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Abstract Despite a large amount of research which aims at
defining the pathophysiology of human demyelination (i.e.,
multiple sclerosis), etiological bases of disease have been
unknown so far. The point of intersection of all assumed
etiological factors, which are mainly based upon immunolog-
ical cascades, is neuroinflammation. The precise definition of
the place and role of all pathogenetic factors in the occurrence
and development of the disease is of crucial importance for
understanding the clinical nature and for finding more effec-
tive therapeutic options. There are few studies whose results
give more precise data about the role and the importance of
other factors in neuroinflammation, besides immunological
ones, with regard to clinical and paraclinical correlates of the
disease. The review integrates results found in previously
performed studies which have evaluated oxidative stress par-
ticipation in early and late neuroinflammation. The largest
number of studies indicates that the use of antioxidants affects
the change of neuroinflammation course under experimental
conditions, which is reflected in the reduction of the severity
and the total reversibility in clinical presentation of the dis-
ease, the faster achieving of remission, and the delayed and
slow course of neuroinflammation. Therapies based on the
knowledge of redox biology targeting free radical generation
hold great promise in modulation of the neuroinflammation
and its clinical presentations.
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Neuroinflammation

The central nervous system (CNS) is a very sensitive tissue for
damages which has little capacity for regeneration [1]. Due to
this fact, inflammation reactions, which are the pathophysio-
logical basis for all CNS damages regardless of etiology, have,
as a consequence, nervous tissue damages of different levels
of manifestation and reversibility [2].

CNS tissue is an “immunologically privileged” part of an
organism because of the existence of the blood-brain barrier
(BBB) and the absence of the lymphatic system. The blood-
brain barrier is a physical and transport barrier for toxic matter
and cells which could invade the CNS [3, 4]. It is composed of
two biological barriers. The first one is formed of tight junc-
tions of endothelial cells of brain microcirculation; it contains
multiple efflux pumps, which eliminate toxic and
decomposing metabolic products from the CNS into the sys-
temic circulation. The second one is formed of a basement
membrane and astrocytic extensions which form the so-called
glial membrane. For these reasons, the invasion of circulating
cells into the CNS is conducted through two separate process-
es: (1) transendothelial migration into the perivascular space
and then (2) infiltration of CNS parenchyma by passing
through the glial membrane [5]. These two processes are
regulated independently so that circulating cells can migrate
only into the perivascular space without the possibility of
passing into CNS parenchyma, if the glial membrane is mor-
phologically and functionally intact [6].

Immunologically competent cells present in the CNS under
physiological conditions are microglial cells. They represent
the residential cell population of the CNS. The assumption is
that they are created by the transformation of circulating
monocytes and the cells of myeloid lineage which colonize
the CNS during its embryonic and early neonatal development
[7, 8]. Under physiological conditions, microglia forms an
extensive network of long cellular extensions with a relatively
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small cell body. Under pathological conditions, after the acti-
vation, microglia transforms into a phagocytic cell phenotype
which causes the formation of many amoeboid protoplasmatic
extensions like the ones formed by activated macrophages [9]
(Fig. 1). Besides, activated microglia forms and secretes dif-
ferent proinflammatory cytokines, chemokines, reactive oxy-
gen species (ROS), and nitric oxide (NO·) by means of which
it communicates with other cells of the CNS [10]. In the
perivascular space, there physiologically exists a so-called
subpopulation of inactive macrophages which, in a patholog-
ical sense, have a role of antigen-presenting cells, and thus,
they activate a specific immune system [11]. Besides these
cells, there are also rear T lymphocytes in charge of CNS
protection, which enter the CNS parenchyma through
transendothelial migration, by means of adhesion molecules
present on the surface of endothelial capillary cells, but,
without antigens and/or autoimmune pathology, they do not
initiate immunological processes [12].

The inflammation process is initiated only in the state when
there is an increased number of monocytes and T lympho-
cytes, delivered to CNS from the systemic circulation; when
their transendothelial transport is facilitated and accelerated;
as well as when there are antigens in the CNS on which T
lymphocytes are sensitized by means of antigen-presenting
cells [13]. Once the inflammatory process is initiated in the
CNS, it is conducted like in any other organ in the further
course of its propagation. There is an increased formation of
molecular messengers which attract monocytes and

lymphocytes, microglia multiplies, and the activation of the
complement system is initiated and antibodies are created
[14].

