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Abstract Sox2 is a component of the core transcriptional reg-
ulatory network which maintains the totipotency of the cells
during embryonic preimplantation period, the pluripotency of
embryonic stem cells, and themultipotency of neural stem cells.
This maintenance is controlled by internal loops between Sox2
and other transcription factors of the core such as Oct4, Nanog,
Dax1, and Klf4, downstream proteins of extracellular ligands,
epigeneticmodifiers, andmiRNAs. As Sox2 plays an important
role in the balance between stem cells maintenance and com-
mitment to differentiated lineages throughout the lifetime, it is
supposed that Sox2 could regulate stem cells aging processes.
In this review, we provide an update concerning the involve-
ment of Sox2 in neurogenesis during normal aging and discuss
its possible role in Alzheimer’s disease.
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Introduction

Sox2 (sex-determining region Y (SRY)-box 2) is a transcrip-
tional factor that is essential for maintaining self-renewal/pro-

liferation/pluripotency of undifferentiated embryonic stem
cells (ESCs) and multipotency of neural stem cells (NSCs).
The Sox family of protein was identified in 1990 after the
seminal discovery of the mammalian testis-determining factor
SRY that carries a characteristic high-mobility group (HMG)
domain that binds DNA in a sequence-specific manner [1, 2].
Four years later, Sox2 was inadvertently discovered when
Dailey and colleagues identified that fibroblast growth factor
4 (FGF4) activity was regulated by an embryonically
expressed factor (then called Fx) in embryonic carcinoma F9
cells [3].

Sox2 is a well-established and crucial regulator of cell fate
decisions during development (Figs. 1a and 2) but also plays
an important role in adult tissue homeostasis and regeneration.
As a matter of fact, Sox2 is required for the totipotency of cells
during embryonic preimplantation period [4], the pluripotency
of ESCs [5] and the multipotency of NSCs [6, 7] (Fig. 2).
Moreover, Sox2 displays the remarkable property, when co-
expressed with other synergistic factors, to reprogram somatic
cells into induced pluripotent stem cells (iPSCs) [8, 9]
(Fig. 1b). This makes Sox2 a key factor for the control of stem
cells fate and more generally neurogenesis.

Sox2 is part of the core of the pluripotency network that
operates together with other transcription factors, such as
Nanog and Oct4, to promote potency of stem cells (for review,
see [10]). Interestingly, this network is under the control of
some intracellular signaling pathways initiated by extracellu-
lar ligands such as Wnt, Notch, FGF, leukemia inhibitory fac-
tor (LIF), and bone morphogenetic protein (BMP). It can also
be regulated by epigenetic modifiers and several microRNAs
(miRNAs) (Fig. 2).

Thus, as Sox2maintains stem cell potency and self-renewal
throughout the lifetime, it is tempting to envision that it may
be involved in stem cell aging processes. This possibility
gains support when we consider that, although aging mecha-
nisms are different in mitotic and non-mitotic cells in some
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Fig. 1 Sox2 as a key component
of stem cells fate and iPSCs
reprogramming. a NSCs can self-
renew (pink circle) or differentiate
into neurons in the neurogenic
niches (blue circle). Sox2 plays a
central role in the fate of
embryonic and neural stem cells
through the control of the balance
(activation/inhibition) of several
self-renewal and differentiation
genes. bWhen added, alone or in
combination with Oct4, Klf4, and
c-Myc, Sox2 initiate the
reprogramming of somatic cells
into iPSCs that can be then forced
to become neurons by means of
specific treatments
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aspects, there exist some correlations between Sox2 and some
age-related factors.

The Roles of Sox2 in Neuroectoderm Development and Adult
Neurogenesis

The expression of Sox2 has been observed in cytoplasm and
nuclei of oocyte, two-cell stage to morula cells, in some
trophectoderm (TE) cells, and all nuclei of inner cell mass
(ICM) [11] as well as presumptive neuroectoderm (Fig. 2).
In 9.5-day postcoitum mice, Sox2 RNA is seen throughout
the brain, neural tube, sensory placodes, and branchial arches
[12]. Knockdown and overexpression studies have shown the
important role of Sox2 in preimplantation processes in mouse.
Although the maternal Sox2 protein has been supposed to
compensate for the loss of the function of Sox2 transcripts in
mouse Sox2 homozygous mutant embryos [12], Sox2 knock-
down by small interfering RNAs (siRNAs) in two-cell embryo
mostly leads to a decrease in Sox2 level at morulae stage,

developmental arrest at the morulae/blastocyst transition,
and inability to form TE [11]. In addition, Sox2 overexpres-
sion in 1-cell embryo results in developmental arrest at two-
cell stage and changes the reprogramming gene expression
[4]. Moreover, Sox2 is clearly involved in stage-transition
gene regulatory networks prior to implantation and then in
the fate decision of three lineages of blastocyst to address
the inner cells to epiblast [13]. Finally, in mice inner cell mass,
Sox2 expression maintains pluripotency of ESCs and down-
regulation of Sox2 promotes them to trophectoderm-like cells
fate [14].

ESCs maintain their pluripotency until deciding to differ-
entiate into the progenitors of mesendoderm or neural ecto-
derm according to the levels of Sox2 and Oct4 expression. For
instance, high Sox2 and low Oct4 levels drive ESCs to neural
ectoderm fate [15]. Sox2 is expressed in chick embryo
throughout the neural tube and is then restricted to the medial
ventricular zone and along the entire dorsoventral axis of the
developing spinal cord to maintain neural characteristics of

Fig. 2 Roles of Sox2 in the
central nervous system
throughout the lifetime. Sox2 is
expressed throughout the life
from oocyte stage to adult neural
stem cells to maintain neural stem
cells potency. Sox2, together with
some transcription factors such as
Oct4, Nanog, Klf4, Dax1, and
others constitute a core network.
This network is under the control
of autoregulation mechanisms,
epigenetic effects, post-
translational modulations by
miRNAs, and some signaling
pathways initiated by
extracellular ligands such as LIF
(JAK/STAT), FGFs (Akt), Wnt
(β-catenin), Delta/Jagged (NICD)
and BMP (R-SMAD). According
to the time, Sox2 makes toti-,
pluri- or multi-potency under the
effect of these ligands. LIF
leukemia inhibitory factor, FGFs
fibroblast growth factors, BMP
bone morphogenetic protein, TE
trophectoderm, ICM inner cell
mass, SVZ subventricular zone,
SGZ subgranular zone, NICD
Notch intracellular domain, Akt
protein kinase B, STST3 signal
transducer and activator of
transcription 3, JAK Janus-
associated tyrosine kinase, INS
insulin IGF insulin growth factor,
FZ frizzled, R-SMAD receptor-
activated Smad proteins
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nervous system progenitors by prevention of terminal differ-
entiation [16]. As a matter of fact, Sox2 is expressed in pro-
liferating central nervous system (CNS) progenitors and
downregulated during their final cell cycle, and its expression
inhibits neuronal differentiation and results in themaintenance
of progenitor characteristics. As a corollary, inhibition of Sox2
signaling results in a loss of progenitor markers and the onset
of early neuronal differentiation markers [12].

Importantly, beside its preponderant role in neuroectoderm
development, Sox2 is also required for maintaining
multipotency and self-renewal of adult NSCs (Fig. 2). In the
CNS, NSCs are mostly located in the subgranular zone (SGZ)
of the dentate gyrus and the subventricular zone (SVZ) al-
though NSCs have been also isolated from dorsal root ganglia
(DRG) [17], trigeminal ganglia [18], enteric nervous system
(ENS) [19], and spiral ganglion in the peripheral nervous sys-
tem (PNS) [20].

In the dentate gyrus, multipotent type-1 neural progenitor
cells (NPCs) express Sox2 with other specific proteins such as
glial fibrillary acidic protein (GFAP) [21], nestin and brain
lipid-binding protein (BLBP) [22]. These cells, which divide
at slow rate, display strong Bstemness^ properties and express
Sox2 at high level. Type 2a hippocampal progenitor cells ex-
press high Sox2/low doublecortin (DCX) level, while type 2b
show low Sox2/high DCX expression [22]. Type 2a and 2b
progenitor cells then give rise to type 3 cells expressing
DCX [23].

