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Abstract An acute bout of exercise can exacerbate pain,
hindering participation in regular exercise and daily activities.
The mechanisms underlying pain in response to acute exercise
are poorly understood. We hypothesized that proton accumu-
lation during muscle fatigue activates acid-sensing ion chan-
nel 3 (ASIC3) on muscle nociceptors to produce hyperalgesia.
We investigated the role of ASIC3 using genetic and pharma-
cological approaches in a model of fatigue-enhanced
hyperalgesia. This model uses two injections of pH 5.0 saline
into muscle in combination with an electrically induced fa-
tigue of the same muscle just prior to the second injection of
acid to inducemechanical hyperalgesia.We show a significant
decrease in muscle force and decrease in muscle pH after
6 min of electrical stimulation. Genetic deletion of ASIC3
using knockout mice and pharmacological blockade of ASIC3
with APETx2 in muscle prevents the fatigue-enhanced
hyperalgesia. However, ASIC3−/− mice and APETx2 have
no effect on the fatigue response. Genetic deletion of ASIC3
in primary afferents innervating muscle using an HSV-1 ex-
pressing microRNA (miRNA) to ASIC3 surprisingly had no
effect on the development of the hyperalgesia. Muscle fatigue
increased the number of macrophages in muscle, and removal
of macrophages from muscle with clodronate liposomes
prevented the development of fatigue-enhanced hyperalgesia.

Thus, these data suggest that fatigue reduces pH inmuscle that
subsequently activates ASIC3 on macrophages to enhance
hyperalgesia to muscle insult.
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Introduction

Regular exercise remains one of the more effective treatments
for chronic pain conditions such as fibromyalgia and low back
pain [1, 2], but exercise can acutely exacerbate pain, hindering
participation in regular exercise and daily activities [3–6].
Indeed, people with chronic pain show significant reduction
in physical activity levels when compared to healthy controls
and poor compliance with regular exercise [7, 8]. Therefore,
reducing pain during exercise and activity is critical for pro-
moting participation in regular daily activities and effective
exercise programs.

The mechanisms that produce an acute exacerbation of
muscle pain with exercise in people with chronic pain are
not well understood. The enhanced pain response occurs with
levels of activity that do not typically produce tissue damage
or pain in healthy subjects [9, 10]. Animal studies similarly
show an enhanced hyperalgesia when combining fatiguing,
nondamaging exercise with a nonpainful low-dose muscle
insult [11–13].We previously show that whole-body fatiguing
exercise enhances hyperalgesia to muscle insult and is asso-
ciated with increased activity in brainstem neurons without
significant changes in the muscle metabolites [11, 14, 15]. On
the other hand, enhanced hyperalgesia to muscle insult after
fatiguing a single muscle was not associated with changes in
brainstem neurons [13].

Muscle fatigue releases a wide range of by-products, in-
cluding protons (decreasing pH) and lactate, which could
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subsequently activate nociceptors to produce pain. Decreasing
pH in muscle produces pain and hyperalgesia in healthy
human subjects [16, 17], produces hyperalgesia in animals
[18], and activates acid-sensing ion channels (ASICs) [19,
20]. During moderate fatiguing exercise, intramuscular pH
decreases to approximately 6.6 [21, 22], values that would
activate ASICs inmuscle [23]. In fact, both protons and lactate
produce ASIC-like currents and enhanced intracellular calci-
um when applied to dorsal root ganglia neurons including
those innervating muscle [19, 20, 24–26]. ASIC3, in particu-
lar, has been implicated in the development of hyperalgesia in
models of muscle pain, both inflammatory and noninflamma-
tory [27–29]. Muscle nociceptors express ASIC3 messenger
RNA (mRNA) and protein, and ASIC3 is found in higher
quantities in afferents innervating muscle when compared to
skin [26, 27, 30]. We therefore hypothesized that decreases in
pH during muscle fatigue activate ASIC3 on nociceptors to
enhance the hyperalgesia to a low-dose muscle insult.

Materials and Methods

Animals All experiments were approved by the Institutional
Animal Care and Use Committee and performed in accor-
dance with the National Research Council Guide for the Care
and Use of Laboratory Animals and IASP Ethical Guidelines
for the Use of Animals in Research. Male and female mice
(6–10 weeks old) were bred at the University of Iowa.
Mice on C57BL/6J background lack the ASIC3 gene
(ASIC3−/−, n=7 male, 8 female) and C57BL/6J mice (n=
97 male, 22 female). ASIC3−/− mice have been previously
characterized [31, 32] and show similar results when com-
pared against wild-type littermates and C57/BL6 in study of
muscle pain [27, 28].