Immunological protection of the CNS is reduced in some
of its parts, like the parenchyma, chambers, and meninges, so
these parts could become the place of inflammatory reaction
similar to the one occurring in other organs [2, 15]. On the
other hand, the cortex is less suitable for infiltration compared
to the white matter and the spinal cord [16]. The existence of
different regional sensitivity to CNS inflammation could be a
consequence of different histological structures, given that the
cortex contains millions of neuronal bodies, which, in a way,
achieve immunosuppressive effect by strengthening the BBB
[17]. These biological features represent a contribution to
understanding the existence of predilection places for the
appearance of inflammation in the CNS.

BBB disruption, which exists in all the neuroinflammatory
processes in varying degrees of manifestation, is a key mech-
anism by which a “protected” CNS tissue is exposed to the
effects of activated cells of innate or acquired immunity.
Therefore, determining the relation of albumin concentration
in the CSF and serum, and MRI of the CNS with a paramag-
netic agent such as gadolinium, chelated by diethylene
triaminopentacetate (Gd-DTPA) in the form of a dimeglumine
salt, which penetrates the CNS only if the BBB has been
damaged, has an important role in evaluation of BBB damage
severity, as well as the intensity of a neuroinflammatory
process [18, 19].

Fig. 1 The role of immune cells in the pathogenesis of neuroinflammation and demyelination
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Oxidative Metabolism and Its Specificities in the CNS

Free radicals are atoms, molecules, or ions with unpaired
electrons. They are created in biological systems because
of breaking of covalent bonds in the process of homo- or
heterolysis or by means of electron transfer. Due to ex-
ceptional chemical instability, free radicals enter chemical
reactions with other free radicals and nonradical mole-
cules. This makes them the leading pathogenetic link in
many pathological conditions [20]. Free radicals are cre-
ated in various conditions: during oxidative phosphoryla-
tion in mitochondria, in the process of phagocytosis, in
the reactions of biotransformation of exogenous and en-
dogenous substrata in endoplasmic reticulum, in enzymat-
ic reactions which catalyze oxidases, in the process of
eicosanoid synthesis, and in oxidoreduction reactions in
the presence of metal with variable valency [21–30].
Lipid peroxidation occurs as a consequence of free radical
secretion, even though during the very process of lipid
peroxidation free radicals are being created in increased
concentration. All reactive chemical species (radical and
nonradical) can be oxygen species, reactive species of
nitrogen, and carbon- and sulfur-reactive species [31–33].

Oxidative modification of proteins implies a covalent pro-
tein modification which is a consequence of the effect of
reactive chemical species or the products of their interaction
with other biomolecules. CNS diseases, primarily the ones
based on a neuroinflammatory process, are conditions where
these types of changes occur a lot [34]. Advanced oxidation
protein products (AOPP) and advanced glycation end prod-
ucts (AGE) are considered exceptionally pathogenic due to
the fact that they are generators of free radicals and indepen-
dent promoters of the further spreading of the process of their
uncontrollable production [35–40].

Lipid peroxidation is one of the most commonly studied
processes of redox cell signalization disorders where free
radicals play the key role. Through the different mechanisms,
lipid peroxidation disrupts membrane barrier function, inacti-
vates membrane enzymes, and increases permeability for
water, monovalent and divalent ions, and often for high mo-
lecular weight compounds. Lysosomal membrane damage
enables the exit of hydrolytic enzymes, while mitochondrial
membrane damage leads to Ca ion release and the activation
of enzymes dependent on this ion [40–49].

