[Neu5,9Ac2-(2–8)-Neu5Ac]Gg4Cer

GT1c II3(Neu5Ac)3Gg4Cer

Chol-1α-a IV3Neu5AcIII6Neu5AcII3Neu5AcGg4Cer

Chol-1β III6Neu5AcII3(Neu5Ac)2Gg4Cer

GT1α IV3Neu5AcIII6(Neu5Ac)2Gg4Cer

GQ1b IV3(Neu5Ac)2II
3(Neu5Ac)2Gg4Cer

9-O-acetyl-GQ1b IV3(Neu5Ac)2II
3[Neu5,9Ac2-(2–8)-Neu5Ac]Gg4Cer

GQ1c IV3Neu5AcII3(Neu5Ac)3Gg4Cer

GQ1α IV3(Neu5Ac)2III
6(Neu5Ac)2Gg4Cer

Chol-1α-b IV3Neu5AcIII6Neu5AcII3(Neu5Ac)2Gg4Cer

GP1c IV3(Neu5Ac)2II
3(Neu5Ac)3Gg4Cer

Mol Neurobiol (2016) 53:1824–1842 1827



(Neu5Ac) and GM1 (Neu5Gc). The micellar surface was con-
sidered as a cluster of gangliosides, with single monomers
anchored in a carbohydrate-enrichedmodel membranematrix.
These studies indicate that Gal-GalNAc and Gal-Glc link-
ages in GM1 oligosaccharide are much more dynamic
than Neu5Ac-Gal and GalNAc-Gal linkages. β-Gal-(1–
3)-β-GalNAc is represented mainly by the two conformers
shown in Fig. 1b, c) that satisfy the Gal-H1/GalNAc-H2
and Gal-H1/GalNAc-NH nuclear Overhauser effect (NOE)
averaged contacts and the Gal-H1/GalNAc-H4 contact.
The trisaccharide core -β-GalNAc-(1–4)[(α-Neu5Ac-(2–
3)]β-Gal- shows a single stable conformation correspond-
ing to the minimum energy conformation observed for the
same trisaccharide in a number of ganglioside systems
[56, 61, 62]. This trisaccharide is generally considered to
be a rigid block. Some molecular dynamics calculations
predict the possible existence of two structures, although
it is not possible to obtain quantitative information on the
ratio of the conformers. The few NOEs between glucose

and ceramide suggest a single conformation with the total
oligosaccharide structure perpendicular to the cell surface.
GM1 monomers inserted into a surface are apparently
present as a group of conformers that confer high dynam-
ics to the structure. This property accounts for the ability
of GM1 to interact with a variety of proteins and mem-
brane receptors and produce different, in some cases op-
posite, physiological effects.

GM1 monomers inserted into and segregated in the mem-
brane can interact with each other through two different pro-
cesses. At the water/lipid interface, the ceramide amide acts as
both proton acceptor and donor, allowing formation of a net-
work of hydrogen bonds that reduces dynamics at the inter-
face. The oligosaccharide chains can also interact each other
through hydrogen bonds. NMR spectroscopic studies indicat-
ed that these interactions are mediated by water molecules that
act as linking bridges between two chains [58, 63]. Calorimet-
ric analysis suggested that ∼40–50 water molecules interact
with a chain [64].

Table 3 Parameters for GM1 aggregates

Ceramide composition M (kDa) N Rh (Å) a0 (Å
2) Axial ratio P value

l.c.b., % Fatty acids, %

GM1(Neu5Ac), 25 °C 470 301 58.7 95.4 2.3 0.428

Heated to 60 °C and cooled to 25 °C 320 205 52.8 99.5 0.411

d18:1, 49.7 16:0, 3.1

d20:1, 45.7 18:0, 93.5

d18:0, 3.0 18:1, 0.4

d20:0, 1.6 20:0, 3.0

GM1(Neu5Gc), 25 °C 576 365 62.4 93.8 2.5 0.437

Heated to 60 °C and cooled to 25 °C 488 309 59.0 93.8 2.5 0.437

d18:1, 49.7 16:0, 3.1

d20:1, 45.7 18:0, 93.5

d18:0, 3.0 18:1, 0.4

d20:0, 1.6 20:0, 3.0

GM1(Neu5Ac), 25 °C after catalytic hydrogenation 529 339 61.2 96.3 2.5 0.433

d18:0, 52.7 16:0, 3.1

d20:0, 47.3 18:0, 93.9

20:0, 3.0

GM1(Neu5Ac), 25 °C 570 366 60.0 93.0 2.6 0.438

d18:1, 49.7 α-OH-18:0, 100

d20:1, 45.7

d18:0, 3.0

d20:0, 1.6

GM1(Neu5Ac), 25 °C 102 76 34.0 64.8 1.2 0.370

d18:1, 49.7 C2, 100

d20:1, 45.7

d18:0, 3.0

d20:0, 1.6

Mmolecular mass,N aggregation number, Rh hydrodynamic radius, a0 surface of the monomer in aggregate, P packing parameter, l.c.b. long-chain base
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GM1 and Cholera Toxin

Studies in the early 1970s revealed that cholera pathogenesis
begins with interaction between the Vibrio cholerae exotoxin
(cholera toxin [CT]) and the mucosal surface [65]. The recep-
tor structure for the toxin was identified as oligosaccharide β-
Gal-(1–3)-β-GalNAc-(1–4)-[α-Neu5Ac-(2–3)-]β-Gal-(1–4)-
Glc, i.e., GM1 oligosaccharide. This finding initiated major
research interest in GM1.