In SVZ, radial glia-like cells (type B cells) that express
Sox2 and GFAP exhibit glial properties of both astrocytes
and prenatal radial glia [6, 24] and act as NSCs. Transient
amplifying cells (type C) are found in the rostral migratory
stream (RMS) as bipotent cells, express oligodendrocyte tran-
scription factor 2 (Olig2), achaete-scute homolog 1 (Ascl1),
Dlx2, and paired box gene 2 (Pax2) [25, 26], and give rise to
DCX-expressing type A neuroblasts [27].

Finally, immature neurons migrate toward olfactory bulb in
rostral migratory chains surrounded by astrocytes to be neu-
rons [28]. Sox2 expression has been reported in the undiffer-
entiated proliferating Ki67- and BrdU-positive population
cells in the SVZ and SGZ in adults [6, 7]. Neurosphere anal-
ysis of the properties of Sox2-positive and -negative transgen-
ic models shows that Sox2-expressing cells have the capabil-
ity of self-renewal and conversion to secondary neurospheres
[29]. Although the differences in transcription factor levels
between pluripotency and multipotency have not been clari-
fied so far, adult Sox2-positive NSCs mostly stay in quies-
cence and, when activated, choose different fates:
astrogliogenic asymmetric cell division, symmetric self-
renewal to expand stem cells pool, or neurogenic fate [30].

In the PNS, Sox2 is also expressed in sensory progenitor
cells [31]. Embryonic ENS neurogenesis starts with the mi-
gration of vagal and sacral neural crest cells toward the gut
[32]. Uncommitted ENS progenitor cells that express Sox2

and Sox10 [33] and respond to Notch [34] and endothelin 3
[35] give rise to committed Phox2b-positive cells and migrate
by downregulating Sox2 and expressing endothelin receptor
type B (EDNRB) and RET receptor tyrosine kinase in an
environment rich in glial cell line-derived neurotrophic factor
(GDNF) and endothelin 3. Embryonic vagal and sacral neural
crest cells migrate and colonize the entire length of the gut,
and multipotent ENS progenitors remain, postnatally to
adulthood, able to differentiate into neuronal and glial
lineages [36].

In addition to ENS, NPCs have been also isolated from the
embryonic [37] and adult DRG [17]. First, embryonic DRG
stem cells are positive for Sox2 and Sox10 (which downreg-
ulate Sox2 expression during their migration) [31] and express
neurogenins (NGNs) [38] and brain-specific homeobox/POU
domain protein 3a (Brn3a) during their three-wave migration
[39]. They then express TrkA, TrkB, TrkC, Runx1, Runx3,
and Ret to differentiate into various sensory neurons [40].
Second, adult DRG progenitor cells that express Sox2, Pax6,
Notch1, MASH1 together with glial GFAP/Olig1 migrate,
produce neurospheres, and finally differentiate into neurons
by increasing the expression of NeuroD, neurogenin1, and
other neuronal markers [38].

Pluripotency maintenance is controlled by a network of
genes and transcription factors, mostly Sox2, Oct4, Nanog
[5], and lineage specifiers of ESCs [41]. Sox2 and its partner,
Oct4, bind with transcriptional cis-regulatory Octamer/Sox
element in the promoter of Nanog and control its expression.
Nanog also regulates both Oct4 and Sox2 expression. These
transcription factors bind with some gene promoters and con-
trol self-renewal and pluripotency of ESCs via internal
negative/positive feedback circuits and autoregulatory loops
[42, 43]. In addition to these transcription factors, other pro-
teins such as Dax1 and Klf4 also play a role as main
pluripotency regulatory factors with a potential of
autoregulatory loops. Some ChIP experiments, together with
other methods, show the occupancy of promoter/enhancer re-
gions of these transcription factors by protein complexes or
cis-regulatory elements [44, 45]. Sox2, Nanog, Oct4, Dax1,
and Klf4 repress or activate their targets in association with
cofactor complexes or histone modifiers. Interestingly, these
transcription factors can share common targets. Although
Sox2 regulates the expression of many target genes during
the maintenance of stem cells, a biphasic effect has been evi-
denced for Sox2-dependent self-renewal/maintenance and dif-
ferentiation. At endogenous levels, Sox2 associates with Oct3/
4 and activates the genes responsible for cell maintenance.
However, elevated Sox2 levels induce a decrease of these
genes because of an activation of protein kinase B (Akt)
signaling, an inactivation of forkhead box O1 (FoxO1) and
consequently a decrease of endogenous Sox2 [46, 47].
Moreover, a concomitant augmentation of Sox2 and Oct4
disrupts the self-renewal of ESCs and induces their
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differentiation. In contrast, elevating Sox2 along with Oct4,
Klf4, and c-Myc does not disrupt self-renewal and does not
promote differentiation [48]. Finally, Sox2 has been shown
to maintain retinal NPCs in an undifferentiated state in a
dose-dependent manner [49].

Altogether, because Sox2 can trigger opposite effects ac-
cording to its level of expression, it is of utmost importance to
know how this transcription factor interacts with other part-
ners. Indeed, it has been established that Nanog-Oct4-Sox2
clusters recruit other proteins such as P300, a histone acetyl-
transferase [44], and some of the interactive proteins that en-
hance genomic stability such as stem cell co-activator (SCC)/
XPC-RAD23B-CETN2 (XPC) complex (SCC/XPC) [50].
But, the most important aspect of Sox2 regulation recently
emerged with the demonstration that Sox2 was tightly linked
with some so-called pluripotency extracellular ligands. The
most common extracellular factors that influence stem cells
pluripotency include LIF [51], FGF [52], WNT/β-catenin
[53], and BMP [54]. As an example, in LIF downstream sig-
naling, Sox2 activation has been shown to occur through Jak/
Stat3 and Klf4 activation, whereas Nanog is upregulated via
PI3k/Akt which affects the core transcriptional network of
pluripotency in mouse ESCs [55]. Moreover, Klf4 in associa-
tion with Oct3/4 and Sox2 upregulates Lefty1 expression to
maintain self-renewal [56].

The Connection Between Sox2 and Extracellular Signals

Several Sox2 regulatory mechanisms involving receptor-
mediated signaling pathways have been evidenced (Fig. 2).
This is the case for Akt, a downstream protein of insulin sig-
naling pathway that is involved in neurogenesis. Mammalian
insulin, insulin-like growth factor 1 (IGF1), and insulin-like
growth factor 2 (IGF2) promote theMAPK/ERK pathway and
activate Akt via PI(3,4) P2 and PI(3,4,5)P3. Activation of Akt
modulates protein synthesis and autophagy in mammalian tar-
get of rapamycin (mTOR)-dependent and -independent man-
ner [57]. The activity of this pathway must be maintained at
optimal level for cellular homeostasis [58]. Akt-
overexpressing adult hippocampal NPCs show slight increase
in Sox2 expression during proliferation and loss of Sox2 ex-
pression in differentiation. It has been proposed that Akt mod-
ulates Sox2 mRNA levels rather than Sox2 protein stability
[59]. Akt phosphorylates Sox2 at Thr118 and enhances self-
renewal and pluripotency in mouse ESCs without phosphor-
ylation of Oct4 [60]. As mentioned, Akt activation due to
Sox2 overexpression has been shown to decrease endogenous
Sox2 levels because of the phosphorylation of FoxO1 and its
sequestration in cytoplasm. Nuclear FoxO1 binds to Sox2
promoter and leads to increased endogenous Sox2 expression,
while phosphorylation of FoxO1 by Akt localizes it into the
cytoplasm and prevents Sox2 expression [47]. FoxO1 knock-
down results in the downregulation of Sox2, Oct4 and Nanog

expression, and spontaneous differentiation in human ESCs,
and this effect is enhanced by direct binding of FoxO1
to regulatory regions of these pluripotency markers [61].
In nervous system, FoxO-null brains reveal a decrease
in Sox2-positive NSCs in SVZ [62]. Because autophagy
is a downstream step of Akt signaling pathway, it has
been shown that Sox2 overexpression induces autopha-
gy by targeting autophagy-related protein 10 (ATG10)
and Lc3 (ATG8b) expression, downregulation of total
protein levels of Akt, p70S6K, and mTOR, and increas-
ing phosphorylation of phosphatase and tensin homolog
(PTEN). Sox2-induced autophagy promotes cellular se-
nescence in cancer cells, and insulin treatment reverses
this effect [63].