Oxidative stress is a pathological condition which im-
plies overproduction of ROS under conditions when their
elimination is reduced [50–60]. Under physiological con-
ditions, owing to the efficiency of enzymatic antioxidative
potential of the organism (superoxide dismutase (SOD),
catalase, etc.) (Fig. 2) and nonenzymatic molecules (GSH,
vitamin C, vitamin E, bilirubin, etc.), ROS concentration
is low and then ROS manifest a series of useful physio-
logical features. They imply the cell division and growth

regulation, apoptosis regulation, oxidative modifications
of biomolecules in extracellular space, protection from
pathogen invasion, etc. [61]. Reactive oxygen species
and products of their interaction with other biomolecules
cause DNA mutations, ion channel damage, intensifica-
tion of the lipid peroxidation process, and oxidation of
proteins and other biomolecules [62, 63]. Under the con-
ditions of oxidative stress, ROS can directly initiate a
cascade of proinflammatory actions by stimulating cyto-
kine production and BBB damaging and by enabling cells
of the immune system to penetrate into the CNS [64]. On
the other hand, the most important mediator in the de-
scribed oxidative processes is ONOO−, which is created
as a product of NO and O2

− reaction [65, 66].
CNS cells are exposed to low concentrations of ROS under

physiological conditions, but due to the good antioxidative
protection, their adverse effects are negligible [67]. CNS
structures are particularly sensitive to ROS effects, which is
a consequence of a highly activated metabolism of the CNS,
when 2–5 % of the used O2 is turned into ROS in the process
of cell breathing in mitochondria [1]. ROS realize their effects
in their immediate environment in relation to the place of their
production, diffusing in the diameter of up to 0.3 nm. By
comparison, the size of the interlaminar space of the myelin
sheath is 10 nm.

On the other hand, the CNS has a relatively limited poten-
tial for anaerobic metabolism which makes it especially sen-
sitive to hypoxia [68]. Under conditions of small O2 availabil-
ity, there is a dramatic increase of O2

− concentration in mito-
chondria [4]. Finally, some CNS cells, like oligodendrocytes,
for example, have a physiologically low level of antioxidative
potential, as opposed to the relatively high energy turnover
[69]. A high percentage of lipids in the CNS is the basis of its

Fig. 2 The antioxidative mechanism
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tendency to initiate lipid peroxidation processes. It has
been shown that the brain tissue is more sensitive to the
described damages, in comparison to the tissue of the
spinal cord or the peripheral nervous system [70]. This
could be a consequence of the lower content of thiol
redox system in the spinal cord and the peripheral nerves
in comparison to the brain tissue [16]. The aforemen-
tioned differences are also related to the different GSH
concentrations, taking into account that GSH participates
in ROS reduction, but, on the other hand, it reactivates
antioxidative enzymes in the CNS by means of indepen-
dent mechanisms. GSH is mostly located in astrocytes (up
to 5 mM), which is a lot more than in other CNS struc-
tures [71].

Oxidative Stress in Neuroinflammation

The mitochondrial respiratory chain, xanthine oxidase,
NADPH oxidase, lipooxygenase, cyclooxygenase (COX),
and nonenzymatic processes like dopamine and noradrenaline
autooxidation appear as the main sources of ROS creation in
the CNS. In oligodendrocytes, peroxisomes are an important
ROS source because they are present in large numbers in the
process of active myelination [72]. Microglial cells are an
important source of ROS, under the conditions of neuroinflam-
mation, as a consequence of their activation. Microglial cells
are considered to be ROS depots under these pathological
conditions and key initiators of the demyelination process
which is ROS mediated. Peroxynitrite is important for macro-
phage activation due to the fact that it converts lipoproteins
into forms which, independently of other factors, initiate
phagocytic activity of macrophages because it binds to the
so-called scavenger receptors of macrophages [9]. Neurons
are also a source of ROS, given that ROS are created in the
processes of electrical activity of a cell. It is assumed that
transport of Ca into the axons, as well as Ca release from
intracellular depots into the interior of the cell, is of greatest
importance in this process. The intensive metabolism of axons
under conditions of neuroinflammation is, at the same time, the
explanation of the occurrence of their spontaneous, repetitive
triggering in them, with the occurrence of corresponding clin-
ical equivalents. This is followed by the increase of extracel-
lular concentration of K, which simultaneously activates astro-
cytes, due to the fact that astrocytes are important for buffering
extracellular changes in K ion concentration [72–77].