CT belongs to the AB5 family of bacterial toxins [66, 67].
It consists of a single catalytically active component A and a
nontoxic pentamer of identical B subunits (B5). Cholera dis-
ease involves passage of complete AB5 through the epithelial
barrier of the intestine. This process is mediated by GM1,
acting as the CT membrane receptor [68]. Passage of AB5
through the membrane may occur by caveolae-dependent
[69], clathrin-dependent [70], or noncaveolae/nonclathrin-
mediated [71] endocytosis of AB5–GM1 complex into the
apical endosome, followed by retrograde transport into
Golgi/ER (Fig. 6). In Golgi/ER, the complex dissociates,
and active A is transported to the basolateral membrane,
where it catalyzes ADP ribosylation of α subunits of stimula-
tory G proteins, leading to persistent activation of adenylate
cyclase and continuous production of cAMP. Increased intra-
cellular cAMP in intestinal epithelial cells results in the severe
diarrhea and fluid loss characteristic of cholera.

The B pentamer binds to five GM1 monomers on the ex-
ternal membrane. This binding capability does not require the
presence of the A subunit or the ceramide moiety. The binding

constant is very low: in the range of 10−8–10−12 M, depending
on the procedure used [72, 73].

CT derivatives and anti-CTantibodies for analytical immu-
nostaining are available. Procedures for GM1 analysis and
separation using CT have been developed. Enzyme-linked
immunosorbent assay and thin layer chromatography proce-
dures combining sialidase hydrolysis and CT binding are
available for detection and quantitation of ganglioside mixture
components [74–77]. CT was used in electron microscopic
studies to detect GM1 enrichment at nerve endings [78]. The-
se studies provided the first information on GM1 topology in
the brain (see BCellular Organization of GM1^ section) and on
GM1 clusters in cell membranes.

Exogenous addition of purified B5 to cells results in for-
mation of B5–GM1 complexes but does not lead to the path-
ological cascade. This approach has been used to study certain
physiological functions of GM1. The sequestration of GM1
by B5-CT and resulting inhibition of processes indicate that
GM1 is a regulator of cell growth and proliferation, through (i)
its interaction with the protein channel necessary for extracel-
lular calcium influx and (ii) changes in its intracellular traf-
ficking and catabolism [79, 80].

Although the GM1-to-CT binding constant is very low,
other GSLs and glycoprotein oligosaccharides have been
found to bind CT with similar binding constants, e.g., α-fu-
cose-(1–2)-GM1 [72]. Great care is, therefore, necessary in
using CT immunostaining approaches for identification of

Fig. 6 Proposed internalization (schematic) of AB5–5GM1 complex and
subsequent effect on adenylate cyclase activity

Fig. 5 Association of exogenous GM1 with cultured neurons.
Distribution of various forms of associated GM1 is shown as a function
of added ganglioside and incubation time. Albumin labile: portion of
GM1 removed by washing with albumin. Trypsin labile: portion of
GM1 removed by mild trypsin treatment after washing with albumin.
Trypsin stable: portion of GM1 that remains associated with cells
(considered to be a cellular component) following albumin and trypsin
treatment

Mol Neurobiol (2016) 53:1824–1842 1829



GM1 and in binding experiments focused on specific roles of
GM1 in plasma membrane. In in vitro experiments, it is cru-
cial to ensure that subunit B preparations are completely free
of subunit A [81].

Two procedures for cholera therapy are based on the inter-
action of GM1 with B5 of CT: (i) administration of GM1
adsorbed on charcoal to block toxin released in the intestinal
lumen, and (ii) administration of purified B5 to block the
GM1 receptor and prevent interaction with AB5 [82].

Cellular Organization of GM1

Subcellular Topology of GM1

GM1, like other GSLs, is characterized by a large, bulky polar
head group, and a critical packing shape in any aggregate in
the form of a cone or truncated cone. GM1 molecules can
aggregate to form micelles, but can also be inserted into a
bilayer, with some important geometric constraints [83].
Glycerophospholipids and cholesterol are the bulky compo-
nents of cellular membranes. GM1 concentration in different
membrane compartments varies greatly and is high in certain
membrane environments. The highest ganglioside concentra-
tions are found in the central nervous system of mammals.
The content of lipid-bound sialic acid in the frontal and tem-
poral cortices is 3.5-folds to fourfolds higher than that of
protein-bound sialic acid [84]. Neuronal cells in brain are par-
ticularly enriched in gangliosides, as reflected by the much
higher concentration of gangliosides in gray vs. white matter
[84]. Significant amounts of gangliosides, including GM1, are
also found in glial cells (astrocytes and oligodendrocytes) and
brain macrophages.