Wnt is a secreted lipid-modified protein that binds to friz-
zled (FZ) receptor and low-density lipoprotein receptor-
related proteins and activates dishevelled (DVL) which pro-
motes nuclear accumulation of β-catenin in canonical path-
way. In the absence of Wnt, phosphorylated β-catenin makes
a complex with glycogen synthase kinase 3β (GSK3β),
adenomatosis polyposis coli (APC), and AXIN and is
ubiquitinated for proteosome-mediated degradation. Wnt
stimulation inhibits β-catenin phosphorylation by GSK3β
which results in its translocation into the nucleus and interac-
tion with T-cell factor/lymphoid enhancer factor (TCF/LEF)
element in DNA [53]. In mouse ESCs, Wnt/β-catenin path-
way upregulates Stat3 via interaction of β-catenin with TCF/
LEF and promotes LIF downstream signaling to prevent dif-
ferentiation and maintain pluripotency [64] and increases the
efficacy of LIF signaling pathway. However, in adult NSCs
niche, Wnt signaling increases neurogenesis through activa-
tion of β-catenin in SVZ [65] and SGZ [66]. Sox2-positive
neurospheres are the major stem/progenitor cells which are
stimulated by Wnt3a to increase proliferation and
neurogenesis in postnatal mice olfactory epithelium [67].
The interaction between Wnt and Sox2 has been reported in
mouse neural crest-derived osteoblast lineages [68], human
and mouse osteosarcoma cell lines [69], xenopus retinal pro-
genitor cells [70], as well as in postnatal and adult mouse
NSCs [67, 71]. In the osteoblast lineage, Sox2 inhibits Wnt
signaling pathway through the upregulation of APC and
GSK3β, downregulation of Fzd receptor, and interaction with
β-catenin to inhibit differentiation [68]. In xenopus retina,
Sox2 inhibitsWnt/β-catenin and blocks neural differentiation,
whereas its downregulation by proneural proteins results in
neural differentiation [70]. The antagonizing effect of Sox2
and Wnt signaling pathway has been proposed to occur via
the competition ofβ-catenin and Sox2 for the binding to Sox2
and TCF/LEF-binding sites (Sox/LEF) of target genes. Thus,
while β-catenin displays a positive effect, Sox2 associated
with histone deacetylase HDAC1 represses Sox/LEF element
in the promoters of differentiation-specific genes in adult neu-
ral stem cells [71]. However, in neural crest-derived
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osteoblasts, Sox2 directly inhibits Wnt signaling via its c-
terminal domain [72].

Notch signaling has been proposed to be a mediator of the
Wnt-Sox2 cross talk in neuroepithelial cells [70]. Notch is a
transmembrane receptor which is classified into four types
(Notch1–4) with many ligands including Jagged (Jag1 and
Jag2) and delta-like proteins in mammals. Binding of these
ligands to the extracellular domain of Notch triggers an intra
membrane cleavage by γ-secretase and the release of the
Notch intracellular domain (NICD). NICD then translocates
into the nucleus and controls the transcription of a certain
number of genes. Although Notch signaling plays an impor-
tant role in lateral inhibition during the development of the
nervous system [73], it is also expressed in adult NSCs with an
effect on their maintenance [74]. Indeed, Notch1 expression
has been observed in neural precursor cells and astrocytes in
SVZ and neuroblasts within the RMS, and Jagged1 and Del-
ta1 are expressed in SVZ of adult mouse brain [75]. Impor-
tantly, Notch determines neural progenitor fate in SVZ of
adult rat brains [76] and controls proliferation and differenti-
ation through maintaining neural progenitor characteristics in
a dose-dependent manner. Low levels of the active form of
Notch1 promote proliferation, whereas high levels lead to
growth arrest [77]. Sox2 and Jag1 are coexpressed in neuro-
sensory development, and Jag1 maintains Sox2 expression
within restricted domains of the optic epithelium through a
Notch-mediated lateral induction [78]. The demonstration that
activated Wnt signaling induces proneural genes in retina and
leads, through Sox2 and Notch, to progenitor maintenance
[70] that illustrates the fact that NPCs undergo self-renewal
and differentiation through a functional interaction between
Wnt, Sox2, and Notch.

The Connection Between Sox2, Epigenetic Modifications,
and miRNAs

The self-renewal, maintenance, and differentiation of NSCs
are regulated by epigenetic mechanisms that modulate DNA
without altering genomic sequences. DNA methylation and
histone acetylation play an important role in activating and
silencing Sox2 expression in undifferentiated NSCs and dif-
ferentiated neurons. DNA methylation mostly occurs in the
cytosine residues of CpG islands by DNA methyltransferases
(DNMT1, DNMT2a, and DNMT2b in mammals), while his-
tone acetyltransferases (HATs) and histone deacetylases
(HDACs) catalyze histone acetylation and deacetylation.
Sox2 regulatory region 1 (SRR1) and SRR2 enhancers, locat-
ed 4 kb upstream and downstream from transcription start site
(TSS) of Sox2 gene respectively, are involved in the epigenet-
ic regulation of Sox2 expression. SRR1 includes POU tran-
scription factor motif, and SRR2 contains Octamer/Sox2-
binding sequence in ESCs [79], and these enhancers are also
present in NSCs or NPCs [80]. In one hand, in differentiated

neurons, CpGs are highly methylated at SRR1 and
SRR2, whereas in NPCs, these enhancers have under-
gone H3 histone acetylation and demethylation [81], and
it has been shown that P27kip1 decreases Sox2 expres-
sion via its binding to Sox2-SRR2 enhancer [82]. In the
other hand, Sox2 binds to distal enhancers of many
genes in ESCs and NPCs, and mapping of the binding
sites within 1 kb from TSS has shown that the most
occupied sites in ESCs and NPCs are different [83].

The association of Sox2 with the histone deacetylase
HDAC1 has been evidenced in ESCs and NSCs. HDAC1 is
one of the class I HDAC family which is found in repressive
complexes such as Sin3, NuRD, CoREST, and PRC2 [84]. In
addition to HDAC1, Sox2 also binds to HDAC2 and has been
shown to be part of protein complexes by using multiple do-
mains to interact with its partners [85]. Embryonic and tropho-
blast stem cells express high level of Sox2 and HDAC1. In
ESCs, HDAC1 occupies the promoters of most of the
pluripotency-related genes including Sox2 and supports self-
renewal and pluripotency [86]. Sox2/HDAC represses Sox/
LEF element in the promoters of differentiation-specific genes
such as Neuro1 in adult NSCs [71]. Sox2 has been found to be
associated with the mSin3A-HDAC complex [87], which con-
sists of HDAC1/2, Sin3A/3B, RbAp46/48, and SAP18/30,
and interacts with Nanog in mammals. Nanog maintains
self-renewal of NSCs by activating specific target genes
under the control of the binding of Sox2 and Oct4 to its
Octamer/Sox element [88], while during differentiation,
Nanog is downregulated [89]. The mSin3A-HDAC com-
plex binds to the Nanog promoter of ESCs and interacts
with Sox2 to stimulate Nanog expression during prolif-
eration, whereas this interaction is destroyed during dif-
ferentiation [87].