Some studies of demyelinating plaque have found the in-
creased presence of LDL molecules, modified by lipid peroxi-
dation, in the very plaques, macrophages, and astrocytes, in
parallel with the increase of the concentration of lipid peroxida-
tion end products [78–80]. This process leads to arachidonic acid
release, which is enzymatically converted into prostaglandin or is
converted to isoprostanes by nonenzymatic metabolism.

Isoprostanes are created by free radical lipid peroxidation of
arachidonic acid, and among all isoprostanes, 8-epi-PGF2α is
especially used as a biomarker of oxidative stress. Prostaglan-
dins, especially E2, independently or in conjunction with NO·,
can increase BBB permeability [79]. However, prostaglandins
are considered as conditional pathogens in neuroinflammation,
due to the fact that their end product in the nervous tissue is
dependent on the intensity of oxidative stress in the CNS [72,
81].

Oxidative stress in the CNS also causes changes in
transendothelial transport which enables further evolution of
the neuroinflammatory process [67, 82, 83]. The most impor-
tant effect of ROS is damage of oligodendrocytes, which are
the key cells in the process of myelin creation in the CNS.
Even though the mechanisms of damaging of these cells are
not completely clarified, it has been proven that oxidative
stress and NO· have a very important role in that process
[84]. There are studies which have shown that oligodendro-
cytes are sensitive to ROS concentrations much lower than
toxic concentrations of other glial cells, astrocytes, and mi-
croglia. A protective effect on this cell line has been achieved
by adding antioxidants [72, 85]. During the periods of myelin
production and remyelination processes, the peroxisomal frac-
tion of oligodendrocytes increases the volume and density, in
accordance with metabolic requirements, thus representing an
important independent ROS source [86–88]. Therefore, in the
process of remyelination which is parallel to the process of
active demyelination, oligodendrocytes are particularly
predisposed to damage by means of oxidative stress [89]. In
this way, alteredMBP and PLP are more susceptible to trypsin
degradation, which suggests that under in vitro conditions,
myelin, being altered by oxidative stress, is easily subjected to
degradation by the effects of extracellular protease, like the
ones released by myelin [90]. Delamination of myelin sheath
makes new amounts of myelin components prone to being
damaged by ROS. ROS activity leads to the increase of
concentration of mRNA and protein expression of matrix
metalloproteinase (MMP-1), an interstitial collagenase which
actively participates in the process of further demyelination
[72, 91, 92].

Oligodendrocytes are especially sensitive to enormous re-
lease of glutamate, much more than astrocytes [93]. During
acute attacks of the disease, concentrations of glutamate are
increased which is, among other things, a consequence of
inhibition of its takeover by astrocytes, resulting from the
effects of proinflammatory cytokines, TNF-α, INF-γ, and
IL-1β on astrocytes. Excitotoxicity of glutamate is mediated
by the reduction of cystine concentration, which leads to the
reduction of GSH concentration, too [94]. Oligodendrocytes
in all their development forms, starting from the progenitor
cell to the mature oligodendrocyte, have half the concentration
of GSH in comparison to astrocytes. It is a consequence of the
lower activity of glutathione synthetase, half the activity of
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GR compared to astrocytes, and far lower activity (15 % of
astrocyte activity) of GSH-Px. Immature oligodendrocytes are
sensitive to oxidative damages compared to mature forms.
Lower activity of SOD has also been shown in oligodendro-
cyte culture compared to microglial cells and astrocytes [72,
95, 96]. Oligodendrocytes contain the biggest amount of Fe
which is otherwise located in the CNS [97]. In neuroinflam-
mation, due to microglia activation, Fe can be released from
depots, ferritin, and transferrin, and, under conditions of a
lower activity of SOD, it can trigger oxidative stress. Fe
deposits have been found during radiological examinations
of MS patients [98, 99].

