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Abstract P2C-type ATPases are a subfamily of P-type
ATPases comprising Na+/K+-ATPase and H+/K+-ATPase.
Na+/K+-ATPase is ubiquitously expressed and has been impli-
cated in several neurological diseases, whereas H+/K+-ATPase
is found principally in the colon, stomach, and kidney. Both
ATPases have two subunits,α andβ, but Na+/K+-ATPase also
has a regulatory subunit called FXYD,which has an important
role in cancer. The most important functions of these ATPases
are homeostasis, potassium regulation, and maintaining a gra-
dient in different cell types, like epithelial cells. Na+/K+-
ATPase has become a center of attention ever since it was
proposed that it might play a crucial role in neurological dis-
orders such as bipolar disorder, mania, depression, familial
hemiplegic migraine, rapid-onset dystonia parkinsonism,

chronic stress, epileptogenesis, and Alzheimer’s disease. On
the other hand, it has been reported that lithium could have a
neuroprotective effect against ouabain, which is the best
known Na+/K+-ATPase inhibitor, but and high concentrations
of lithium could affect negatively H+/K+-ATPase activity, that
has a key role in regulating acidosis and potassium deficien-
cies. Finally, potassium homeostasis regulation is composed
of two main mechanisms, extrarenal and renal. Extrarenal
mechanism controls plasma levels, shifting potassium from
the extracellular to the intracellular, whereas renal mechanism
concerns with body balance and is influenced by potassium
intake and its urinary excretion. In this article, we discuss the
functions, isoforms, and localization of P2C-type ATPases,
describe some of their modulators, and discuss their implica-
tions in some diseases.
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Introduction

P2-type constitute a family of ATPases consisting of Ca2+-
ATPases (P2A) from sarcoplasmic reticulum (SERCA) and
plasma membrane; calmodulin-binding Ca2+-ATPase (P2B);
H+/K+-ATPases from stomach, colon, and kidney; and Na+/
K+-ATPase (P2C). The family name is related to a transient
phosphorylation of an aspartyl residue during cations’ transport
[1], such as Cu2+, K+, Mg2+, H+, Ca2+, Cd2+, and Na+, for
which these proteins are responsible of. The P-type family
members have the following five functional and structural do-
mains: an actuator domain (A), a nucleotide binding domain
(N), a phosphorylation domain (P), a transport domain (T), and
a class-specific binding domain (S). The first three domains are
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cytoplasmic, and the other two are membrane-embedded do-
mains. It has been reported that Na+/K+-ATPase and SERCA
sequence structures are 30% identical and 65% similar [2], this
is the reason why SERCAmodel was used for Na+/K+-ATPase
studies until it was crystalized. Also, both proteins have an α
subunit, with 10 transmembrane spans, but Na+/K+-ATPase
differs in having alsoβ andγ isoforms, with 12 transmembrane
spans, so two subunits should affect theα subunit conformation
of Na+/K+-ATPase [3, 4]. In this review, we concentrate only in
P2C-ATPases: H+/K+-ATPases and Na+/K+-ATPase. The
carboxy-terminal domain is essential for the correct assembly
and function of both H+/K+-ATPases and Na+/K+-ATPase; if it
is not present, the affinity for Na+ and H+ is significantly affect-
ed [5, 6]. These enzymes are composed of α and β subunits,
but Na+/K+-ATPase has a third subunit called FXYD too [7].
These proteins have different structure since Na+/K+-ATPase is
a monomeric heterodimer, which is essential for its catalytic
activity and cation translocation, whereas H+/K+-ATPase is a
dimeric heterodimer [8].

Na+/K+-ATPase and H+/K+-ATPase are proteins that ac-
tively transport either three molecules of Na+ and two mole-
cules of K+ or two molecules of H+ and two molecules of K+,
respectively, against a concentration gradient. This transport
maintains ionic cellular homeostasis, keeps the extracellular
concentrations of Na+ and H+ low and the intracellular con-
centration of K+ high.

Na+/K+-ATPase uses almost 30 % of the ATP available to
the cell and has important roles that include the following: (1)
maintaining ionic balance, (2) providing energy through the
coupled transport of nutrients, (3) re-establishing the ionic
gradient after an action potential in neurons, (4) helping to
maintain a gradient in epithelial cells, and (5) activating lym-
phocytes [9].