Fatigue Paradigm Muscle fatigue was induced using a mod-
ified Burke protocol that produces rapidly recovering single
muscle fatigue as previously described [13, 33, 34]. Briefly,
mice were deeply anesthetized using 2–4% isoflurane. Needle
electrodes connected to a Grass S88 solid-state square wave-
form generator (Grass Technologies, West Warwick, RI) were
inserted into the belly of the gastrocnemius. Baseline maxi-
mum force was established by applying three 100-Hz trains at
7 V. To induce fatigue, mice were given 6 min of submaximal
contractions using 7-V stimulations at 40 Hz for 3.75 s with
4.25 s of rest between contractions. Three additional maxi-
mum force contractions were then elicited to determine the
decline in force after fatiguing contractions. Force was mea-
sured by attaching the plantar surface of the foot to a force
plate connected to an iWORX FT-302 force transducer
(iWorx, Dover, NH). Data was collected using LabVIEW
software and analyzed using FreeMat and Python scripts.
Force transducer data was converted to millinewton using a

standard curve of 1-g weights applied to the apparatus. Fa-
tigue was operationally defined as a decline in force between
baseline and final maximum force contractions.

ASIC3−/− (n=7 male, n=7 female) mice were compared to
wild-type mice (male n=6, n=6 female) for initial maximum
contraction force, final maximum contraction force, and at
each of the submaximal fatiguing contractions. Additionally,
muscle fatigue was measured in mice pretreated with the
ASIC3 antagonist APETx2 at low (20 μM, n=8) and high
(200 μM, n=7) doses or saline control (n=9). Animals miss-
ing 20 or more data points (≥45%) in a fatigue recording were
excluded from the fatigue analysis (males n=2 ASIC3−/−, n=2
wild type, saline control n=1, low-dose APETx2 n=2, high-
dose APETx2 n=2; females none excluded).

Metabolite Recording Muscle pH was measured in deeply
anesthetized animals using a pH probe inserted into the belly
of gastrocnemius before and after electrically stimulated mus-
cle contractions. After shaving the overlying hair, an incision
was made in the skin to open an 8 mm×8 mm square over the
center of the gastrocnemius muscle. Muscle fibers were gently
teased apart, and the tip of the probe was inserted into the
muscle.

For the measurement of pH, a micro-pH probe (Lazar
Research Laboratories, Los Angeles) connected to a JENCO
6230N (Jenco Instruments, San Diego) pH meter was cali-
brated at pH 7.0 and 4.0 before insertion into the muscle of
male wild-type mice. In the control group (n=4 male, n=4
female), the muscle was exposed and measurements were
taken 6 m apart. For the experimental group (n=5 male,
n=4 female), the muscle was exposed and then measure-
ments were taken before and after the 6-m fatigue treat-
ment. The pH and force data were sampled continuously
at 30 Hz using a Python script to record data from the
JENCO 6230N pH meter. Though the sampling was con-
tinuous, the pH probe was applied to the muscle for only
30 s at a time to avoid loss of pH sensitivity. When not
measuring muscle pH, the sensor was stored in a pH 6.8
phosphate buffer containing heparin, which served as both a
reference to ensure sensitivity was maintained and as a
cleaning solution. After each contact with the muscle, the tip
was cleaned briefly with a cotton swab soaked in acetone.

In order to avoid electrical interference caused by unwant-
ed circuits forming between the main power supply, electrical
stimulator, and measurement probes, a wirelessly controlled
battery-powered electrical stimulator was developed. An
Arduino Uno R3 microcontroller was programmed with the
electrically stimulated muscle fatigue protocol. A digital out-
put pin was used to control a transistor that gated a 7-V current
through needle electrodes. An RN-42 Bluetooth antenna
(Sparkfun Electronics, Boulder, CO) transmitted serial input
to and from an Android device in order to receive and confirm
instructions from the user. This device was validated against
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the Grass S88 solid-state square waveform generator and
produced identical contractions at 40 and 100 Hz.