The maintenance of stem cells is mostly controlled by
polycomb group (PcG) protein-mediated histone modifica-
tions and DNA methylation, whereas trithorax group
(TrxG)-mediated histone modification plays a role in differen-
tiation [90] via acetylation of H3K27 (H3K27ac), H3K4me3,
dimethylation of Lys36 on histone H3 (H3K36me2), and/or
nucleosome-remodelling activities [91]. The repressive func-
tion of Sox2 on target genes is addressed by polycomb repres-
sive complex 2 (PRC2), one of the PcG proteins. In the epi-
genetic control of repression, enhancer of zeste homologue 2
(EZH2), a component of PRC2, methylates lysine 27 of his-
tone H3 (H3K27me), and PRC2 then recruits polycomb re-
pressive complex 1 (PRC1).

The PRC1 complex contains Bmi-1 and also Ring1A
proteins which are ubiquitin ligases for H2AK119, and
these chromatin modifications results in the repressive
function of Sox2, whereas these modifications are lost
via some activators during differentiation [92, 93]. Bmi-
1, as a member of PRC1, binds to repressive tri-methyl
lysine 27 of histone H3 (H3K27me3) during the

1684 Mol Neurobiol (2016) 53:1679–1698



epigenetic control of stem cell self-renewal [94], and
overexpression/knockdown of Bmi-1 has demonstrated
its role in self-renewal of NSCs [95, 96]. Bmi-1 sup-
presses P16INK4a and P19Arf expression, promotes stem
cell self-renewal in the central and peripheral nervous
system [97], and affects aging process via Ink4a/Arf
locus [98]. Importantly, Sox2 increases the expression
of Bmi-1 in osteoblast progenitor cells [68].

In addition to the epigenetic control of Sox2 in the
nucleus, it can also be modulated by miRNAs at a post-
transcriptional level. MicroRNAs, which are transcribed
as primary transcripts (pri-miRNAs) by RNA polymer-
ase II, are processed by a microprocessor complex con-
taining Drosha and DGCR8 in the nucleus and matured
by Dicer and transactivation response (TAR) RNA-
binding protein (TRBP). Mature miRNAs are then in-
corporated into the RNA-induced silencing complex
(RISC) including argonaute proteins and the single-
stranded miRNA and recognize target mRNAs through
the seed match sequences. It inhibits the expression of
the target mRNA through deadenylation followed by
mRNA degradation and blockade of translation at the
initiation step or at the elongation step [99]. Several
connections between Sox2 and some miRNAs have
been illustrated recently. First, endogenous miR-145 re-
presses the Oct4, Sox2, and Klf4 3′-UTR reporters in
human ESCs under self-renewal conditions [100]. Sec-
ond, Oct4, Sox2, and Nanog bind to the promoter re-
gion of the miR-302 cluster of miRNAs in human ESCs
and regulate transcription of miR-302 which leads to the
translational repression of targets such as cyclin D1 and
provides a link between the transcription factors of
pluripotency and cell cycle regulators in pluripotent
cells [101]. Third, Nanog, Oct3/4, Rex1, and Sox2 have
been identified as regulators of the miR302-367 cluster
in ESCs. The comparison of transcriptional activity be-
tween the 525-bp (PROM-525) and 974-bp (PROM-
974) fragments in the promoter of this cluster shows
that Oct3/4 and Nanog inhibition has a negative effect
on PROM-974 activity and that they act as transcrip-
tional activators of the miR302-367 gene. In contrast,
repression of Sox2 is associated with a significant in-
crease in PROM-974 activity, thereby suggesting a po-
tential negative regulation on the miR302-367 promoter
[102]. Fourth, Sox2 expression is inhibited by miR-126
via targeting the Sox2 3′-UTR through two binding sites
in gastric cancer cells [103]. Fifth, miR-296, miR-470,
and miR-134 are significantly upregulated during self-
renewal because of their effects on Nanog, Oct4, and
Sox2, while miR-134 can silence Sox2 in ESCs [104].
Finally, miR-137 is a direct target of Sox2 and methyl
CpG binding protein 2 (MeCP2) that inhibit neuronal
differentiation and maturation in adult SGZ NSCs [105].

Sox2 in the Aging Nervous System

Neurogenesis in the Adult Brain and During Aging

Although the occurrence of adult neurogenesis along the
SVZ-olfactory bulb axis of the brain has been evidenced more
than 50 years ago [106, 107], it long remained controversial,
and the cells responsible for continued neuronal and glial pro-
duction were not identified. The two main properties of NSCs
are their multipotency and their dual capacity of self-renewal
and differentiation. During the past years, many intrinsic fac-
tors (growth factors, morphogens, neurotransmitters, and
others) have been shown to regulate the decision of NSCs to
proliferate or differentiate (see [108] for review). Thus, NSCs
appear as a long-life source of neurons and glia (for recent
review see [109]), a concept that makes obsolete the dogma
that the CNS lacks regenerative power.

Very interesting is the fact that extrinsic factors such as
aging, stress, and inflammation can also modulate the fate of
NSCs. Although most of the studies demonstrate a decrease in
proliferative activity of neural precursors with aging
[110–112], some show a constant proliferation capacity
throughout life [113]. Several processes have been considered
to be involved in the aging of NSCs such as reduced commit-
ment and fate changes, increased cell death, an imbalance
between symmetric and asymmetric division or gliogenesis
versus neurogenesis, increased quiescence, failure of the stem
cells self-renewal, senescence, telomeres shortening, and tel-
omerase deficits [114–117]. However, validation of such mo-
lecular mechanisms is still under discussion.

Aging, Oxidative Stress, and Sox2

Reactive oxygen species (ROS) producing oxidative stress are
considered as the main cause of aging in non-mitotic cells,
whereas the reactivity of stem cells is mostly different. For
instance, it has been documented that hematopoietic stem cells
(HSCs) self-renewal increases under low level ROS condition
[118]. However, NSCs, when compared with HSCs, are most-
ly in a quiescent state, and their self-renewal, proliferation,
and multipotency increase in response to elevated endogenous
ROS levels. High level of ROS has been observed in DCX-
positive cells rather than in Sox2- or GFAP-positive cells in
SVZ [119]. In SGZ, ROS is transiently produced and reaches
its highest level in intermediate precursor cells that exhibit the
highest rate of proliferation, while inhibition of neurogenesis
leads to a decline of oxidative stress markers [120]. The high
level of endogenous ROS which is associated with higher
neurosphere formation, proliferation, and multipotency of
NSCs has been evidenced to be dependent on NADPH oxi-
dase (NOX) enzymes and PI3/Akt pathway [119]. However,
the effects of free radicals on the markers of NSCs may dem-
onstrate the role of multipotency transcription factors in aging.

Mol Neurobiol (2016) 53:1679–1698 1685



As far as Sox2 is concerned, Sox2-positive cells mostly
observed in low ROS conditions in SVZ [119] and low levels
of O2, when compared with higher levels, enhance the expres-
sion of Sox2 and Oct4 via hypoxia-inducible factor 2α (HIF-
2α) in human glioblastoma cells [121]. Thus, Sox2-positive
cells, which mostly include NSCs, have been suggested to
maintain low levels of ROS in quiescent state to keep their
stemness property. In these cells, oxidative response is medi-
ated by FoxO3 [122], and the balance between Akt/FoxO and
JNk/FoxO has been supposed to address cells to quiescence or
senescence [123]. Because a direct interaction between
FoxO1 and Sox2 has been documented [47], it is proposed
that the role of Sox2 in NSCs maintenance under low level
ROS is correlated to FoxO proteins.