GM1 is synthesized by the action of glycosyltransferases in
Golgi and trafficked to the plasma membrane [85], the intra-
cellular site having the highest GM1 concentration. Cell
subfractionation studies on brain cortex suggested ultrastruc-
tural localization of GM1 at the plasma membrane level in
neurons [86], which was confirmed by high-resolution detec-
tion of tissue-bound CT using immunoelectron microscopy
[77]. GM1 was shown to be concentrated at the presynaptic
and postsynaptic membranes of nerve endings and confined to
the external membrane surface. This was the first demonstra-
tion of nonhomogeneous distribution of GM1 in neuronal
plasma membranes. These and subsequent supporting studies
[38, 87] were the starting point for clarifying the biological
roles of GM1 and gangliosides, in general, and their essential
conclusions are still valid today [88].

However, the quantitative aspects of GM1 subcellular lo-
calization remain poorly understood, and certain important
pieces of information are still missing. The original reports
of the absence of CT binding at limiting toxin dilutions on
neuronal membranes outside synaptic terminals and of an

efficient mechanism of axonal transport of newly synthesized
gangliosides to nerve terminals [89] led, in the late 1970s, to a
prevailing dogma that gangliosides were concentrated at the
synapse, consistently with proposed specific functions of
GM1 in nerve conduction and/or synaptic transmission. How-
ever, newly available data on ganglioside concentrations in
isolated synaptosomes soon revealed the presence of ganglio-
sides on the entire neuronal surface, with concentrations low-
est in the neuronal perikaryon and highest in the synaptic
terminal [38]. There are striking differences in turnover of
various pools of GM1 associated with neuronal plasma mem-
brane, with highest turnover in dendritic membranes [90].
Minor (but not negligible) pools of gangliosides, including
GM1, are present in several intracellular loci besides plasma
membrane.

The presence of these pools, in some cases, was predictable
and not surprising in view of the complex trafficking routes
followed by GM1 and other gangliosides during their metab-
olism, and the proposed biological roles of gangliosides. The
synaptic vesicles of nerve endings have significant ganglio-
side content [91]. GM1 is associated with internal membranes
of late endosomes and lysosomes [92, 93], reflecting its trans-
port from plasma membrane to sites of intracellular degrada-
tion along the endocytic pathway. The association of GM1
with the endosomal/lysosomal compartment changes during
the aging process in brain. GM1 bound to amyloid β peptide
is accumulated in the endosomal compartment of aged mon-
key brain [94].

A retrograde, transcytotic transport of GM1 has been de-
scribed in polarized epithelial cells [95, 96], and a similar
event may occur in neurons [97, 98]. A portion of plasma
membrane GM1 internalized to recycling endosomes is
recycled back to plasma membrane [97], and this process
may contribute to the uneven distribution of GM1 in various
domains of neuronal plasma membrane. The presence of sol-
uble gangliosides (particularly GM1) associated specifically
with cytosolic proteins has been reported in fibroblasts [99],
cultured cerebellar neurons [100], and rat brain [101]. A GSL
transfer protein that efficiently transfers GM1 was isolated
from rat brain cytosol [102]. Gangliosides associated with
soluble proteins (e.g., GM1 associated with GLTP [103]) pre-
sumably reflect nonvesicular intracellular transport among
different membrane compartments.

The association of a certain amount of GM1 with intracel-
lular membranes and soluble intracellular proteins is well doc-
umented. A recent report indicates that 40–60% of the cellular
pool of GM1 is associated with a raft-like intracellular mem-
brane fraction enriched in trans-Golgi network and endosomal
membranes [104]. The size of this intracellular pool of GM1
can hardly be explained in terms of a pool of trafficking mol-
ecules. GM1 in the pool may help control transcriptional pro-
grams affecting lipid homeostasis through epigenetic regula-
tory mechanisms [105].
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GM1 is present in mitochondria-associated endoplasmic
reticulum membranes (MAMs) in a mouse model of GM1
gangliosidosis [106]. The most intensively studied and best
characterized pool of intracellular GM1 is that of nuclear
GM1. The presence of notable amounts of GM1 in nuclear
membranes of various organs has been known since the late
1980s [107] and was first reported in neuronal cells in 1995
[108]. The complexity of the nuclear envelope has become clear
only in recent decades, and the role of nuclear sphingolipids is
evidently important but still under investigation [109]. GM1 in
the nuclear envelopes of neuronal cell lines and primary neurons
is closely associated with a specific Na+/Ca2+ exchanger, NCX,
whose functional activity is strongly enhanced by the associa-
tion and plays a crucial role in regulation of nuclear Ca2+ con-
centration. The nuclear complex between NCX and GM1 ap-
pears to have a cytoprotective and antiapoptotic role and to be an
important part of the general neuroprotective role of GM1 (see
Ref. [110] for a recent review).