Fatigue-Enhanced Pain Model Muscle pain was induced by
combining low-intensity muscle insult with 6 min of fatiguing
contractions. On day 1, mice were anesthetized with 2–4 %
isoflurane and given an intramuscular (i.m.) injection of 20-μl
normal saline adjusted to pH 5.0. On day 5, mice were
anesthetized with 2–4 % isoflurane and underwent 6 min of
fatiguing contractions. Immediately after completing fatiguing
muscle contractions, the mice were given a second i.m. injec-
tion of 20 μl pH 5.0 normal saline. The pH of the normal
saline was adjusted with HCl to pH 5.0±0.1. Control injec-
tions consisted of two injections of normal saline (pH 7.2±
0.1) 5 days apart without the 6 min of fatiguing contractions.
The unbuffered pH 5 saline injections reduce muscle pH to
approximately 6.9 [18], which is comparable to decreases
seen after intense exercise [35, 36]. Previous studies show
that the combination of pH 5.0 saline with muscle fatigue is
critical for the development of mechanical hyperalgesia, as
neither two injections of pH 5.0 alone nor two injections of pH
7.2 saline combined with fatigue produce hyperalgesia
[11–13]. On the other hand, two injections of pH 4.0 produce
decreases in muscle pH to an average of pH 6.5 and results in
long-lasting hyperalgesia [18].

Muscle Withdrawal Thresholds Muscle withdrawal thresholds
(MWT) were measured by applying force-sensitive tweezers to
the belly of the gastrocnemius muscle as previously described
[11], where lower thresholds indicate greater sensitivity. Mice
were acclimated to this behavioral paradigm in two 5-min
sessions over a 2-day period prior to the first injection. Briefly,
mice were placed in a gardener’s glove, the hindlimbwas held in
extension, and the muscle was squeezed with force-sensitive
tweezers until the animal withdrew its hindlimb. An average of
three trials per animal was taken at each time period. A decrease
inwithdrawal thresholdswas interpreted asmuscle hyperalgesia.
Our prior work shows that anesthetizing the skin during this test
does not change withdrawal thresholds, but anesthetizing the
deep tissue increases the threshold thus validating this as a
measure of muscle hyperalgesia [37].

Genetic Deletion of ASIC3 in the Exercise-Enhanced Pain
Model The role of ASIC3 was assessed using genetic and
pharmacological approaches. ASIC3−/− (n=8 male, 4 female)
were compared side-by-side with C57BL/6 mice (n=7 male,
n=4 female) in the exercise-enhanced pain model. Muscle
withdrawal thresholds were measured at baseline and 24 h
after the induction of the pain model, i.e., after the second
injection of pH 5.0 saline.

Antagonism of ASIC3 in the Exercise-Enhanced Pain
Model For the behavioral pharmacology studies, male and

female C57BL/6 mice were pretreated with i.m. injection of
APETx2 (males 20 μM, n=14; 70 μM, n=8; 200 μM, n=7,
females 200 μM, n=4) or vehicle (0.9 % saline, males n=16,
females n=4) 5 min before muscle fatigue on day 5. 24 h after
the second pH 5 saline injection, animals were tested for
muscle withdrawal threshold. Animals were divided into mul-
tiple groups tested across several weeks. Each testing group
consisted of vehicle control and multiple doses of both
APETx2.

Neuron-Selective Knockdown of ASIC3 in the Fatigue-
Enhanced Pain Model To test the role of neuronal ASIC3 in
fatigue-enhanced muscle pain, ASIC3 was selectively down-
regulated using herpes simplex virus 1 (HSV-1) expressing an
artificial microRNA (miRNA) against ASIC3 (HSV-
miR844). Our laboratory developed and characterized this
construct showing efficient and functional knockdown of
ASIC3 in dorsal root ganglia cells after injection of HSV-
miR844 into the gastrocnemius muscle [38]. Further, this
strain of HSV selectively targets neuronal cells [39, 40].
In the present study, male C57/BL6 were assessed for
muscle withdrawal threshold at three time points: prior
to any manipulation (baseline 1), 4 weeks after HSV-1
treatment (baseline 2), and after exposure to the exercise-
enhanced pain model. After the first baseline, mice were
injected with either HSV-1 expressing miR844 (active, n=7)
or HSV-1 expressing eGFP (control, n=7). Specifically, an
incision was made into the skin, and the needle was passed
into the belly of the gastrocnemius muscle through that open-
ing. Twenty microliters of solution was injected over the
course of 1 min. After injection, the wound was covered by
sterile gauze, and the tissue was allowed to absorb the solution
for 15 min before closure with a subcuticular suture. The mice
were then allowed to recover for 4 weeks. Following
incubation, a second baseline muscle withdrawal threshold
was taken to assess for potential effects of viral infection
on pain behavior. Then, mice were exposed to the fatigue-
enhanced pain model, and muscle withdrawal thresholds
were repeated for a final time.