The H+/K+-ATPase also uses ATP, but its regulator role is
related to gastric processes and maintaining a normal K+ con-
centration in organs such as the stomach, colon, and kidney. In
the stomach, it regulates the HCl concentration, but in altered
states, it can function as a Na+/K+-ATPase and as a Ca2+-
ATPase in parietal cells [10]; in the kidney, H+/K+-ATPase
has a key role in states of altered K+ balance, such as hypoka-
lemia, and in the colon, it is also involved in regulating H+

concentration, and it functions in K+ absorption [11]. Gastric
H+/K+-ATPase, it can be stimulated through to the histamine
H2 receptor [12].

Na+/K+-ATPase and H+/K+-ATPase bound ATP, but there
are alternatives: one is through extracellular signal-regulated
kinase (ERK) [13], protein kinase C (PKC), or protein kinase
A (PKA) [14–16] and another, which is not well understood,
is through the insulin receptor [17]. Through PKC and PKA
pathways, the phosphorylation site can stimulate or diminish
Na+/K+-ATPase or H+/K+-ATPase activity [14, 16], and ERK
activity could be activated by insulin stimulating Na+/K+-
ATPase activity [13].

Na+/K+-ATPase can function as a signal transducer,
through calcium signaling or Src signaling pathways [18].
The Src pathway is present in the kidney and has an important
role in renal function; a decline in the protein expression of
Na+/K+-ATPase is sufficient to raise Src activity, and this in-
teraction may depend on the conformational state of the
ATPase [19].

Na+/K+-ATPase has endogenous modulators whose ex-
pression and activity are regulated by hormones including
steroids, thyroid hormones, peptide hormones, and catechol-
amines. These have different effects; some regulate its gene
expression, and others regulate its activity [20]. Exogenous
modulators include cardiotonic steroids, such as ouabain and
bufadienolides [21], as well as lithium, which has different
effects on the protein.

H+/K+-ATPase also has inhibitors, such as benzimidazoles,
that are commercially known as esomeprazole and proton
pump inhibitors like rabeprazole, omeprazole, lansoprazole,
and pantoprazole. Other H+/K+-ATPase inhibitors are K+-
competitive reagents, named either acid pump antagonist
(APA) or potassium competitive acid blocker (P-CAB) class,
which are imidazo-pyridines that are known to react on the
outside surface of the pump in competition with potassium
ions [22]. Lithium is a cation reported to activate Na+/K+-
ATPase [23], that could inhibit H+/K+-ATPase in the cortical
collecting tubule in the kidney, which can trigger a severe
metabolic acidosis [24].

Isoforms and Localization

P2C-type ATPases are conformed by α and β subunits, and
Na+/K+-ATPase has a third subunit called γ or FXYD. α
subunit contains the catalytic site, and in Na+/K+-ATPase
and one type of H+/K+-ATPase, is the site of ouabain binding.
Four isoforms for the α subunit of Na+/K+-ATPase have been
reported: α1, α2, α3, and α4. These isoforms occur in differ-
ent tissues with the fourth found only in sperm.

H+/K+-ATPase has only two isoforms, α1 and α2, and one
gastric and the other non-gastric. The α subunits of Na+/K+-
ATPase and H+/K+-ATPase have close to 60% similarity [25].
β subunit is a minor subunit that contributes to the K+ affinity
in its binding site and may contribute to the trafficking and
delivery of Na+/K+-ATPase to the cell membrane [26]. The β
subunit also contributes to the function of the α subunit. Na+/
K+-ATPase has three β isoforms, β1, β2, and β3, whereas
only one β subunit, called βHK, has been reported for H+/K+-
ATPase. The third subunit of Na+/K+-ATPase, named FXYD,
is also a regulatory unit and contributes to the affinity of Na+

to its binding site; there are seven different isoforms, FXYD1
to FXYD7 [27]. Figure 1 depicts representations of Na+/K+-
ATPase and H+/K+-ATPase.
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Na+/K+-ATPase

The α subunit for Na+/K+-ATPase, molecular weight of
≈110 kDa, contains the catalytic site and is where Na+ and
K+ are exchanged. This exchange occurs against the concen-
tration gradient. The first step occurs when three intracellular
Na+ ions bound to the enzyme (E1) and ATP phosphorylates
the α subunit to E1P, first releasing one sodium ion into the
extracellular space, then releasing the other two (E2P). In this
state, the enzyme is phosphorylated and, when no ion is pres-
ent, can bound ouabain. In the absence of ouabain, two extra-
cellular K+ ions bound to the α subunit (E2P), the phosphorus
is released (E2), and finally, potassium enters to the cytoplasm
(E1), and the protein can start the cycle again [28].