Pathogenetic Importance of Oxidative Stress Modulation
in Neuroinflammation

The Importance of Modulating the Process of Lipid
Peroxidation

One of the leading pathogenetic mechanisms which oxi-
dative stress use to achieve its pathogenetic effect in
neuroinflammation is the process of lipid peroxidation
[100]. There are some studies which have found the
increased intensity of lipid peroxidation in experimental
autoimmune encephalomyelitis (EAE) [101], indicating
that the intensity of this process could be a direct conse-
quence of immunoinduction toward its own antigens of
the myelin sheath which has a high lipid content [17]. The
association of the loss of immunological tolerance toward
its own antigens MBP and MOG and the increase of the
products produced by means of malondialdehyde (MDA)-
mediated covalent alteration of proteins and the interac-
tion of MDA with cysteine, lysine, and histidine were
proven in this way [102]. Some results indicate the direct
relation between the increase of MDA concentration and
the severity of EAE neurological findings [103] and the
relation between the increase of MDA concentration and
the radiological findings of MS patients [104].

Some studies have shown that the modification of albumin
affected by MDA, during neuroinflammation, causes the ini-
tiation of the immune response toward this protein, along with
the simultaneous activation of a specific immunity, which
aggravates the course of neuroinflammation and the severity
of its clinical manifestation [105, 106]. Recent studies indicate
that the complement factor H, as the main MDA-binding
protein, can block the init iat ion of this type of
immunostimulation. The probable mechanism in the basis of
this effect is the takeover of molecules modified by MDA
activity by phagocytic cells, which prevents the loss of
immunotolerance and, in that way, the adverse effects in the
nervous tissue which could be initiated [107]. The reduction
of the intensity of oxidative and nitrosative stress directly

reduces the intensity of lipid peroxidation, along with the
improvement of the clinical manifestation of neuroinflamma-
tion [108]. The effect of reducing the intensity of lipid perox-
idation has been proven by other studies [108, 109], indicating
that MDA could be a sensitive marker of neuroinflammation
intensity [110].

Some results indicate that the increase of MDA concentra-
tion in plasma and CSF has been observed in different clinical
phenotypes of neuroinflammation [79, 111]. There are results
which point to the close relationship between the intensity of
lipid peroxidation process and the concentration of proinflam-
matory cytokines [41], indicating the decline of the intensity
of this process along with a reduction of the intensity of the
inflammatory reaction [112]. This effect has been observed
after the use of corticosteroid therapy, wherein the larger
decline of MDA concentration has been in the plasma than
in the CSF [48]. The increase of MDA concentration in the
CSF is a direct consequence of the increased intensity of lipid
peroxidation process in the CNS during neuroinflammation,
which obviously exists during the clinical remission of the
disease. This is supported by the finding of the increased
MDA concentration in the CSF after stabilization of the
BBB by the use of corticosteroid therapy, which suggests that
the increase of MDA concentration in the CNS is not a
consequence of an “overflow” of this biomarker from the
periphery through BBB damage, due to the fact that a high
level of MDA is also reflected after therapeutic stabilization of
the BBB [48]. This finding has been supported by the results
of recent studies which indicate the larger increase of MDA
concentration in the CSF than in the plasma in MS patients
[104]. For this reason, the level of MDA in the CSF is
considered to be the marker which directly reflects the inten-
sity of neuroinflammation, especially due to inverse correla-
tions of MDA level and the volume of the intact nervous
tissue, which has been proven in neuroinflammation [113].

Taking into account that lipid peroxidation is a common link
for the activity of nitrosative and oxidative stress [46, 114], it is
considered as the crucial pathogenetic mechanism in the process
of neuroinflammation and the nervous tissue damages mediated
by it [115]. There are some results which indicate the absence of
difference in MDA values in CSF and plasma between the
patients with different clinical phenotypes of neuroinflammation
[104]. The majority of end products of lipid peroxidation are
taken from plasma or CSF by macrophages or they are being
bound to the proteins of CSF or plasma [45]. In this way, MDA
can be absorbed through the arachnoid villi into the blood, which
reduces its concentration in CSF at the expense of increasing the
concentration in plasma [61], which could be the explanation for
the absence of any difference inMDAvalues in CSF and plasma
between different clinical phenotypes of neuroinflammation
[104].