The same animals used in the behavioral experiment were
then sacrificed, and L4–L6 dorsal root ganglia (DRG) were
tested for ASIC3 mRNA using quantitative PCR (qPCR) as
previously described [29, 38]. Briefly, the DRGs were re-
moved from the animal and stored in RNALater (Qiagen,
Valencia, CA). DRGs were transferred to TRIzol (Life Tech-
nologies, Carlsbad, CA) and homogenized, and RNA was
then isolated using chloroform extraction, glycogen, and
isopropanol. First-strand complementary DNA (cDNA) was
synthesized from 0.2 to 1 μg RNA using the SuperScript
VILO protocol (Life Technologies). qPCR using validated,
predesigned TaqMan assays for ASIC3 (Mm00805460_m1)
and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
was carried out using an ABI prism 7900HT sequence
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detector (Applied Biosystems, Foster City, CA). Each cDNA
sample was run in triplicate, and expression of ASIC3 was
normalized to the expression of GAPDH based on quantifica-
tion cycle (Cq). The results are expressed as means and SEM
of the relative abundances (2−ΔCq) for the DRG ipsilateral to
virus injection.

Quantification ofMacrophages in the Fatigue-Enhanced Pain
Model To determine if electrical stimulation with or without
pH 5.0 saline injections increases the number of macrophages
in gastrocnemius muscle tissue, male and female C57BL/6
mice (n=2 of each sex per condition) were left untreated,
exposed to electrical stimulation alone (immediately after
fatigue task), or exposed to electrical stimulation with pH
5.0 saline injections (24 h after second acid injection). Mice
were then anesthetized (sodium pentobarbital, 100 mg/kg,
i.p.) and transcardially perfused with 4 % paraformaldehyde.
The gastrocnemius muscle was removed, stored in 30 %
sucrose, and frozen. The muscle was cut with a cryostat onto
slides at 20 μm. Standard immunohistochemical techniques
were used. Sections were incubated in the primary antibody,
rat anti-mouse F4/80 (1:500, AbD Serotec, Raleigh, NC),
overnight at room temperature. The next day, sections were
rinsed and inclubated in the secondary antibody, goat anti-rat
Alexa 488 (Invitrogen, Grand Island, NY), for 1 h at room
temperature. Sections were coverslipped with Vectashield and
imaged on an Olympus BX-51 light microscope. The total
number of F4/80+ cells in five muscle sections was counted
from each animal off line using ImageJ software.

Depletion of Macrophages in the Fatigue-Enhanced Pain
Model To determine if macrophages contribute to the devel-
opment of mechanical hyperalgesia in the fatigue-enhanced
pain model, macrophages were depleted in the muscle using
local injection of liposomes containing clodronate into the
muscle of male C57/BL6 mice [41]. Muscle withdrawal
thresholds were assessed prior to liposome injection and after
exposure to the fatigue-enhanced pain model. Mice were
injected with either active liposomes containing clodronate
(n=4) or inactive liposomes containing PBS (n=4). Twenty-
four hours after liposome injection, mice were treated with the
fatigue-enhanced pain model and withdrawal threshold mea-
sured. Depletion of macrophages was confirmed by F4/80
immunohistochemical staining cross sections of treated gas-
trocnemius muscle (n=4 clodronate liposomes; n=3 inactive
liposomes) using the same approach detailed above.

Statistical Analysis Data are reported as means±S.E.M. Mus-
cle force, withdrawal thresholds, and pH measurements were
analyzed with repeated measures ANOVA followed by post
hoc with a Tukey’s test. For pH measurements, differences
between groups at baseline and after treatment were assessed
by independent t tests, and differences within groups from

baseline to posttreatment were assessed by paired t tests.
Macrophage quantification was assessed by one-way
ANOVA followed by Tukey’s test. Significance for the re-
peated measures ANOVA and Tukey’s test was set at 0.05. To
control for multiple comparisons, Bonferroni correction was
applied to all of the t tests for differences in pH, adjusting the
level of significance to 0.0125.