Only three of the four α isoforms were originally identified
[29]. The α4 isoform [30], which is found only in male gam-
etes [31], controls Na+ gradients and plays a role in Ca2+ and
H+ homeostasis in cells. Sperm motility is dependent on pH
balance and membrane excitement; therefore, regulation by
α4 may contribute to the motility of the sperm [32, 33]. The
other isoforms are widely found in different tissues; for exam-
ple, theα1 isoform occurs in every tissue but principally in the
kidney, which is considered a model for this isoform. The α2
isoform is found in the brain, heart, and in skeletal muscle, and
α3 is also expressed in the heart and brain. An important role
for the α subunit in memory and mood is proposed;
haploinsufficiency of α2 and α3 generate behavioral alter-
ations [34], and a missense mutation in the α3 isoform was
found in a maniac-like mouse model [35].

The different affinities of these isoforms for ouabain, a
Na+/K+-ATPase inhibitor, are also interesting. The α1 subunit
has a low affinity, whereas α2 and α3 have high affinities:

This is an important research subject because the α1 isoform
is present in α-motoneurons and α3 is present in γ-
motoneurons [36]. The α2 isoform has a more prominent role
in regulating Ca2+ release from the sarcoplasmic reticulum of
myocytes [37].

The β subunit for Na+/K+-ATPase, molecular weight of
≈55 kDa, is a glycoprotein that lacks a catalytic site and does
not participate in ion exchange. Instead, it has regulatory ac-
tivity that, inMDCK cells, is crucial for the correct maturation
of the enzyme [38]. Na+/K+-ATPase is resistant to non-ionic
detergents when α and β subunits are joined [39]. Inhibiting
the glycosylation of the β subunit reduces the cellular abun-
dance of both subunits, which implies a role in the expression
of Na+/K+-ATPase on the cell [40].

There are three β isoforms of β subunit, β1, β2, and β3,
where β1 is more expressed in the kidney (where it is part of
the model for the α1 β1 isoform) and in organs related to
homeostasis [26]. Normal glycosylation of this isoform is
needed for the correct stability of adherent and tight junctions
in mature epithelia [41]. The reported reduction of the β2
isoform in glioblastomas is interesting because this could be
the factor that initiates invasion by these cells [42]. Inactiva-
tion of the β3 isoform can inactivate T and B lymphocytes,
which is important for immune regulation [9].

Isoforms α1, α2, and α3 are present in the brain, where
they have different expression profiles: α1 is ubiquitous, α2 is
predominant in astrocytes, and α3 is principally present in
neurons. The β1 and β2 isoforms occur in the brain, with
astrocytes expressing α1, α2, and β2 and neurons expressing
α1, α3 and β1 and β2 [43]

In one study, inhibition of α3 nearly eliminated the ability
of hippocampal dendrites to restore the ionic concentration of

Fig. 1 Conformation of P2C-
type ATPase. Na+/K+-ATPase is
composed by three subunits,α,β,
and FXYD. Only α subunit is the
catalytic one and is the place
where ion exchange occurs, in
this case is three intracellular Na+

for two extracellular K+. H+/K+-
ATPase is a dimer composed of
two subunits, α and β, and α is
the catalytic subunit too; this
enzyme exchanges one
intracellular H+ for one
extracellular H+, but how it works
as a dimer, the exchange is 2H+

by 2K+. β and FXYD subunits
are to stabilize the ion binding and
the activity of the enzyme
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Na+ [44], and animals with α3 haploinsufficiency had diffi-
culties finding the platform in the Morris Water Maze test,
even when it was removed, indicating an impaired short-
and long-term memory [34]. In α3 haploinsufficient mice,
the NR1 subunit of the NMDA receptor is downregulated
[45].

The additional regulatory protein, FXYD, is present in sev-
en isoforms: FXYD1 or phospholemman; FXYD2 or γ sub-
unit; FXYD3 or mammary tumor marker Mat-8; FXYD4 or
corticosteroid hormone-induced factor CHIF; FXYD5 or re-
lated to ion channel RIC or dysadherin; FXYD6 or
phosphohippolin; and FXYD7 [46]. Na+/K+-ATPase might
be a target for anticancer treatment because FXYD protein,
e.g., FXYD3, is a cancer-related protein [47].