Aging, Senescence Processes, and Sox2

Senescence, a hayflick limitation and exhaustion of cell divi-
sion, has been considered as an aging mechanism in mitotic
cells. The number of senescent cells increases during aging,
and senescence is considered as a cell cycle arrest. Indeed, cell
exhaustion and senescence mechanisms include inhibition of
cyclin-dependent protein kinases (CDKs)/cyclins and modu-
lation of the mechanisms in charge of chromosome cycle
(DNA replication, nuclear envelope breakdown, chromosome
condensation, and spindle assembly) [124]. Moreover, telo-
mere shortening through p53 pathway, stress-induced senes-
cence through p16-pRB pathway, oncogenes or loss of tumor
suppressor genes, oxidative stress, loss of enriched environ-
ment and cellular contacts are considered as senescencemech-
anisms [125, 126]. It has been evidenced that telomeres short-
ening and telomerase deficits mediated by p53 regulation and
Notch signaling pathways impair neurogenesis and
neuritogenesis in NSCs [115]. Moreover, the plasticity of the
histone modification marks, H3K9m3 and H4K30m, shows
more similarity at telomeric regions of iPSCs and ESCs com-
pared with differentiated mouse embryonic fibroblasts
(MEFs). Interestingly, telomerase activity increases in human
iPSCs induced by Oct3/4, Sox2, Klf4, and c-Myc in human
dermal fibroblasts [9]. However, the role of Sox2 in telomere
elongation remains poorly defined.

In senescence-induced p19ARF/p53/p21 pathway, the tu-
mor suppressor protein p53 is activated downstream to DNA
damage through some checkpoint kinase pathways such as
DNA-dependent protein kinase (DNA-PK), ataxia
telangectasia mutated (ATM), ATM rad-3 related (ATR),
checkpoint kinase 1 (CHK1), checkpoint kinase 2 (CHK2),
andMAPK-activated protein kinase 2 (MK2) to induce senes-
cence or transient cell cycle arrest as a tumor suppression
[127]. P53 knockdown increases self-renewal, proliferation,
and apoptosis mostly via p21 in mice NSCs [128]. Moreover,
p53 downregulates E2f target genes and activates cellular se-
nescence via p19ARF, p16INK4a, or p21 [125]. It has been

documented that p21 inhibits Sox2 expression since p21-
deficient mice demonstrate high population of GFAP/Sox2-
positive B-type NSCs with higher amount of Sox2, p53, and
p19ARF proteins compared to wild-type NSCs. In these cells,
a decrease of γH2AX-positive cells under Sox2 knockdown
condition has been determined, and DNA damage occurs con-
comitantly with Sox2 overexpression in p21-null mice NSCs.
Finally, elevated Sox2 levels trigger growth arrest and impair-
ment of self-renewal, DNA damage, and senescence in a p53-
dependent manner [129].

In p27Kip1-mediated senescence pathway, overexpression
of PTEN leads to the upregulation of the CDK inhibitor
p27Kip1 and to the negative regulation of PI3K/Akt signaling
pathway [130]. Interestingly, p27Kip1 has been considered as a
Sox2 repressor, and p27Kip1 null MEFs can be reprogrammed
to iPSCs cells. In p27Kip1-null iPSCs cells, H3K9me3 and
H3K27me3 that are both repressive modifications, increase
at Sox2-SRR2 enhancer similarly to retinoic acid-induced dif-
ferentiation condition of MEFs. Additional experiments
showed that p27Kip1 directly binds to the Sox2-SRR2 enhanc-
er sequence and decreases Sox2 expression [82].

Ink4a/Arf locus encodes p16INK4a and p19Arf, which are
mediators of cellular senescence, and their expression in-
creases during aging [131]. In p16INK4a deficient mice, the
number of newborn neurons increases, and p16INK4a upregu-
lation causes a decline of NPCs in SVZ during aging [132].
Bmi-1, which suppresses p16INK4a and p19Arf expression, is
downregulated during aging, which results in an increase of
p53 positive effect on the promoter regions of antioxidant
response genes, promotes oxidative stress in brain cortical
neurons, and triggers aging processes [133]. Interestingly, it
has been identified as a critical regulator of Sox2-dependent
self-renewal in osteoblasts [68].

Aging, iPSCs Reprogramming, and Sox2

During reprograming, Oct4, Klf4, and Sox2 repress Ink4a/Arf
locus whereas aging upregulates it. Thus, Ink4/Arf locus ex-
pression is considered to be responsible for the decreased
reprogramming associated with aging [134]. Induction of
reprogramming factors (Sox2, Oct4, Klf4, and c-Myc) triggers
senescence via upregulation of p16INK4a, p21cip1, and p53
which results in DNA damage. Because inducing telomerase
activity results in declined senescence, the cost of this rejuve-
nation is an increased tumorigenesis. For this reason, tumor
formation is a barrier for reprogramming to pluripotent stem
cells. In this context, Sox2 has been evidenced tomodulate the
expression of tumor progression genes and plays a role as an
oncogene in esophageal and lung squamous cell carcinoma
[135, 136]. Among reprogramming factors, increased Sox2
has been shown to correlate with an accumulation of p53
[129], and Sox2 has been reported as a single factor for the
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reprogramming of mouse and human fibroblasts into NSCS
without tumor formation [137].

Aging, Intracellular Signaling, and Sox2

Reduction of PI3/Akt pathway enhances translation of anti-
stress proteins and autophagy-dependent clearance of
misfolded proteins (via a reduction of FoxO1 and an augmen-
tation of mTOR downstream signaling) and extends lifespan
[63] (Fig. 3). Moreover, lysosomal autophagy protects cells
against oxidative stress and enhances the degradation of dys-
functional mitochondria [138]. It has been evidenced that au-
tophagy is promoted by Sox2 via the upregulation of ATG10
and LC3, which triggers senescence by increasing p16INK4a,
p21, and p53 in cancer cells [139]. Although Sox2 overex-
pression has been reported to upregulate Akt in ESCs [47],
Sox2-induced autophagy has been shown to promote senes-
cence in cancer cells through downregulation of Akt but not
class III PI3K signaling [139].

Wnt/β-catenin signaling pathway promotes the expression
of differentiation genes, and Wnt expression is decreased in
hippocampal astrocytes during aging, thereby driving NPCs
to quiescence [140]. Interestingly, Sox2 reduces Wnt signal-
ing through the upregulation of APC and GSK3β and the
downregulation of Fzd in osteoblast lineage [68] and the bind-
ing to Sox/LEF element via Sox2/HDAC1 in adult NSCs [71].
This Sox2-dependent pathway may thus be considered as a
cause of the reduction of Wnt signaling during aging. In ad-
dition, in aging HSCs, Wnt signaling shifts from canonical to
non-canonical pathway through the upregulation of Wnt5a
and the downregulation of Wnt3a [141]. In the nervous sys-
tem, Wnt3a expression, as well as the number of Wnt3a-
secreting astrocytes, decreases in adult hippocampal NSCs,
thereby affecting the expression of some pro-neural genes
such as NeuroD1 and long interspersed nucleotide element 1
(LINE-1) and leading to a decline of neurogenesis during
aging [142].

Notch1, which is expressed in neuroblasts and astrocytes in
SVZ, as well as Jagged1 and NICD that regulate progenitor
fate, all decreases in SVZ of aged rat brain when compared
with young adult [76]. For this reason, it has been hypothe-
sized that Notch1 signaling could play an important role in the
aging-dependent declined of neurogenesis in SVZ [76] al-
though a direct relationship between Sox2 and Notch signal-
ing pathway remains to be firmly established.

Aging, LINE-1 Transposable Element, and Sox2

LINE-1 is a transposable element, the gene of which includes
two open reading frames (ORF1 and ORF2) encoding pro-
teins that bind to nucleic acids as well as other elements pre-
senting reverse transcriptase and endonuclease properties. Af-
ter transcription, LINE-1 mRNA is translocated into the

cytoplasm for translation of ORF1 and ORF2 proteins which
reintegrate LINE-1 into the genome via target primed reverse
transcription (TPRT) process [143]. LINE-1 activity in the
brain is greater than in other parts of the body and is mostly
expressed in the spinal cord and the dentate gyrus [144]. It
creates DNA double-strand breaks [145], point mutations, re-
arrangements, damaged chromatin, and retrotransposition,
which lead to genome instability [146] and an imbalance be-
tween damage and repair during aging [147]. It has been pro-
posed that in contrast with the impact of beneficial genetic
variation on evolution, LINE-1 activation has a cost on lon-
gevity and causes aging [143]. Interestingly, methyl-CpG-
binding protein (MECP2) and Sox2 are able to repress
LINE-1 transcription through Sox/LEF-binding sites on
LINE-1 promoter sequence [71]. Indeed, two Sox-specific
SRY-binding sites are present in the LINE-1 5′-UTR close to
the CpG islands and during differentiation, Sox2 and MECP2
expressions are lower in neural progenitor cell [144]. Indeed,
it has been shown that the neuronal specificity of somatic
LINE-1 retrotransposition in NPCs is partially due to the tran-
sition of a Sox2/HDAC1 repressor complex to a Wnt-
mediated TCF/LEF transcriptional activation [71].