Results

Muscle Fatigue Is Not Changed by Genetic Deletion
or Blockade of ASIC3

The force of muscle contractions across fatiguing stimuli was
recorded for ASIC3−/− and compared to wild-type mice
(Fig. 1a, b). The initial force of contraction, i.e., the first
fatiguing stimuli, was significantly greater in the ASIC3−/−

mice (female 6.3±0.59 mN; male 5.5±0.78 mN) when com-
pared to wild-type mice (female 4.6±0.35 mN; male 3.4±
0.59 mN) (univariate ANOVA F1,25=22.8, p=0.005). There
were no sex differences for the initial force of contraction. The
force of contraction decreased significantly across time in all
three groups. However, there were no significant differences
between groups in the postfatigue force when data were
controlled with the initial force as a covariate. There were also
no differences in the time to peak fatigue, defined as peak
decrease+10 % between wild type and knockouts or between
sexes (wild-type, female 269±48 s, male 268±30s; ASIC3−/−,
female 276±26 s, male 237±75 s). In the animals treated with
APETx2, there were no differences in the initial force, rate of
fatigue, or postfatigue force when compared to those treated
with vehicle in either male or female mice (Fig. 1c, d).

Muscle Fatigue Decreases Muscle pH in Males but Not
Females

The effect of muscle fatigue on muscle pH was assessed by
inserting a pH probe into the belly of the gastrocnemius
muscle before and after either 6 min of fatiguing muscle
contractions or 6 min of inactivity. For males, the initial
muscle pH of both groups was comparable: 7.14 (±0.04
SEM) and 7.09 (±0.01 SEM) for the fatigued and inactive
groups, respectively. After fatiguing muscle contractions,
muscle pH dropped to 6.86 (±0.05 SEM), while the inactive
group remained relatively unchanged at 7.15 (±0.04 SEM)
(Fig. 2a). Muscle fatigue had a significant effect on muscle pH
(repeated measures ANOVA, F1,7=26.505, p<0.05). At base-
line, there were no significant differences between groups
(Student’s t test, t7=1.230, p=0.258). The pH of muscles
exposed to fatiguing muscle contractions decreased signifi-
cantly from baseline (paired t test, t4=5.778, p=0.004) and
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was significantly lower than the inactive controls (Student’s t
test, t7=−4.736, p=0.002). The pH of inactive control muscles
did not change from baseline (Fig. 2a, paired t test, t3=−1.452,
p=0.243). In contrast, in female mice, electrically stimulated
muscle contractions had no effect on muscle pH (Fig. 2b,
repeated measures ANOVA, F1,4=2.280, p=0.206). In con-
trast to males, for females, muscle fatigue did not result in a
decrease in pH from baseline, and there were no differences
between inactive and fatigued muscles

Genetic Deletion of ASIC3 Prevents Development
of Fatigue-Enhanced Hyperalgesia

The role of ASIC3 in the development of exercise-enhanced
muscle pain was tested by comparing muscle withdrawal
thresholds in ASIC3−/− animals after exposure to acidic saline
and fatiguing muscle contractions and compared to wild-type
controls. As previously shown [13], wild-type mice showed a
significant decrease in the muscle withdrawal threshold.
ASIC3−/− mice showed no decrease and were significantly
different from both wild-type mice (Fig. 3a, b, repeated mea-
sures ANOVA with post hoc Tukey’s test, F2,18=20.614,
p<0.001). No sex differences were observed.

Local Blockade of ASIC3 Prevents Development
of Fatigue-Enhanced Hyperalgesia

To confirm the results from ASIC3−/− mice and to test if
ASIC3 activation at the site of fatigue was necessary, we
injected the ASIC3-antagonist ApeTx2 directly into the mus-
cle prior to the fatigue task. As previously shown, mice treated
with vehicle (saline) showed a significant decrease in muscle
withdrawal threshold. In contrast, APETx2 injected into mus-
cle prevented the decrease in muscle withdrawal thresholds in
both male and female mice. In males, the effect of APETx2
occurred in a dose-dependent manner—muscle withdrawal
thresholds from mice injected with 70- and 200-μM doses
were significantly higher than vehicle (Fig. 3c, repeated
measures ANOVA with post hoc Tukey’s test, APETx2
F4,39=10.643, p<0.001 ). In females, only the highest
dose of APETx2 was tested since no sex differences were
observed. Females treated with 200 μM APETx2 had
significantly higher muscle withdrawal thresholds than
those given vehicle control (Fig. 3d, repeated measures
ANOVA, F1,6=258.492, p<0.001).

Downregulation of ASIC3 in Muscle Afferents Has No Effect
on Fatigue-Enhanced Hyperalgesia

To test if ASIC3 in neurons innervating the fatigued muscle
is required for the development of hyperalgesia in the
fatigue-enhanced hyperalgesia, we downregulated ASIC3
by infecting DRGs with HSV-1 expressing a miRNA against
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males n=7, females n=4) doses had no effect on the rate at which muscle
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ASIC3 [38]. DRGs from mice injected with the HSV-miR844
showed a significant decrease in ASIC3 when compared to
DRGs frommice injectedwith HSV-GFP as a control (Fig. 4a,
Student’s t test, p=0.0139). Despite a significant decrease in
ASIC3 in DRG innervating muscle, muscle withdrawal
thresholds decreased significantly and, to the same extent, in
animals injected with HSV-miR844 and HSV-GFP (Fig. 4b,
repeated measures ANOVA, F1,14=0.325, p=0.578).