H+/K+-ATPase

The α subunit of H+/K+-ATPase, that has a molecular weight
close to 100 kDa, is conformed by 10 transmembrane domains
and has two isoforms [25]. It contains the catalytic domain of
the protein to which H+ binds, but, interestingly, this ATPase
also needs a molecule of Mg2+ for an entire H+–K+ exchange
cycle. In the presence of Mg2+, the enzyme binds ATP, then
one H+ is added and ADP detaches, leaving a phosphate
bound to the enzyme. Next, with the anion still in the ATPase,
H+ is exchanged for K+; later, the anion is liberated, and K+

can then be dissociated. Finally, the state in which H+/K+-
ATPase is bound to Mg2+ is restored and the cycle can start
again [11, 12, 28]. High K+ concentrations are needed for
some functions of H+/K+-ATPase; for example, during fetal
development, a HKα2-null mice may have problems with pla-
cental perfusion or even partial abortion. These may result
from failure of compartment volume adjustment, most likely
because of a high plasma K+ concentration [48]. Both benign
prostate hyperplasia and prostatic tumor tissue had increased
non-gastric H+/K+-ATPase compared with normal prostate
cells, not only in the basal cells and membrane but also along
the epithelium and cytosol [49]. The colonic H+/K+-ATPase
acts as an Na+/K+-ATPase in Xenopus leavis oocytes because
its function is devoted to K+ transport [50], and it can also
transport NH4

+ in rat distal colon [51]. Most recently, it was
reported to function as a Na+/K+-ATPase and Ca2+-ATPase in
parietal cells during altered pH states [10].

Two isoforms of α subunits exist: the gastric or HKα1 H
+/

K+-ATPase and the non-gastric or colonic H+/K+-ATPase or
HKα2 H+/K+-ATPase [52]. The HKα2 gene, however, pro-
duces three alternative transcripts. HKα2(a) is found in the
colonic H+/K+-ATPase, HKα2b is reported in the rat and has
been observed in kidney, and HKα2c has been reported in
rabbit and rat but may not be found in humans [53].
Omeprazol is a specific modulator of H+/K+-ATPase [54],
and it binds in theα subunit during acid transporter conditions
[12]. Ouabain can bind to the HKα2 H

+/K+-ATPase, but not

the HKα1 H
+/K+-ATPase, of guinea pig colon [55]; this is an

interesting finding because ouabain is a specific modulator of
Na+/K+-ATPase.

Four isoforms of β subunit, HKβ, NaKβ1, NaKβ2, and
NaKβ3, with molecular weights of ≈35–55 kDa [52], can pair
with the HKα subunits. HKα1 is known to pair with HKβ
[53], but apparently, the β1 subunit of Na

+/K+-ATPase pairs
with HKα2 [56]. β subunit lacks of a catalytic site, but it is
crucial for H+/K+-ATPase function, localization on the plasma
membrane, and for K+ binding to the α subunit, which is
similar to Na+/K+-ATPase.

X+/K+-ATPases and Their Modulation

H+/K+-ATPases

H+/K+-ATPases have specific inhibitors that are principally
divided into two groups: the cardiac glycosides and the non-
cardiac glycosides which are included substituted benzimid-
azoles, potassium-competitive acid blockers, and vanadate
[22] (Table 1). The most common substituted benzimidazole
known is omeprazole, and it inhibits proton exchange, thereby
reducing stomach acidity and the risk for gastric ulcer. Omep-
razole derivatives that share the same action but differ chem-
ically include timoprazole, esomeprazole, rabeprazole,
pantoprazole, and lansoprazole [57]. Omeprazole sulfide is a
metabolite of omeprazole found in plasma that is eliminated in
the urine and feces; it competes with the activated form of
omeprazole to reduce its inhibitory effect. This metabolite
was used to locate the site of omeprazole binding, and the
sulfur moiety has a nucleophilic attraction to Cys813 in the
transmembrane (TM) helices TM1 and TM2 [58].

In the potassium-competitive acid blocker class,
SCH28080 inhibits ATPase function when potassium is not
in the enzyme; other inhibitors in this family are TAK.438,
AZD0865, and revaprazan [22]. Vanadate binds to all P-type
ATPases in the phosphate binding site and irreversibly inhibits
them. The binding affinity of vanadate is higher in the E2 of

Table 1 Examples of somemodulators for Na+,K+-ATPase and H+,K+-
ATPase

Modulators Na+,K+-ATPase H+,K+-ATPase

Most known Ouabain Omeprazole

Competitor
(drug)

Chlorpromazine,
chloroquine

SCH28080, TAK.438,
AZD0865 and revaprazan

Irreversible
inhibitor (drug)