A Role for Sox2 in Alzheimer’s Disease?

Alzheimer’s disease (AD) is the most common form of neu-
rodegenerative syndrome worldwide and is characterized by a
progressive loss of memory and cognitive functions ultimately
leading to dementia, vascular hemorrhage, and death.

At the brain level, post-mortem AD patients manifest a
massive neuronal loss with particular damages in the regions
that are responsible for memory and language. The affected
brain areas display two main pathological hallmarks: (i) extra-
cellular amyloid plaques that are mainly composed of the
amyloid-β peptide and (ii) intraneuronal neurofibrillary tan-
g l es (NFT) tha t a re due to aggrega t ion o f the
hyperphosphorylated tau protein. Although they can rarely
be (less than 1 %) of genetic origin (familial forms
due to mutations on some genes), most of AD cases
are sporadic. Nevertheless, all AD forms are character-
ized by the abnormal aggregation of a set of peptides
called amyloid-β peptides (Aβ) that is intimately linked
to the onset of the disease.

AD, the Amyloid Hypothesis, and βAPP Processing

According to the amyloid hypothesis, β-amyloid peptide
(Aβ) that is produced from the β-amyloid precursor protein
(βAPP) accumulates because of an imbalance between its
production and clearance and initiates subsequent deleterious
events (tau hyperphosphorylation, inflammation and neuronal
death) that ultimately lead to memory deficits and dementia.

Mol Neurobiol (2016) 53:1679–1698 1687



Aβ peptides are produced through the so-called
amyloidogenic pathway by the sequential cleavages by β-
and γ-secretases [148] (Fig. 4). The β-secretase has been
identified in 1999 by four independent research groups as a
new aspartyl protease called Beta-site APP-cleaving enzyme 1
(BACE1) [149], while γ-secretase is a generic term defining
an heterotetrameric complex composed of presenilin 1 or 2,

anterior pharynx defective-1 (Aph-1), presenilin enhancer-2
(Pen-2), and nicastrin [150].

On the other hand, there exists an alternative non-
amyloidogenic α-secretase cleavage mainly performed by
two enzymes (ADAM10 and ADAM17) that are members
of the disintegrin family ofmetalloprotease and are respective-
ly responsible for the constitutive and PKC-regulated

Fig. 3 The functional cross-talk between Sox2 and some signaling
pathways that are involved in the aging processes. Wnt/β-catenin
signaling pathway efficacy which promotes differentiation genes
through the binding of β-catenin with TCF/LEF decreases in
hippocampal astrocytes during aging. Sox2 inhibits Wnt signaling
pathway by upregulation of APC and GSK3β, downregulation of FZ
receptor, interaction with β-catenin to inhibit differentiation in the
osteoblast lineage and repression of Sox/LEF element associated with
HDAC1 in the promoters of differentiation-specific genes in adult
neural stem cells. In mammalian insulin/IGF signaling pathway, Akt is
upregulated during aging, which increases mTORC1 and authophagy and
protein synthesis. It phosphorylates Sox2 at Thr118 to modulate Sox2
protein stability and inhibits FoxO1 which increases endogenous Sox2
expression. Sox2 induces autophagy via upregulation of ATG10 and LC3
and results in senescence in cancer cells. Sox2 suppresses LINE-1
expression which has upregulation during aging. In senescence

pathways, Sox2 increases the expression of Bmi-1 which suppresses
P16INK4a and P19Arf expression. On the other hand, p21 and p27kip1

which mediate senescence pathways inhibit Sox2 expression. Elevated
Sox2 levels trigger impairment of self-renewal and senescence in a p53-
dependent manner. Notch signaling efficacy also declines in aging via
decrease in Notch, Jagged1, and NICD in neuroblasts and astrocytes in
SVZ. TCF/LEF T-cell factor/lymphoid enhancer factor, APC
adenomatosis polysis coli, GSK3β glycogen synthase kinase 3β, FZ
frizzled, β-cat β-catenin, HDAC1 histone deacetylase 1, IGF insulin-
like growth factor, IIS insulin/IGF-like signaling, IRS insulin receptor
substrates, PDK1 phosphatidylinositol-dependent protein kinase 1,
mTORC1 mammalian target of rapamycin complex 1, FoxO1 Forkhead
box O1,CC cancer cells,OC osteoblast cells,NSC neural stem cells, ESC
embryonic stem cells, NICD Notch intracellular domain, p
phosphorylated, ROS reactive oxygen species, LINE1 long interspersed
nucleotide element-1
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pathways [151]. This proteolytic event occurs in the middle of
the Aβ sequence, thereby precluding its production. More-
over, this cleavage leads to the secretion of the large neuro-
trophic and neuroprotective-secreted sAPPα fragment as well
as its C-terminal counterpart C83.

AD and Stem Cells

It has been documented that proliferation and differentiation
of NSCs first decrease in AD before a subsequent increase as a

compensatory mechanism in SVZ and SGZ. Moreover,
neurogenesis marker proteins such as DCX, PSA-NCAM,
TUC-4, and NeuroD are upregulated in the subgranular zone
of dentate gyrus in AD hippocampus [152]. Recently, stem
cell therapy for patients with AD and iPSCs usage in AD
animal models have been envisioned with a particular focus
on the core transcriptional network (including Sox2) that is
responsible for the maintenance of pluripotency and
multipotency. Because many evidences suggest that adult
neurogenesis contributes to learning and memory [153], stem

Fig. 4 The connections between Sox2 and some signaling pathways that
are modified in AD pathology. Since Sox2 is decreased in AD brain and
because βAPP overexpression triggers an augmentation of Sox2 levels,
one can reasonably envision that Sox2 may have an impact on the
development of AD. Moreover, several Sox2-connected signaling
pathways are affected in AD. Thus, the efficacy of Wnt, which protects
hippocampal neurons fromAβ oligomers declines inAD. GSK3β, which
phosphorylates both β-catenin and tau protein increases in AD and
stimulates Aβ production. Sox2 combined with HDAC1 represses Sox/
LEF element in the promoters of differentiation-specific genes in adult
neural stem cells. Although Sox2 inhibits Wnt signaling pathway via an
interaction with GSK3b in the osteoblast lineage, its effect in AD is
unknown. NICD, the downstream effector of Notch signaling, is
produced by γ-secretase, a shared enzyme between βAPP processing
and Notch signaling, and inhibits AICD-Tip60-Fe65 complex through
physical interaction. The β-secretase BACE1 also interacts with the
Jag1-Notch pathway and NICD production. Activation of Akt by

insulin/IGF1 increases in AD thereby leading to more GSK3β, tau
phosphorylation, and mTOR levels in the cortex. However, the level of
FoxO1 expression declines as a result of overexpression of Akt in AD.
Although Sox2 phosphorylation by Akt and its upregulation by FoxO1
have been evidenced in cancer cells, the occurrence of such effects in AD
remains to be determined. AD Alzheimer’s disease, APP amyloid
precursor protein, sAPP soluble APP, AICD APP intracellular domain,
Aβ amyloid-β peptide, Sec secretase, TCF/LEF T-cell factor/lymphoid
enhancer factor, APC adenomatosispolysis coli, GSK3β glycogen
synthase kinase 3β, FZ frizzled, β-cat β-catenin, HDAC1 histone
deacetylase 1, IGF insulin-like growth factor, IIS insulin/IGF-like
signaling, PDK1 phosphatidylinositol-dependent protein kinase 1, IRS
insulin receptor substrates, mTORC1 mammalian target of rapamycin
complex 1, CC cancer cells, OC osteoblast cells, FoxO1 Forkhead box
O1, p phosphorylated, ROS reactive oxygen species, NICD Notch
intracellular domain
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cell therapy has been considered as a possible treatment for
neurodegenerative disorders. In spite of the limitation in trans-
plantation, mainly due to grafts rejection and tumor produc-
tion, derived neurons or glial cells from ESCs or NSCs have
been tested as an effective treatment in vivo in animal models
of AD [154–157]. As a proof of concept, transplantation of
ESCs-derived neurospheres into some cortical areas in nucle-
us basalis of Meynert lesion in AD mice model has been
shown to trigger the production of ChAT-positive and
serotonin-positive neurons around the graft [154]. Moreover,
transplantation of NSCs with transgenic expression of human
nerve growth factor (hNGF) into the brain enhances cognitive
performance in rat model of AD [155], and behavioral recov-
ery has been observed following the induction of mouse
ESCs-derived NPCs into cholinergic cells and their transplan-
tation into the mouse models of AD [156]. Finally,
transplanted human NSCs line was found to differentiate in
cerebral cortex, hippocampus, striatum, and septum in a rat
model of AD [157].