Treatment with Electrical Stimulation With or Without pH 5.0
Saline Increases the Number of Macrophages in Muscle
Tissue

While previous studies have shown that neutrophils are
not changed by electrical stimulation or pH 5.0 saline
injection [13], it is unknown if the number of macro-
phages in muscle tissue changes under these conditions.
To test this, C57BL/6 mice were exposed to either elec-
trical stimulation, electrical stimulation with pH 5.0 saline,
or left untreated. Immunohistochemical staining with the
macrophage marker F4/80 showed a significantly greater

number of cells in the electrically stimulated (mean 381±20,
Tukey’s test, p<0.001) or electrically stimulated and pH 5.0
saline-treated animals (mean 418±39, Tukey’s test, p<0.001)
when compared to naïve animals (mean 133±7) (Fig. 5a, one-
way ANOVA F2,9=36.97, p<0.001).

Depletion ofMacrophages Prevents Mechanical Hyperalgesia
in the Fatigue-Enhanced Pain Mode

Since immune cells, including macrophages, respond to de-
creases in pH and express ASIC3 [42, 43], we tested if
resident macrophages in muscle were necessary for the devel-
opment of mechanical hyperalgesia in the fatigue-enhanced
pain model. Macrophages were depleted locally by intramus-
cular clodronate prior to induction of the model. Immunohis-
tochemical staining for the macrophage marker F4/80 shows
staining of macrophages in muscle from animals that received
control liposomes (Fig. 5b) and significantly less from ani-
mals that received clodronate liposomes (Fig. 5c). Counting of
positively stained macrophages from five sections showed a
significant decrease in the number of macrophages from those
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Fig. 3 a, bASIC3−/−mice do not developmechanical hyperalgesia in the
fatigue-enhanced pain model. aMale wild-type mice (n=7) show signif-
icant decreases in muscle withdrawal threshold, while male ASIC3−/−

mice (n=8) were significantly different, showing no change in muscle
withdrawal threshold from baseline. *p<0.05. b Female wild-type mice
(n=4) show significant decreases in muscle withdrawal threshold, while
female ASIC3−/− mice (n=4) were also significantly different, showing
no change in muscle withdrawal from baseline. *p<0.05. c, d Antago-
nism of ASIC3 during the fatigue task prevents the development of
mechanical hyperalgesia in the fatigue-enhanced pain model. c Male

C57BL/6 mice were pretreated with 20 μM (n=14), 70 μM (n=8), or
200 μM (n=7) of the ASIC3 antagonist APETx2 or vehicle (n=16)
during the fatigue task. As a negative control, one group received no
treatment (n=4). Mice treated with 70 or 200 μM ApeTx2 had signifi-
cantly higher posttreatment muscle withdrawal thresholds as compared to
the vehicle control. d Female C57BL/6 mice were pretreated with either
200 μM APETx2 (n=4) or vehicle (n=4) during the fatigue task. Mice
treated with APETx2 had significantly higher posttreatment muscle with-
drawal thresholds as compared to vehicle control. *p<0.05
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that received clodronate liposomes (18+6.7, n=4) when com-
pared to those that received inactive liposomes (66+16, n=3)
(p=0.03, one-way ANOVA). Mice treated with control lipo-
somes showed significant decreases in muscle withdrawal
threshold, while those treated with clodronate liposomes
showed no change in muscle withdrawal threshold and were
different from controls (Fig. 5d, repeated measures ANOVA,
F1,6=117.16, p<0.001).

Discussion

The current study shows that 6 min of electrically stimulated
muscle contractions results not only in substantial fatigue but
also in physiologically relevant accumulation of protons, in the
detectable range for ASICs. While a number of channels can
detect protons, heteromeric channels expressing ASIC3 are
necessary for fatigue-enhanced hyperalgesia since genetic dele-
tion and local blockade of ASIC3 prevent development of
hyperalgesia. However, our data indicate that ASIC3 on primary
afferent fibers innervating muscle is not required for develop-
ment of hyperalgesia, suggesting that ASIC3 on nonneuronal
cells mediates the development of hyperalgesia in this particular
model. ASIC3 is expressed in macrophages [43], and we show
that muscle fatigue increases the number of macrophages in
muscle and removal of macrophages from muscle prevents the
development of fatigue-induced hyperalgesia. Therefore, we
suggest that decreases in pH from fatiguing muscle activate
ASIC3 on resident macrophages that subsequently release
algesic chemicals to produce hyperalgesia.