GM1 Organization in the Plasma Membrane

Sphingolipids, in general, and GSLs, in particular, have sev-
eral structural features that promote their segregation and
phase separation with respect to the fluid phase of
glycerophospholipid bilayers, with formation of membrane
areas having properties similar to those of liquid-ordered (lo)
phases as observed in membrane model systems [111, 112].
The simultaneous presence of an amide linkage and a hydrox-
yl group in the ceramide allows sphingolipids to act as both
proton donors and acceptors in hydrogen bond formation [47]
and to help form a dense hydrogen bond network at the water/
lipid interface. This ability is one of the driving forces for the
tendency toward lateral segregation of sphingolipids within
the membrane bilayer [113–115].

A second feature that promotes segregation of
sphingolipid-rich phases within a fluid phospholipid bilayer
is the unique composition of the hydrophobic portion. Cer-
amide is highly heterogeneous in the length and degree of
unsaturation of its fatty acyl chains. Within the nervous sys-
tem, saturated acyl chains such as palmitic and stearic acid
predominate in certain classes of lipids, including ganglio-
sides and sphingomyelin [116]. Brain gangliosides, highly
enriched in stearic acid, are typical lo phase lipids. The distri-
bution of GM1 in the fluid phase of two-component, two-
phase phosphatidylcholine bilayers [27] (as revealed by
freeze-etch electron microscopy following labeling with CT)
is correlated inversely with acyl chain length and correlated
directly with degree of unsaturation.

The final and most important factor determining the segre-
gation ability of GSLs is the bulkiness of the oligosaccharide
hydrophilic head group, which strongly affects the molecular
shape and packing of GSLs in aggregates and, consequently,
the large surface area occupied by GSL oligosaccharide

chains. Theoretical calculations of minimum energy confor-
mation for the hydrophilic oligosaccharide head group of
GM1 [56] indicate that it occupies a volume much larger than
that of phosphocholine, which has the bulkiest head group
among the phospholipids and is present in phosphatidylcho-
line and sphingomyelin. Predictions based on packing param-
eters and critical packing shapes of gangliosides [49] suggest
that separation of a ganglioside-rich phase in a phospholipid
bilayer and concomitant acquisition of positive membrane
curvature are strongly favored on an energetic basis because
they imply minimization of the interfacial free energy required
to accommodate amphipathic molecules such as gangliosides
in the bilayer. The geometric properties of single ganglioside
molecules, which depend on the bulkiness of the hydrophilic
head group, greatly affect the local lateral organization and
geometry of biological membranes, favoring phase separation
and spontaneous membrane curvature [49, 117, 118]. Recent
studies have re-addressed the importance of heterogeneous
ganglioside distribution in determining the three-dimensional
structure of membranes, distinct from flat geometry (see [83]
for review).

As a general rule, the volume occupied by the head group
increases with the complexity of the oligosaccharide chain. In
view of the heterogeneity and complexity of nervous system
structures, this volume varies greatly for different GSLs. The
degree of ganglioside phase separation in phospholipid bilay-
ers depends on the surface area occupied by oligosaccharide
chains, which is correlated directly with the number of sugar
residues in the oligosaccharide [119–121]. Studies on a variety
of model systems confirm the ability of GM1 to form phase-
separated clusters with respect to bulk fluid membrane regions,
distinct from other types of phase-separated clusters. GM1 is
associated preferentially with gel-phase regions in
multilamellar liposomes of phospholipid mixtures, which have
laterally separated fluid- and gel-phase regions [122]. Analysis
of ternary sphingomyelin/GM1/cholesterol vesicles by differ-
ential scanning calorimetry revealed formation of separate
GM1-enriched and cholesterol-enriched domains and of
GM1-enriched domains in sphingomyelin bilayers [123].

A major obstacle to research progress in this field, i.e., lack
of experimental approaches capable of identifying and study-
ing phase separation in more complex, physiologically rele-
vant model systems or living cells is being progressively over-
come by new or improved imaging techniques. Stimulated
emission depletion (STED) microscopy is a fluorescence-
based technique able to overcome the limit imposed by the
diffraction barrier, thus making possible nanolevel resolution
[124, 125]. STED studies demonstrated that putative lipid raft
markers, including GPI-anchored proteins, sphingomyelin,
and GM1, are confined to transient, cholesterol-dependent
molecular complexes that cover membrane areas with diame-
ters<20 nm and have an average lifespan of 10–20 ms [126,
127]. The use of order-sensitive probes revealed the existence
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of GM1- and cholesterol-rich domains in spheres obtained
from plasma membrane of A431 cells by a cell swelling pro-
cedure. This model is not equivalent to living cells, but may be
the best possible approximation. Such domains have a high
degree of lateral order (higher than that of the surrounding
fluid membrane environment, although lower than that of
the lo phase of two-phase giant unilamellar vesicles), are high-
ly dynamic (e.g., can coalesce to formmicrometer-scale struc-
tures by cross-linking with pentavalent CT), and are able to
recruit typical lipid raft proteins [128, 129].