Vanadate Vanadate

Endogenous Bufadienolides,
ouabain

Ouabain, aldosterone, histamine

Others Lithium Lithium
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conformation, that is, after ATP hydrolysis [53]. Finally, of the
cardiac glycosides, the best known is ouabain, an inhibitor of
Na+/K+-ATPase. Its function in H+/K+-ATPase is controver-
sial because the degree of enzyme inhibition is variable, de-
pending on the cell type and expression system used. For
example, HKα2 is insensitive to ouabain in HEK-293 cells
[59] but sensitive when it was expressed on Xenopus oocytes
[60]. Lithium, a well-characterized cation that is used to treat
psychiatric conditions such as bipolar disorder, is known to
cause kidney failure at high concentrations. Significantly, lith-
ium can decrease H+/K+-ATPase activity in cortical collecting
tubules but not in medullary collecting tubules [24].

Na+/K+-ATPase

Na+/K+-ATPase has several endogenous modulators and non-
endogenous modulators. Endogenous modulators include the
following: steroidal hormones, endogenous ouabain, non-
steroidal peptide hormones, and catecholamines. Non-
endogenous modulators include the following: digitalis (oua-
bain-like cardiotonic steroid modulators), bufadienolides [21],
competitors such as chlorpromazine and chloroquine [61], and
lithium (Table 1). From all these, we focused on ouabain,
which is the most common inhibitor used, and on lithium,
which is a very important monovalent cation that is used for
treatment of bipolar disorder. In particular, lithium has been
observed to have protective effects against ouabain, which is
really interesting to understand how lithium could modulate
Na+/K+-ATPase (Fig. 2 and 3).

Ouabain is an endogenous cardiac glycoside that inhibit
Na+/K+-ATPase, is thought that is able to bind the α subunit.
It is interesting to note that, in cardiotonic steroids, ouabain’s

hydroxyl group position is very important because it has been
reported that this position might be involved in the inhibitory
activity with the enzyme [62]. As previously mentioned, inhi-
bition could take place when Na+/K+-ATPase is in E2P state,
after the first Na+ release, which could allow ouabain binding.
In addition, it has been observed that inhibition site ouabain
might be in the TM helices TM1, TM2, TM4, and TM6 of
Na+/K+-ATPase [63]. However, in another report, results
showed that Gln111 and Asn 122 in TM1 and TM2 are key
amino acids that may be involved in the cardiac steroid-
enzyme interaction [58]. Bonding can occur in two steps:

Fig. 2 Lithium and its role in
P2C-type ATPase. Lithium is a
well-known cation that is used for
neurological diseases like bipolar
disease and depression, and
lately, it has been reported a
possible role in Alzheimer’s
disease, and it has been seen that
it stimulates Na+/K+-ATPase
activity at the same time that at
this concentrations, it affects H+/
K+-ATPase activity in kidney and
can produce other illness. Now
would be really interesting to find
the correct lithium concentration
that could enhance Na+/K+-
ATPase and not affect H+/K+-
ATPase to be able to use it to
prevent or stabilize aging
affections as Alzheimer’s disease

Fig. 3 Possible relation between Na+/K+-ATPase and H+/K+-ATPase.
Since H+/K+-ATPase has a role in potassium excretion, if this enzyme
fails could be possible to have a role in hypertension, an illness that is
well-known to be a risk factor in neurological diseases as dementia and
Alzheimer’s disease (AD) and is acknowledged that Na+/K+-ATPase
activity is reduced in these diseases

Mol Neurobiol (2016) 53:1343–1354 1347



First, the junction bonding occurs, and then, a sugar residue
interaction occurs at a slower rate [62].

Ouabain can inhibit different α isoforms depending on its
concentration, because it has different affinities as mentioned
above, where the α1 subunit has low affinity to ouabain and
α2 and α3 have high affinity. Ouabain also has different ef-
fects, including promotes apoptosis and necrosis at high con-
centrations [64], and it is involved in neurological diseases. In
fact, it has been reported that ouabain is involved in mood
disorders such as depression [65], and, interestingly, ouabain
is used to make mania rat models, which is achieved with an
intracerebroventricular administration of ouabain, and it was
reported that lithium can prevent ouabain’s effect [66].