ASIC3 is critical for the development of hyperalgesia after
muscle insult. ASIC3−/− mice do not develop hyperalgesia
after repeated acid injections into muscle, inflammation of
muscle, or inflammation of joint [27–29, 44–47]. Further,
prior studies also show that blockade of ASICs locally in
muscle both prevents and reverses muscle hyperalgesia asso-
ciated with either repeated acid injections into muscle or
muscle inflammation [29, 47, 48]. The current study is con-
sistent with these prior studies and shows that fatigue-
enhanced hyperalgesia does not occur in ASIC3−/− mice or
after pharmacological blockade of ASIC3 in muscle. Muscle
afferents express ASIC3, form heteromeric channels, and
respond to pHwithin the ranges produced by fatiguing muscle
contractions [25–27, 30, 45]. Muscle afferents from ASIC3−/−

mice show no change in pH sensitivity but have a slower rate
of desensitization and slower recovery from desensitization
[26]. However, the current study shows that depletion of
ASIC3 in muscle afferents, with HSV-miR844, has no effect
on the development of hyperalgesia. This is in direct contrast
to prior studies using the same HSV-miR844 in animals with
carrageenan-induced muscle inflammation; hyperalgesia was
prevented in these mice [38]. Further, reexpression of ASIC3
in muscle afferents from ASIC3−/− mice rescued the
hyperalgesia to muscle inflammation [28]. Together, these
data suggest that the fatigue-induced hyperalgesia model is
uniquely different from the muscle inflammation model. In-
deed, the fatigue-induced hyperalgesia model is not associated
with an acute neutrophil response in the muscle [13], while
carrageenan muscle inflammation produces a robust neutro-
philic inflammation [49]. Further, inflammatory models rou-
tinely show upregulation of ASICs and change in sensitivity
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treated with HSV-1 expressing miRNA against ASIC3 developed
hyperalgesia similar to those mice treated with control HSV-1 (n=8)
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to pH in afferent fibers innervating the inflamed tissue and in
DRG [38, 44, 50], while repeated acid injections show no
such changes in DRGs [25].

Nonneuronal cells express ASIC3 and can mediate the
effects of decreases in pH. Prior studies show expression of
ASIC3 on synoviocytes, osteocytes, and immune cells [42,
43, 46, 51–53]. Macrophages are distributed throughout the
body in nearly every tissue type, including skeletal muscle.
They play a role in innate immunity, as well as tissue remod-
eling, endocrine function, and tumor biology [54]. Macro-
phages can secrete inflammatory cytokines like interleukin-6
(IL-6), IL-1β, or TNF which are all known to sensitize
nociceptors and produce pain [54–56]. Furthermore, macro-
phages express a number of receptors and ion channels, in-
cluding ASIC3, which are capable of monitoring the external
environment. Acidic pH (pH 6.5) improves antigen internal-
ization, enhances phagocytosis, and modulates production of
cytokines in macrophages [43, 57–59]. Lactate, a known
activator of ASIC3, can also activate macrophages [60] and
enhances the LPS-induced release of IL-6 from macrophages
[61]. This suggests that macrophages may be well suited to

detecting and releasing pro-algesic factors in response to
decreases in extracellular pH and these pro-algesic factors
(i.e., cytokines, ATP) can subsequently activate receptors
located on nociceptors. The current study is consistent with
function of ASIC3 on macrophages since macrophages are
elevated under conditions which produce fatigue-induced
hyperalgesia and depletion of macrophages from muscle pre-
vents the development of fatigue-induced hyperalgesia. Thus,
we propose that decreases in pH that occur during fatigue
activate ASIC3 on macrophages to release algesic chemical
that can subsequently activate nociceptors to produce pain.