In regard to simpler model systems, phase separation was
observed in mixed micelles comprised of two different gan-
gliosides (GM2 and GT1b [130], GD1b and GD1b-lactone
[131], and GM1 and GD1a [132]) with identical hydrophobic
moiety composition. The resulting suggestion that different
ganglioside-enriched domains may coexist in a cell membrane
was subsequently confirmed by a series of elegant studies. An
experiment using CT as a probe for GM1, and GD3-specific
mAb, showed that GM1 and GD3 form distinct, separate clus-
ters in artificial supported monolayers, intact cerebellar gran-
ule neurons, and isolated membrane rafts from adult rat cere-
bellum [133]. GD3, but not GM1, coclustered with the neuro-
nal raft marker Lyn. GM1 in supported myelin membrane
monolayers coclustered with its functional ligand, the
myelin-associated glycoprotein MAG [134]. The earliest evi-
dence for GSL clustering in cell membranes, obtained from
immunoelectron microscopy, was instrumental in develop-
ment of the lipid raft hypothesis [135]. GM1 clustering was
demonstrated in dorsal root ganglion neurons using an anti-
GM1mAb as a probe [88]. There has been persistent criticism
of immuno-EM methods for investigation of membrane lipid
topology, because they require extensive sample manipula-
tion, multivalent probes (e.g., IgM antiglycolipid antibodies
and CT B-subunit for GM1), and organic solvents and/or
chemical fixatives, all of which may produce experimental
artifacts. Most membrane lipids do not react with the aldehyde
fixatives commonly used in EM and can, therefore, be
redistributed within or removed from the membrane during
sample handling [136, 137]. Chemical fixatives do not pre-
serve the in situ localization of membrane lipids [138]. This
method has been successfully applied for nanoscale analysis
of membrane lipid distribution in the outer leaflet (GM3 and
GM1) or inner leaflet (phosphatidylinositol 4,5-bisphosphate)
of the plasma membrane, demonstrating that GM3 and GM1
form independent clusters at the cell surface [139, 140]. To
date, this method has not been applied for studies of ganglio-
side distribution in neuronal cell membranes.

Neurotrophic and Neuroprotective Properties of GM1

The first studies on brain lipids were reported in the late 1800s
[141], and brain gangliosides were separated from other lipids

in the 1930s [142, 143]. Research on gangliosides during the
next few decades was slow because of difficulty in identifying
their structures. The structures of Sph, sialic acid, and GM1
were elucidated respectively in 1947 [8], 1955 [144], and
1963 [1].

Rapidly expanding research beginning in the 1970s
showed clearly that gangliosides were involved in a variety
of physiological processes, in addition to their role as bulky
membrane components separating the cell interior from the
exterior. The ganglioside research groups were located world-
wide and included specialists in chemistry, physicochemistry,
enzymology, genetics, pathology, and biology and biochem-
istry of the nervous system and extranervous system. The
neurotrophic and neuroprotective properties of GM1 were
first reported during this burst of activity.

Members of the ganglioside family vary widely in compo-
sition and number of oligosaccharide chains. Mammalian dif-
ferentiated neurons, whose ganglioside content is up to ten-
folds higher than that of nonneuronal cells, have primarily
gangliotetraose series oligosaccharide chains with 1 to 5 sialic
acid residues. Ganglioside content and ganglioside pattern
change during differentiation, aging, and neurodegenerative
diseases. In contrast, the ganglioside pattern in nonneuronal
cells is generally less heterogeneous, and lactose series oligo-
saccharide chains are predominant. Sialyllactosylceramide
(GM3) is the major ganglioside component of the human
body. GM3 is abundant in proliferating neurons, but its pro-
portion in the total ganglioside mixture declines following
differentiation. Thus, lactose series vs. ganglio series ganglio-
sides evidently play differing roles in proliferating vs.
nonproliferating cells, i.e., nonneuronal vs. neuronal cells.

Numerous studies involving exogenous addition of GM1
or ganglioside mixtures to cultured neurons indicate that
changes of membrane ganglioside content and pattern alter
brain responses to signals from the surrounding environment.
This effect evidently results from modulation of membrane
enzyme and membrane receptor activities through specific
molecular interactions. Thus, gangliosides are associated with
functional plasticity of the brain [145, 146].

Neobiosynthesis of gangliosides occurs in the Golgi appa-
ratus where sugar units are added sequentially to ceramide by
specific glycosyltranferases working on nucleotide activated
sugars. To reveal and to determine a specific role of ganglio-
sides in the brain, several KO mice were developed removing
glycosphingolipid and ganglioside biosynthetic enzymes
[147]. Synthesis of glucosylceramide is the first step for the
Golgi synthesis of complex gangliosides and removal of the
glucosylceramide synthase lead to total deletion of
glycosphingolipids and gangliosides [148]. This lead to em-
bryonic lethality. Removal of the GM2/GD2 synthase deplet-
ed GM2 and GD2 and all the gangliosides belonging to the
gangliotetraose series. The mice developed parkinsonism, and
manifestations were largely attenuated by administration of
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GM1 derivatives that are capable to penetrate the blood–brain
barrier reaching then neurons [149].