Notably, because Na+/K+-ATPase could be a potential tar-
get for the treatment of neurological diseases, it is important to
identify which isoforms are involved in different diseases be-
cause it has been observed that different haploinsufficient
mice have different deficits [34]. Mice deficient in the α3
isoform have more difficulties in the Morris water maze test,
whereas the mice deficient in α2 have less entries in an open
field area and do not perform well in the elevated zero maze
test. In this context, it is very important to remember thatα3 is
an isoform found in neurons, α2 in astrocytes, and α1 is
ubiquitous. Therefore, α3 issues are related to memory defi-
cits, and α2 issues could be related to the homeostatic
stabilization.

It has been reported that insulin promotes translocation of
Na+/K+-ATPase [67], which is preventing digoxin toxicity
[68], and it has also been observed that insulin reduces Na+/
K+-ATPase’s activity in diabetic liver [69]. This traslocation
induced by insulin is interesting because in diabetes, it has
been observed a cognitive deficiency, as demonstrated by
the Morris water maze test [70].

Lithium is a monovalent cation that it is known to replace
Na+ in protein, but it protects Na+/K+-ATPase against inhibi-
tion by ouabain. However, the mechanisms of action are not
understood. Lithium protects human neuroblastoma SH-
SY5Y cells from ouabain-induced damage [71], and lithium
delays ouabain-stimulated multiple spikes [72]. Lithium also
enhances Na+/K+-ATPase’s activity in animal models of bipo-
lar disorder [73] and depression [74].

The main concern with lithium is that its concentration in
the human body should be closely monitored because it can
cause problems such as hypothyroidism, weight gain, an in-
creased risk of reduced urinary concentrating ability, hyper-
parathyroidism, and, in some cases, a significant reduction in
renal function [75]. Nephrotoxicity can be observed after
2 months of lithium treatment, and lithium can also lead to
diabetes insipidus [76]. A recent review reported that a safe
long-term treatment dose of lithium is up to 0.8 mmol/L [77],
and it has also been reported that lithium treatment of 40 nmol
in humans for 15 months did not present any problems in
kidney nor thyroid dysfunction [78], which indicates that this

dose may be an appropriate limit for human treatment. This is
an important point because lithium treatment has been shown
to diminish Alzheimer’s disease (AD) risk in patients with
bipolar disease [79] and stabilized cognitive impairment in
Alzheimer’s disease [78].

Na+/K+ ATPase and Neurological Diseases

Several studies have related Na+/K+-ATPase to neurological
disorders. In this paper, we discuss several examples of this
relationship, and then, we focus on mood disorders and
Alzheimer’s disease. A study has suggested that Na+/K+-
ATPase and endogenous digitalis-like compounds are in-
volved in mood disorders, similar to that reported in an animal
model of depression [65]. For bipolar disorder, a genetic var-
iation related to the α isoform has been observed [80], and a
mania-like behavior has been reported in Myshkin mice that
are heterozygous for the α3 isoform [35]. Familial hemiplegic
migraine has been related to deficiencies in and mutations of
the α2 isoform [81, 82], and mice with the same isoform
deficiency have shown similar behavior [82]. In rapid-onset
dystonic parkinsonism (RPD), six missense mutations have
been found in the α3 isoform of Na+/K+-ATPase (ATP1A3)
[81, 83] in seven unrelated families [84]. The same mutation
in the α3 subunit has also been reported in two cases of RPD
[85], and it has also been proposed that a possible mutation in
D923N could be involved in this illness [86]. In other ill-
nesses, such as alternating hemiplegia of childhood, patients
have shown de novo mutations in ATP1A3, which do not
affect the protein expression but do cause a reduction in the
ATPase activity [87]. In Alzheimer’s disease that is principally
related with aging, Na+/K+-ATPase activity is lower [88]. It is
thought that lithium, a treatment for bipolar disorders, could
be acting through Na+/K+-ATPase to repair neurological dam-
age because an improvement in the activity of Na+/K+-ATPase
has been observed in patients with Alzheimer’s disease [78].

By contrast, studies have shown a relationship between
neurological diseases and a reduction in intracellular Na+ that
could be associated with a decreased affinity of Na+ to this
ATPase. This is particularly important because [Na+]i is re-
duced when Na+ affinity increases, and [Na+]i rises when
Na+ affinity is reduced, suggesting that affinity itself could
be regulating [Na+]I [89].