Surprisingly, we show sex differences in muscle pH after
6 min of fatiguing isometric contractions, without sex differ-
ences in the degree of fatigue. In male mice, there is a decrease
in the intramuscular pH to 6.8 with fatiguing contractions of
the gastrocnemius muscle; there is no change in females.
While the basis for this sex difference in muscle pH is not
explored here, a previous study of human subjects performing
8 min of fatiguing isometric exercise showed a similarly
greater decrease in muscle pH in male subjects as compared
to females [62]. The reason for this may be related to sex
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differences in muscle metabolism [63]. Males have a greater
proportion of the type II fibers that rapidly generate force [64,
65]. The predominant fibers in female muscle have lower
Ca2+-ATPase activity and subsequently slower rates of con-
traction [66, 67]. Further, muscle in males relies more heavily
on glycolysis for energy [68], while females make use of
oxidative phosphorylation and lipid metabolism [69–71].
Sex differences in muscle metabolism have a significant
effect on the production of lactic acid—after a short
sprinting task, males develop significantly higher concen-
trations of lactic acid than females [72]. This greater
accumulation of lactic acid in males may explain the
difference in muscle pH between sexes.

The magnitude of pH decrease for males in the present
study is consistent with prior studies that show pH values 6.4–
6.85 with muscle fatigue [21, 22, 73, 74]. Venous effluent
from muscle decreases to a similar degree with exercise (0.3
pH units to pH 7.1) but starts at a higher resting pH (7.4) [75,
76]. Sustained exposure to pH in the 7.0–7.1 range could lead
to steady-state desensitization of ASIC channels [77]. Since
muscle nociceptors are located in the adventitia of the arteries
[30], they are in close proximity to both blood and intramus-
cular fluid. While the milieu surrounding these nerve termi-
nals is not well understood, it may be the case that the
terminals are typically surrounded by pH 7.4 serum and only
transiently exposed to the more acidic intramuscular fluid,
such as during muscle contractions. In this way, decrease in
intramuscular pHmay contribute to the fatigue-enhanced pain
effect, at least in males. However, the role of pH in the fatigue-
enhanced pain effect in females is less clear. It is possible that
other metabolites released during muscle fatigue, such as ATP,
may play a more significant role in females.

The role of ASIC3 in muscle fatigue is mixed. While the
current study showed no difference in fatigue response to
electrical stimulation in ASIC3−/− mice or after blockade of
ASIC3, we previously show a role for ASIC3 in muscle
fatigue. Specifically, male ASIC3+/+ mice muscle showed
less fatigue than male ASIC3−/− mice and female ASIC3+/+
mice (1 h-Rota-Rod task); this difference did not occur in
female mice [78]. The discrepancy between studies may be
explained by several factors, including the longer duration of
exercise, the task-specific nature of muscle fatigue, the role of
voluntary effort in task failure, or the muscle fatigued. For
example, the current study used a short fatigue task (6 m)
resulting in fatigue lasting 10 m in a single muscle [13], as
compared to a much longer (3 h) and widespread protocol that
produced fatigue lasting (2 h) in our prior study [78]. Notably,
when the duration of fatigue task was reduced in our prior
study (1.5 h), there was no difference in fatigue between
ASIC3−/− and WT mice in males or females [78].

Worsening of pain after exercise remains a significant bar-
rier to adherence to an exercise regimen that is crucial for
treating diseases like myofascial pain syndrome, fibromyalgia,

chronic fatigue syndrome, and low back pain [5, 79, 80]. Many
mechanisms likely contribute to the development of pain after
exercise, including tissue damage and inflammation, but for
fibromyalgia patients whose symptoms acutely worsen with
even light or moderate exercise that does not damage muscle,
targeting ASICs may provide symptomatic relief [81, 82].
Studies show that consistent exercise improves the symptoms
in people with fibromyalgia [83] and prevents the development
of chronic and exercise-induced pain in animals [84]. Further,
patients with chronic fatigue syndrome and fibromyalgia report
worsening of their fatigue symptoms with exercise, which
is correlated with significant upregulation of ASIC3 mRNA
in the blood, suggesting that ASIC3 may contribute to the
subjective feeling of fatigue [6]. By inhibiting ASICs prior
to exercise in the early period of an exercise regimen, it
may be possible to address the acute exacerbation of pain
and fatigue with exercise, leading to greater adherence to a
regular exercise program.

In conclusion, these data implicate ASIC3 in the develop-
ment of exercise-enhanced pain through a decrease in pH from
the fatigued muscle. Muscle fatigue reduces intramuscular pH
which is in the range for activating ASICs. Studies in knock-
out mice indicate that ASIC3 is the essential subunit within the
wild-type channel on muscle DRG but that ASIC3 effects are
not due to its location on muscle primary afferent fibers. We
further show that depletion of macrophages prevents the
fatigue-induced hyperalgesia and suggest that ASIC3 on mac-
rophages mediated the fatigue-enhanced pain response.
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