GM1 modifies differentiation processes, amplifies re-
sponses to neurotrophic factors, protects against excitatory
amino acid-related neurotoxicity by limiting the downstream
consequences of receptor overstimulation, and reduces acute
nerve cell damage by blocking excitotoxicity and potentiating
neurotrophic factors [150]. Administration of ganglioside
mixtures affected recovery processes of both cholinergic and
adrenergic nerve fibers in experimental models of peripheral
sympathetic regeneration and reinnervation (preganglionic
and postganglionic anastomosis). A large body of studies have
elucidated the role of gangliosides (including GM1) in induc-
tion of neurite sprouting, and confirmed the involvement of
GM1 [151–153] and membrane-bound sialidase Neu3 (which
produces GM1 from polysialogangliosides) in the process of
neuritogenesis.

Clustering of GM1 in specialized membrane domains, as
described above, is evidently responsible for the molecular
interactions that underlie the neurotrophic and neuroprotective
effects of GM1. These GM1 effects can de facto replace or
potentiate the actions of neurotrophins in several experimental
contexts [154] and are largely (although not exclusively) me-
diated by modulation of neurotrophin receptors. For example,
GM1 exerts a neurotrophic effect on dopaminergic neurons by
interacting with a GDNF (glia cell-derived neurotrophic fac-
tor) receptor complex [155].

The best studied functional interactions between GM1 and
neurotrophin receptors involve Trk family receptors. Exoge-
nous GM1 stimulates Trk kinase activity, receptor autophos-
phorylation, and dimerization in various cell types [156–160].
A significant proportion of Trk receptors in neurons is typi-
cally associated with lipid rafts or GM1-enriched membrane
domains [161–166]. Colocalization of GM1 and Trk receptors
is a prerequisite for GM1–receptor interaction, and GM1
binds specifically and tightly to Trk in cultured cells [167],
brain tissues [168], and live rats [169, 170]. Conversely, for-
mation of high-affinity complexes between fully glycosylated
Trk and GM1 is essential for targeting of Trk into GM1-
enriched domains [171] and for GM1-induced activation of
the receptor [157], suggesting that receptor glycosylation is a
crucial regulatory mechanism for functional modulation of
Trk mediated by its interaction with GM1. Lateral interactions
between oligosaccharide chains of the receptor and of GM1
within lipid rafts (cis carbohydrate–carbohydrate interactions)
may be necessary for Bfine tuning^ of Trk activity. This idea is
supported by findings that activation of lipid raft-enriched,
ganglioside-specific Neu3 sialidase, which is highly
expressed in the cerebral cortex and cerebellum [172], is es-
sential for axon specification and neuronal polarization [173].
Anti-GM1 antibodies from Guillain–Barré syndrome patients
abolished nerve growth factor (NGF)-induced Trk activation
and altered association of the receptor with lipid rafts [174].

GM1 and Neurodegenerative Diseases

Experimental studies based on exogenous addition of GM1 to
cultured cells (see BNeurotrophic and Neuroprotective Prop-
erties of GM1^ section) suggested that various neuropathol-
ogies are associated with changes in plasma membrane orga-
nization and that GM1 may be useful in therapy of central and
peripheral nervous system disorders such as neurodegenera-
tive diseases, stroke, subarachnoid hemorrhage, and spinal
cord injury [175–180].

Data on the role of GM1 in neurodegenerative diseases are
abundant but sometimes contradictory. A characteristic com-
mon to many neurodegenerative diseases is the misfolding of
a cellular protein (e.g., α-synuclein in Parkinson’s disease,
amyloid β peptide (Aβ) in Alzheimer’s disease, scrapie prion
protein, PrPSc, in transmissible encephalopathies), with con-
sequent loss of normal function of the protein and/or forma-
tion of a toxic form that leads in nervous tissue to formation of
poorly soluble fibrils or particles whose intracellular or extra-
cellular accumulation is causally linked with disease onset.
The etiopathogenesis of neurological (particularly dementing)
diseases is extremely complex, and the importance of harmful
effects by amyloidogenic proteins remains controversial
[181]. The mechanisms leading to formation of pathological
forms of these proteins vary depending on the protein, but a
common trait appears to be interaction with lipid-rich mem-
brane regions having anomalous composition and organiza-
tion. Altered plasma membrane organization of GM1 may be
associated (either as a cause or consequence) with neurologi-
cal pathologies. Alterations in sphingolipidmetabolism poten-
tially leading to anomalous membrane organization have been
reported for several important nervous system diseases, in-
cluding most of the neurodegenerative diseases and major
forms of dementia [175–177].

α-synuclein, a cytosolic protein, contains two distinct
cholesterol-binding domains and a glycolipid-binding domain
[182, 183], and binds to membrane-associated GM1 in the
presynaptic regions of neurons [184]. Aβ (see preceding par-
agraph) also binds directly to cholesterol and GM1,
interacting with GM1 oligosaccharide chains through sugar-
specific mechanisms [185–188]. The role of GM1 in
Alzheimer’s disease (AD) is much more complex. Deregula-
tion of ganglioside metabolism has been reported in brain of
AD patients and in transgenic mouse models of AD (for re-
view, see Ref. [189]). Reduced ganglioside concentrations
(associated with altered ratios of a-series to b-series ganglio-
sides) have been reported for most brain regions of patients
with AD or dementia of the Alzheimer type (DAT) [190–195]
in comparison with age-matched controls. This finding is con-
sistent with reported age-associated ganglioside loss during
human physiological senescence [84]. On the other hand, con-
centrations of GM1 and GM2 in lipid rafts from the frontal
and temporal cortex were reported to be higher in AD patients
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than in controls [196], and higher levels of anti-GM1 antibod-
ies were found in AD patient brains [197].