However, because accessibility and isolation of NSCs out
of their in vivo environment are problematic, an alternative to
NSCs transplantation was awaited. In 2006, a huge step for-
ward in the field of cell biology occurred with the first descrip-
tion of a simple method to dedifferentiate somatic cells
(fibroblasts) to embryonic-like iPSCs in mouse [8]. One pro-
tocol consists of the retroviral delivery of a cocktail of just four
genes (Sox2, Oct4, Klf4, and c-Myc), and this method was
shown to also work for other species including humans [9].
Interestingly, it has been demonstrated recently that iPSCs
induction can be performed by the sole Sox2 transcription
factor [137]. These pluripotent iPSCs can then be differentiat-
ed into any kind of cells according to the treatment applied and
thereby provide a simple way to obtain cultured cells issued
from a whole organism. This approach allowed, via iPSCs, the
obtention of genuine neurons issued from fibroblasts of AD
patients. This so-called BADmodeling^ process has been suc-
cessfully achieved by several laboratories during the past
3 years [158].

βAPP, βAPP-Derived Metabolites, βAPP-Cleaving
Secretases and Stem Cells

Several lines of evidence have established the occurrence of a
functional link between NSCs fate and βAPP biology. First,
neurogenesis and the number of BrdU-positive cells decrease
in SVZ and SGZ in βAPP-overexpressing transgenic mice
models of AD [159–161]. Second, βAPP overexpression in
embryonic stem cells has been evidenced to promote differ-
entiation with an altered morphology of human ESCs colo-
nies, neuronal markers, and neurite outgrowths [162]. Third,
βAPP and its parent protein APLP2 can respectively upregu-
late neuronal migration and NSCs differentiation duringmam-
malian cortical development [163, 164]. Altogether, this most

likely means that βAPP itself, Aβ, βAPP C-terminal frag-
ments, and possibly others play a role in the AD-dependent
decrease of NPCs differentiation.

As far as βAPP-derived fragments are concerned, ESCs
express the three secretases responsible for βAPP processing
and, as a consequence, produce detectable levels of Aβ, C99,
and sAPPα [165]. Not surprisingly, it has been established
that Aβ and sAPPα treatments modulate the proliferation/
differentiation of ESCs into neural progenitor cells in various
manners (induction of proliferation by soluble Aβ and fibrillar
Aβ, induction of differentiation by sAPPα, and inhibition of
proliferation by oligomeric Aβ) [165].

Considering Aβ, although a neurogenic effect of oligomer-
ic Aβ42 has been described [166], a correlation between the
impairment of the differentiation into neurons and Aβ
production/deposition has been evidenced [159, 167]. Anoth-
er study established that Aβ decreases neurogenesis via
apoptosic pathways and downregulation of β-catenin in new-
born neurons, thereby leading to Wnt/β-catening signaling
impairment in glial progenitor cells [168].

Concerning the large secreted sAPP fragments, the fact that
sAPP-binding sites, which regulate proliferation of adult pro-
genitors in response to either epidermal growth factor (EGF)
or sAPP and increase the number of BrdU- and epidermal
growth factor receptor (EGF-R)-positive NSCs, is present in
SVZ goes in favor of a role for sAPP in neurogenesis [169]. In
addition to SVZ, both sAPPα and sAPPβ regulate prolifera-
tion and differentiation of NSCs in SGZ [170] with sAPPβ
being more potent than sAPPα at inducing differentiation in
human ESCs [162]. Although the underlying signaling path-
way is still poorly understood, it has been established that
sAPPα modulates depolarization-induced neurite outgrowth
via MAPK activity in NPCs-derived neurons [171].

Finally, theβAPP intracellular domain AICD impairs adult
neurogenesis in AD mouse model by inducing inflammation
and reducing adult hippocampal neurogenesis in an age-
dependent manner [172]. Moreover, proliferation of NSCs
declines in the SGZ of hippocampus of AICD transgenic
mice, and AICD downregulates cell survival without specific
effect on differentiation of newly generated hippocampal
cells [173].

Regarding the impact of the βAPP-cleaving proteases
(more commonly called Bsecretase^ and responsible for the
production of the here above mentioned metabolites) on NSCs
fate, pharmacological inhibition of the amyloidogenic β-
secretase BACE1 has been shown to suppress proliferation
and promote NPCs formation [165], whereas another study
established that BACE1 knockout increases astrogenesis and
decreases neurogenesis [174]. These data appear conflicting,
and further studies are now required to delineate the exact role
of this enzyme in neurogenesis under normal and pathological
(AD) conditions. Information concerning the involvement of
presenilin 1 (PS1) (the catalytic core of the amyloidogenic γ-
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secretase complex) in neurogenesis under physiological con-
ditions are still lacking at present, and the only data published
so far have reported that FAD-linked PS1 mutations impair
adult neurogenesis in transgenic mouse models of AD [167,
175–178]. Finally, the role of the nonamyloidogenic α-
secretases ADAM10 and ADAM17 in adult neurogenesis un-
der normal and pathological conditions is still unknown.
Concerning ADAM10, it has been suggested, but not proved,
that it could play a role in neuronal maturation during cortex
development via the processing of Notch [179]. As far as
ADAM17 is concerned, a role for this protease in the upreg-
ulation of proliferation after stroke in the SVZ has been evi-
denced [180], and an increase of proliferation/decrease of dif-
ferentiation via Notch signaling has been shown in glioblas-
toma stem cells [181].

AD and Sox2

It is widely accepted that neurogenesis contributes to learning
and memory. Thus, considering the strong implication of
Sox2 in regulating the fate of stem cells and given the fact that
neurogenesis and cognitive functions including memory are
impaired in AD, one can reasonably postulate that this tran-
scription factor could play an important role in the develop-
ment of this neurodegenerative disease. Two independent
studies have supported this hypothesis. First, Sox2 deficiency
not only impairs neurogenesis but also induces neuronal de-
generation in the adult mouse brain [6]. Second, Sox2 levels
are strongly decreased in the brain of transgenic mouse model
of AD as well as in the brain of AD patients [182]. Of utmost
importance is the observation that the Sox2 decrease in AD
cases positively correlates with the severity of the disease
[182]. These complementary data strongly support the fact
that any decrease of Sox2 could favor AD pathology.