Na+/K+-ATPase and Mood States

Na+/K+ ATPase is altered in mood-related illnesses such as
depression and bipolar disease. It has also been shown that
early life experiences, e.g., neonatal handling in rats, have
significant effects on Na+/K+-ATPase activity, which in rats
results in a model of depression during adulthood [90]. In

1348 Mol Neurobiol (2016) 53:1343–1354



bipolar disease, there is evidence that Na+/K+-ATPase activity
is significantly reduced together with an increase in lipid per-
oxidation [73], and two single nucleotide polymorphisms
(SNPs) are significantly associated with this illness. Both
SNPs are related to the α3 isoform, and one SNP is related
to the α1 isoform [80].

Bipolar disease is known for episodes of mania and epi-
sodes of depression. It has been observed that intra-
cerebroventricular administration of ouabain, which decreases
Na+/K+-ATPase activity, can produce mania episodes, detect-
able by motoric hyperactivity [66]. A mania-like behavior can
also be produced in mice heterozygous for the α3 isoform of
Na+/K+-ATPase, in Myshkin mice (Atp1a3 Myk/+; Myk/+)
[35]. In double transgenic mice that are heterozygous for the
α3 subunit of Na+/K+-ATPase (MyK/+) and agrin (Agrn/+), a
reduced mania-like behavior has been observed, which could
indicate an interesting relation between agrin and Na+/K+-
ATPase that could function as a target for mood stabilizers
[91].

Does Na+/K+ ATPase Have a Role in Alzheimer’s Disease?

In different models of AD, the activity of Na+/K+-ATPase is
affected by different inhibitors. First, a 40 % decrease in oua-
bain binding in the brains of patients with AD was described
[92]; then, it was found that amyloid β-peptide impairs Na+/
K+-ATPase [93] and that the activity of Na+/K+-ATPase was
reduced in the brains of AD patients [88, 94]. A review also
reported that Na+/K+-ATPase has a function in aging and en-
ergy balance [95]. In oocytes ofX. leavis, an inhibition of Na+/
K+-ATPase activity by β-amyloid was observed [96], and in
the APP+PS1 double transgenicmicemodel of AD, a reduced
activity of Na+/K+-ATPase was observed, particularly in the
areas bordering the β-amyloid plaques [97]. Moreover, Zhang
et al. proposed that Na+/K+-ATPase is an important factor to
account for in the investigation of neuroprotection in AD [98],
and, more recently, it was shown that microinjections of β-
amyloid into the rat brain produces an impairment in Na+/K+-
ATPase activity [99].

H+/K+-ATPases, Kidney Function, and Regulation

In the kidney, there are three isoforms of H+/K+-ATPases:
HKα1, HKα2, and HKα2b. These three enzymes are
expressed in the collecting duct, which deals with the renal
regulation of pH and potassium secretion; HKα1 has also been
reported on the ascending limb of Henle. It is likely that HKα1

and HKα2 may have different functions; thus, HKα1 and
HKα2 are both upregulated during acidosis and cellular me-
tabolism, whereas during cellular respiration, only the HKα1
is upregulated. HKα2 has increased expression during chronic
hypokalemia in the renal medulla [100] [101]. During meta-
bolic acidosis, it has been described an increase in enzyme

activity but without change in gene expression. During alka-
losis, there is no agreement whether it is increased or de-
creased since there are studies reporting both. Interestingly,
vasopressin and aldosterone can modulate proton secretion
of H+/K+-ATPase and H+-ATPase through the mineralocorti-
coid receptor and V1aR, and both aldosterone and vasopressin
can also stimulate proton secretion [102].

By contrast, it is well known that urinary K+ excretion has a
circadian profile, although the pathway involved is not eluci-
dated. HKα2 also has a circadian profile regulated by Nrf2, so
this could be the protein responsible for the excretion of K+ in
a circadian rhythm [103]. Furthermore, in one study, serum
hypokalemia was reported in two women taking omeprazole,
and the hypokalemia was reversed by administration of potas-
sium supplements and discontinuation of the H+/K+-ATPase
inhibitor [104].

Importance of Dietary Potassium Intake in Health
and Disease

The regulation of potassium homeostasis is composed of two
main mechanisms: extrarenal and renal. The extrarenal mech-
anism controls very tightly plasma levels shifting potassium
from the extracellular to the intracellular, whereas the renal
mechanism deals with the body balance and is largely influ-
enced by the intake and urinary excretion.

In the kidney, the distal nephron is a main site for the
regulation of potassium handling; in particular, the connecting
tubule cells (CNTc) highly specialized on potassium secretion
[105]. The CNTc contains Na,K-ATPase in the basolateral
side and a potassium channel (ROMK) in the apical side,
whereas the neighboring intercalated cells (Ic) display H,K-
ATPase in the apical side (Figs. 4 and 5).