Lipid rafts from cultured cells and mammalian brains con-
tain amyloid precursor protein (APP) and also proteolytic
fragments derived from APP (including Aβ) and several pro-
teolytic enzymes involved in APP processing [189, 198] (in-
cluding active β-secretases and γ-secretases. Lipid rafts are
evidently the major cellular site for amyloidogenic processing
of APP leading to production of Aβ [199–201]. Following
formation of soluble Aβ, the next step toward the toxic effect
that underlies AD is conversion of Aβ into aggregated
forms (favored by a conformational transition from ran-
dom coil or α-helix-rich to ordered β-sheet-rich struc-
ture) necessary for formation of insoluble amyloid fi-
brils. The conversion of soluble, nontoxic Aβ into toxic
Aβ fibrils requires interaction of Aβ with neuronal
membranes [202, 203], particularly the strong interac-
tion of membrane-bound Aβ with GM1 in GM1-rich
domains at the neuronal surface [204].

GM1-bound Aβ has unique immunological properties
[205] that reflect a conformational transition in the protein
resulting from interaction with the ganglioside and has been
proposed to act as a Bseed^ for amyloid formation that pro-
motes formation and deposition of toxic Aβ aggregates
in vitro and in living cells [206–209]. GM1-bound Aβ is
associated with amyloid plaques in cerebral cortex of AD
patients [205]. Its level is high in synaptosomes from aged
mouse brains, which also display high-density GM1 clusters
[210]. Aβ binds to ganglioside clusters in a density-dependent
manner in artificial membranes [206], and GM1–Aβ interac-
tion and Aβ aggregation are enhanced in a cholesterol-rich
membrane environment [211, 212]. Thus, the membrane or-
ganization and clustering of GM1 are crucial factors for GM1-
Aβ formation.

Recent studies suggest that GM1 accumulated at locations
other than the cell surface may contribute to GM1-induced
amyloid fibril formation. In aged monkey brains, GM1-
bound Aβ is accumulated preferentially in endosomes [94].
Blocking of the endocytic pathway in PC12 cells accelerated
the extracellular release of exosome-associated GM1, with
consequent induction of Aβ aggregation [213]. These find-
ings indicate that abnormalities in the endocytic pathway con-
tribute to Aβ-based pathology in AD.

GM1–Aβ interactions are also involved in neuronal death
associated with AD. Incubation of Arctic Aβ in the presence
of GM1-containing liposomes or neuronal membrane prepa-
rations resulted in formation of a toxic but soluble and
nonamyloidogenic Aβ aggregate that induced NGF-
dependent neuronal death [214]. On the other hand, interac-
tion of GM1 with Aβ may lead to formation of toxic soluble
oligomers that exert their harmful effects through high-affinity
binding with cellular PrP, another protein enriched in lipid
rafts [215].

The findings described above may seem contradictory to
the beneficial effects of GM1 on disease progression in AD
patients. The neurotrophic and neuroprotective effects of
GM1 observed in in vitro and in some in vivo experimental
models suggested that GM1 could be used to treat patients
with neurodegenerative diseases, but the results of early stud-
ies along this line were ambiguous. The pharmacokinetics of
intramuscularly or subcutaneously injected GM1 in humans
has been carefully quantified. GM1 enters the bloodstream
rapidly, reaches a maximal level after 48–72 h, and has an
elimination half-life of 60–75 h. In rat studies, injected GM1
reached all types of brain tissue. The majority of injected GM1
accumulated in liver, where its metabolism was slower than in
brain. GM1 in brain was rapidly metabolized to water and
carbon dioxide, and a portion was recycled to yield GD1a
following sialylation. In liver, catabolic sugars and lipids pick-
ed up by lysosomes are recycled for de novo glycolipid bio-
synthesis. Recycling of sialic acid, Sph, and the GSL portion
of GM1 has been studied in detail and is evidently a general
process that occurs in all body tissues. A small quantity of
GM1 is associated with brain and with subcellular fractions
that do not display activity of γ-glutaminyltransferase, an en-
zyme characteristic of microvessels. These findings suggested
that GM1 passed through the Bblood–brain barrier^ [180, 216,
217]. However, the actual benefit of GM1 treatment to the
central nervous system was unclear, in view of the fact that
only a small quantity of GM1 reached brain neurons. To in-
crease the quantity of GM1 in brain, an experimental group of
5 AD patients were continuously administered GM1 (20–
30 mg/24 h) through brain ventricles. After 12 months of
treatment, deterioration had stopped, and the patients had im-
proved motor performance and neuropsychological assess-
ments. They became more active, had improved reading com-
prehension, and were able to perform activities such as writing
reports and short letters on a computer.