Intracellular Signaling Pathways as Common Denominators
to Sox2 and AD

It is striking that most of the signaling pathways that interact
with the Sox2 transcription factor are also implicated in AD
(Fig. 4). First, the Sox2-regulating Insulin/IGF1/Akt signaling
pathway increases in AD and leads to more phosphorylation
of Akt targets such as GSK3β, Tau, and Mtor, while PTEN is
downregulated in cortex of AD patients [183]. In addition,
some studies showed that the inhibition of PI3K/Akt pathway
increases the level of the γ-secretase complex and the
ubiquitination of PS1 [184], whereas the stimulation of this
pathway promotes phosphorylation and inactivation of IRS-1/
2 as a mechanism of insulin resistance in AD. Moreover, an
increase of inactivated phosphoser312 IRS-1 and phosphoser616

IRS-1 is observed in NFTs [185], and phosphoser636/639 IRS-1
levels have been found to be negatively correlated with

episodic and working memory [186]. The levels of FoxO1
expression decline as a result of overexpression of Akt in
AD [123], whereas PTEN, PP2A, and mTOR/S6K activities
negatively regulate the PI3K/Akt pathway. Finally, the activa-
tion of PI3K/Akt signaling has been shown to be sustained in
the brain of patients with AD, and turning off/on of this path-
way modulates LTP/LTD [63]. Thus, the rather strong corre-
lation between Akt signaling pathway with both Sox2 and
proteins involved in the development of AD makes highly
plausible the hypothesis that Sox2 may play an important role
in AD development.

As previously mentioned, Sox2 interacts with the Wnt sig-
naling pathway that is also supposed to be involved in the
pathogenesis of AD. Indeed, loss of Wnt signaling triggers
GSK3β activation, intracellular amyloid deposition, β-
catenin degradation, and activation of some apoptosis path-
ways and ultimately leads to AD. As a reminder, GSK-3β
both stimulates Aβ production and phosphorylates Tau pro-
tein [187], and it has been evidenced that PS1 mutation en-
hances proliferation of NPCs via an alteration of Wnt/β-
catenin signaling [188]. It has also been shown that canonical
Wnt/β-catenin protects hippocampal neurons from Aβ oligo-
mers with the blockade of neuronal apoptosis and that Wnt3a
increases cell survival toward Aβ-dependent neurotoxicity,
inhibits GSK-3β activity and Tau phosphorylation, and pre-
vents Aβ-induced apoptosis [189]. In the non-canonical Wnt
signaling pathway, GSK3β inhibition stabilizes β-catenin,
modulates mitochondrial dynamic, prevents Aβ-dependent
Bcl2 augmentation, and reduces the neurotoxicity of Aβ olig-
omers [190]. In addition, inhibition of GSK-3β by lithium has
been shown to protect rat hippocampal and cortical neurons
fromAβ-induced damage through the reduction of total Aβ in
brains of APPswe+PSEN1ΔE9 transgenic mice [191]. Final-
ly, Wnt5a prevents synaptotoxicity changes induced by Aβ
oligomers on PSD-95 clustering in synaptic contact [192].
Altogether, these data established that the efficacy of the
Wnt/β-catenin signaling declines in AD and that Sox2, which
negatively correlates with this pathway, is likely to have an
impact on AD pathology.

As far as the Notch signaling pathway is concerned, it has
been well established that Notch, as well as βAPP and other
trans-membrane proteins, is cleaved inside the plasma mem-
brane by γ-secretase to give rise to NICD [193]. Noteworthy,
because AICD-Tip60-Fe65 complex is suppressed by NICD
through physical interaction [194] and given the fact that all
three partners can have an impact on NPCs fate, one could
envision a putative NICD/AICD/Sox2 regulatory loop.

βAPP and Sox2

The occurrence of a functional cross-talk between Sox2 and
βAPP emerged during the past years. First, Sox2 colocalizes
withβAPP and Fe65 in the NSCs niche of the fetal ventricular
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zone, and TAG1-βAPP signaling negatively modulates
neurogenesis in an AICD/Fe65-dependent manner [195].
Consistent with these findings, it has been established that
Sox2 colocalizes with βAPP in both NSCs and NPCs of the
adult SVZ [196]. Second, βAPP overexpression causes a rap-
id differentiation and alters the morphology of human ESCs,
and it has been shown that the expression of Sox2 increases in
βAPPWT- and βAPPSwe-overexpressing human ESCs cells
when compared with controls [162]. However, a decrease of
Sox2 expression has been reported in the hippocampus of
βAPP-tg mice [182]. Some important issues remain to be
solved, and it will be now crucial to determine, by means of
genetic and pharmacological approaches, whether the observed
effects are due to full-length βAPP or to some βAPP-derived
metabolites. On the other hand, the described opposite effects
of βAPP on Sox2 in stem cells and hippocampus mentioned
above may reflect some regional or cell-specific Sox2-βAPP
functional interactions in the brain. A detailed mapping of
βAPP-Sox2 cross-talk in various cell lines and brain areas
should answer this important question in the future.

Secretases and Sox2

Any functional cross-talk between Sox2 and secretases them-
selves has been documented so far, although Sox2 colocalizes
with the α-secretase ADAM10 in NSCs of the SVZ [196].
However, the fact that some βAPP-derived fragments might
be responsible for the observed βAPP-dependent, Sox2 regu-
lation could illustrate an indirect involvement of these proteo-
lytic activities. This issue deserves particular attention, and sev-
eral works provide some weight to this hypothesis. First, as
mentioned in a previous paragraph, transgenic mice overex-
pressing mutated presenilin 1 (the catalytic core of the γ-
secretase complex) display a reduced number of both NSCs
and NPCs in the hippocampus when compared to wild-type
animals [167, 175–178]. Second, a very recent study has
established that theβ-secretase BACE1 can control the balance
between neurogenesis and astrogenesis via the Jag1-Notch
pathway and that NICD production and full-length Jag1 protein
levels significantly increase in BACE1 null mice [174].

In summary, the present available data strongly support the
possibility that full-length βAPP, some of the βAPP-derived
metabolites and/or the proteases responsible for βAPP pro-
cessing, could interact with Sox2, and we can reasonably hy-
pothesize that this functional cross-talk could have an impor-
tant role during normal adult neurogenesis and that an imbal-
ance of this network could contribute to AD.

Conclusion

In spite of an intense multidisciplinary research, effective
treatments to improve cognitive impairments in normal and

pathological aging, especially Alzheimer’s disease, are ur-
gently required. Although the boundary between normal ag-
ing and age-related neurodegenerative diseases remains to be
determined, some fundamental mechanisms undergo the same
pathways. Stem cell therapy, which has been considered as a
treatment in neurodegenerative disorders, demonstrates some
limitations like insufficient survival and stability after trans-
plantation and graft rejection or tumor production of ESCs,
iPSCs, MSCs, or NSCs following transplantation [197].
Moreover, senescence is a barrier for reprogramming. In order
to identify new tracks aimed at making possible AD-targeting
stem cell therapy, the modeling of iPSCs-derived neurons in
AD represents an important step forward.

In this context, a functional interaction between Sox2, pro-
teins involved in AD and some signaling pathways that con-
trol normal aging and are modified in AD, is worth
envisioning. Undoubtedly, Sox2 and βAPP/βAPP metabo-
lites both interact with Wnt/β-catenin, Notch, and PI3K/Akt
signaling pathways. First, during normal aging, Wnt/β-
catenin signaling that promotes neurogenesis declines in neu-
ral stem cells due to the weak production of Wnt or to the
increased action of negative regulators of the pathway such
as Sox2. Antagonizing effect of Wnt/β-catenin on Aβ has
been evidenced in AD. Second, PI3K/Akt is mostly
overexpressed to address more protein synthesis and inhibits
autophagy, whereas Sox2 expression, which promotes au-
tophagy, is suppressed via the inhibition of FoxO1 by Akt.
In addition, Sox2 phosphorylation is promoted by Akt signal-
ing. However, the activity of this signaling pathway increases
during aging and AD. Third, Sox2 interacts with the Notch
pathway that, like βAPP, undergoes γ-secretase cleavage and
with some cell cycle regulators that promote senescence.

Overall, according to the preponderant action of Sox2 in
the balance between self-renewal and differentiation during
neurogenesis and its involvement in some pathways correlated
with normal aging and AD, it is proposed that Sox2
may play an important role in neurodegeneration and
stem cell aging and that its modulation could be used
in ESCs, NSCs, or iPSCs replacements that recently
have been considered as a new therapeutic strategy to
fight neurodegenerative diseases.
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