The CNTc is the site of origin of renal kallikrein [106]; this
enzyme is the main component of the renal kallikrein-kinin
system, a vasoactive system with vasodilatory and sodium
excretory function, which is stimulated by increased potassi-
um intake [105]. In response to a diet high in potassium, the
CNTc cell hypertrophy increases the basolateral membrane
and the Na,K-ATPase as a compensatory mechanism to se-
crete increased potassium intake. This mechanism is known as
potassium adaptation and participates in the potassium bal-
ance. Along with cell hypertrophy, CNTc increased renal kal-
likrein synthesis and kallikrein system stimulation by high
potassium diet increases the excretion of sodium and water
with a net effect on decreasing high blood pressure [105]. This
points to the kallikein system as a protective vasoactive sys-
tem against hypertension, renal diseases, and stroke. More-
over, previous studies from our group have demonstrated in
hypertensive human potassium supplementation in the diet
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significantly increased kallikrein, urinary sodium excretion
and lower blood pressure [107].

On the contrary, we have demonstrated that during hypo-
kalemia, there is a reduction of renal kallikrein, and despite of
the mechanism underlying the decreased kallirein, an im-
paired kallikrein system contributed to salt sensitivity, hyper-
tension, and renal damage [108].

The importance placed on the relevance of dietary potassi-
um on health and disease [109, 110] is underscored compared
with that placed on dietary sodium. Much effort has been
placed on dietary sodium reduction on the control of several

diseases, but much less have been placed on the adequate
dietary potassium intake. Despite that natural food contains
10–15 times more potassium than sodium, however, our in-
take has ≈3 times more sodium (186 mmol/day) than potassi-
um (65 mmol/day) due to the main component of processed
food in our diet. Moreover, although it is known for decades
that adequate potassium diet is beneficial to health, particular-
ly for the control of blood pressure, stroke, and kidney disease
[109] which has recently been confirmed, there are few studies
on biomedical bases explaining this beneficial effect, and the
cellular and molecular mechanisms responsible for the bene-
ficial effects of increased dietary potassium remain unknown
[111], and they are subject on active research by our group.

Concluding Remarks

P2C-type ATPases have different but important functions and
expression. Na+/K+-ATPase has an important function in po-
tassium regulation in neurons and is able to re-establish the
membrane potential of neurons to produce regenerative action
potentials and restore neuronal communication. H+/K+-
ATPase is focused on the kidney, stomach, and colon; it is
crucial for potassium serum concentrations in the kidney and
for re-establishing acid–base homeostasis in the stomach and
colon. It would be very interesting to evaluate the impact that
H+/K+-ATPase could have in hypertension because Na+ and
K+ homeostasis are key factors in this disease. Moreover, Na+

Fig. 4 Localization of Na,K-
ATPase, H,K-ATPase, and
kallikrein in the kidney. In the
panel is shown the localization of
Na,K-ATPase in the basolateral
side of distal tubule cell (a), the
localization of H,K-ATPase in the
apical or luminal side of
Intercalated cells (b), and the
localization of kallikrein in the
connecting tubule cells (c). The
insets in each photography
display at higher magnification
their subcellular distribution. A
cartoon showing the distribution
polarized distribution of Na,K-
ATPase and ROMK in the CNTc
is a key regulator of potassium
and the site of origin of kallikrein

Fig. 5 Cell types of the distal nephron, a main site for regulation of
potassium by the kidney. The distal nephron is composed of four
different cell types: the distal convoluted tubule cell (DCTc), the
connecting tubule cell (CNTc), the intercalated cell (Ic), and the
collecting duct cell (CDc). Na,K-ATPase is located in the basolateral
side of DCTc, CNTc, and CDc, whereas H,K-ATPase is located in the
apical or luminal side of Ic. The CNTc contains Na,K-ATPase and
ROMK and is a key regulator of potassium by the kidney and the site
of origin of kallikrein
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also influences urinary K+ secretion [112]. Because hyperten-
sion is a very common illness induced by an unhealthy diet,
altogether with aging are risk factors for Alzheimer’s disease,
another disease that might be influenced by a Na+/K+-ATPase
defficient activity (Fig. 3). Finally, these two enzymes are
more closely related than previously supposed, not only be-
cause of homology. It is possible that H+/K+-ATPase dysfunc-
tion in the maintenance of potassium homeostasis could affect
neuronal activity and survival, as well as affect Na+/K+-
ATPase activity.
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