In view of the above finding, it was proposed that GM1
treatment and its insertion into neuronal plasma membranes
led to formation of new GM1–Ca2+ complexes. Following
membrane depolarization, the presence of these complexes
would allow increased calcium influx and neurotransmitter
release. It is not surprising that gangliosides can use Ca2+ as
a counterion to form a network of associations in vitro. Gan-
gliosides in vivo are diluted into glycerophospholipids, which
also show a higher association constant with Ca2+. It has been
proposed that the glycerophospholipid–calcium interaction
network favors exclusion of gangliosides and thereby forma-
tion of new ganglioside-enriched domains. Ganglioside–pro-
tein interactions within lipid rafts are responsible for the cas-
cade of events that follows insertion of GM1 into plasma
membranes.

A portion of GM1 inserted into the membrane can enter the
cell and reach subcellular compartments, where it modulates
various protein functions. At the level of the cell nucleus,
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gangliosides induce synthesis of mRNAs specific for produc-
tion of cytoskeletal proteins. Cytosolic GM1–protein com-
plexes may also be formed following GM1 administration.

We cannot rule out the possibility that GM1, prior to enter-
ing the membrane, forms a complex with soluble Aβ and
prevents its deposition and oligomerization at the cell surface.
Formation of soluble complexes between GM1 and proteins
associated with Parkinson’s disease (PD) could account for
beneficial effects of GM1 treatment reported for this disease.
Daily administration of a large quantity of GM1 to several PD
patients [180] resulted in a general improvement of motor
symptoms and reduced rate of symptom progression.

Concluding Remarks

The major localization of GM1 ganglioside at the neuronal
plasma membrane, its uneven distribution at the neuron sur-
face, and its enrichment in specialized subdomains of the plas-
ma membrane, are reflected in the multifaceted roles of GM1
in neuronal physiology and pathology. GM1 has been studied
in laboratories worldwide in a variety of experimental models
and clearly shown to exert neurotrophic and neuroprotective
effects in various situations, including promotion of neuronal
survival, neurite outgrowth, and neuronal differentiation
in vivo and in cultured neurons, and protective and
therapeutical effects against several types of neuronal damage
[160, 218–224].

GM1 in neurons helps transfer information from the exte-
rior to the interior of the cell, through specific recognition and
binding of biologically active molecules (membrane receptors
and ion channels), and has specific functions in nerve conduc-
tion and/or synaptic transmission. The mechanisms underly-
ing the effects of GM1 remain unclear in many cases, but it
appears that these effects are often due to specific interactions
between GM1 and proteins involved in signaling processes,
within GM1-enriched lipid rafts in the plasma membrane. The
membrane-associated proteins proposed as interaction part-
ners for GM1 include neurotrophin receptors, opioid recep-
tors, integrins, and Ca2+ channels. The interaction of GM1
with such molecules is evidently facilitated or synergized by
their cosegregation in specialized membrane domains.

GM1 is a major component of total ganglioside mixtures
from mammalian brains, from which it can be extracted and
purified in large amounts by relatively simple procedures.
Alternatively, GM1 can be produced on a large scale by
sialidase hydrolysis of total ganglioside mixtures.

GM1was widely used in the past as a therapeutic drug for a
wide variety of neurological disorders. A series of studies in
the 1990s suggested that GM1 and other gangliosides injected
for therapeutic purposes were immunogenic and led to pro-
duction of antibodies that promoted peripheral neuropathies
such as Guillain–Barré syndrome (GBS) [225, 226]. This

event prevented the completion of some trials designed for
better understanding of the therapeutic properties of GM1.
In some of these trials, patients received GM1 in large amount
(see previous article), but no one developed peripheral neu-
ropathies or anti-GM1 antibody titers in serum. Later, GBS
was found to be strongly associated with bacterial infection,
particularly Campylobacter jejuni infection. Contact of host
cell membranes with C. jejuni lipooligosaccharides stimulates
the immune system to produce specific antibodies against ol-
igosaccharides that mimic those present in normal
glycoconjugates of human neuronal membranes [227]. Nev-
ertheless, it is necessary to recall that the oligosaccharide of
GM1, and that of many other gangliosides, acts as an antigen
for serum antibodies from patients with neuropathies [228,
229].

A possible relationship between ganglioside therapy and
GBS was conclusively ruled out by a systematic comparison
performed by the Local Health District (LHD) of Ferrara, Italy
of the incidence of GBS during 1988–1993 (when
ganglioside-based drugs were widely prescribed) vs. 1994–
2001 (following withdrawal of such drugs). The analysis
showed no difference in the incidence of GBS cases between
the two periods [230, 231].

Further studies and trials based on the therapeutic proper-
ties of GM1 are of great interest and importance. Novel pro-
cedures for effective administration of GM1 are under inves-
tigation, and trials of its ability to counteract peripheral neu-
rotoxicity related to chemotherapy [232, 233] are in progress
[234].
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