It has been shown that erythrocytes of the patients suffering
from autoimmune diseases [77, 116], including the ones
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suffering fromMS, show greater rigidity of the cell membrane
and the tendency toward spontaneous and induced cell lysis,
which is in direct correlation with the intensity of inflamma-
tion [117] and its clinical presentation [118, 119]. It has been
proven that the basis of these processes is the increased
intensity of lipid peroxidation, taking into account that the
erythrocyte membrane is a suitable substrate for initiating this
process under conditions of the increased nitrosative and
oxidative stress, which exist in neuroinflammation [41, 45,
100]. Similar results have been found by some of the recent
studies [120, 121] which also indicate the existence of positive
correlations between the process of lipid peroxidation and
paraclinical findings of neuroinflammation. The authors
found the explanation of the obtained correlations in the
increased concentration of the products produced by the co-
valent modification of different biomolecules by the effect of
intermediate and end products of the process of lipid peroxi-
dation. These products, important for the further pathogenetic
mechanisms of neuroinflammation, also include the advanced
oxidation protein products (AOPP) [24, 122, 123].

Pathogenetic Aspects of the Role and Importance of AOPP
in Neuroinflammation

Since the very discovery of AOPP, it has been defined as a
stable marker of oxidative modification of protein [124],
which was also confirmed by some of the recent studies
[100]. The increased concentration of AOPP under conditions
of oxidative and nitrosative stress is not surprising considering
the fact that proteins, in accordance with their concentration
which is larger than other biomolecules in the organism, are
the primary target of ROS [99, 100].

The production of AOPP is explained by the chemical
interaction of chlorine oxidants (chloramine and hypochlo-
rite), which are abundantly produced in neuroinflammation,
and proteins [18, 125]. However, it has been proven that
AOPP are not only the end products of such chemical inter-
action, but, after creation, they also have a role as active
mediators in the further evolution of the inflammatory pro-
cess. AOPP realize their pathogenetic importance in neuroin-
flammation by the induction of the production of various
cytokines and adhesion molecules which are important for
the process of increasing BBB permeability [126]. Taking into
account that AOPP are created by the effect of chlorine
oxidants produced by nonspecific immune cells, which are
the first line of defense in neuroinflammation, they could be
considered as indicators of the intensity of the earliest inflam-
matory reaction [127]. This statement is supported by the
finding of the positive correlation between the value of AOPP
in CSF and plasma in MS patients and the parameters of the
biological-biochemical syndrome of inflammation, primarily
the number of leukocytes, the concentration of CRP, and
fibrinogen [128].

Oxidatively modified proteins are hydrophobic and subject
to denaturation, fragmentation, and aggregate formation with
other oxidatively modified biomolecules [129]. In accordance
with the fact that they are formed from proteins, AOPP could
be considered as the direct marker of the content of albumin
and the total proteins in a given tissue. However, the confir-
mation of such assumptions has not been obtained by the
results of some recent studies because AOPP concentration
in the CSF has been larger in patients with a smaller CSF
content of proteins [128]. Taking into account the aforemen-
tioned facts, it seems that other proteins, not only albumins,
though being the main protein fraction of plasma and CSF,
participate in the formation of AOPP. In their work, Heinecke
and associates [130] performed an analysis of the connection
between AOPP concentration and other markers of protein
damage and showed the direct connection with serum con-
centration of dityrosine which is considered to be a marker of
oxidative stress intensity in general, while a far weaker con-
nection was observed between AOPP concentration and other
products of protein modification [131]. Similar results have
been found by other studies which have analyzed the electro-
phoretic finding of AOPP, wherein the existence of two dif-
ferent peaks has been observed, of 670 and 70 kDa [130]. It
has been shown that the peak of the higher molecular weight is
formed by the aggregates of oxidatively modified albumins
which mostly form disulfide bonds, as well as dityrosine
aggregates, while the peak of the lower molecular weight
contained albumins and other plasma proteins in a monomeric
or structurally modified form.

Even though, on one side, AOPP are more susceptible to
proteolytic degradation, and on the other side, they are taken
over in slight quantities by phagocytic cells, which leads to the
increase of their extracellular concentration [53, 125]. In ac-
cordance with this, higher AOPP values in patients with
neuroinflammation suggest the existence of intensive inflam-
matory processes, which is confirmed in some studies of the
parameters of the biological-biochemical syndrome of the
inflammation of these patients [128].

During neuroinflammation, AOPP can directly perform the
increase of the expression of transcriptional factors and cyto-
kines, like NF-κB, TNF-α, iNOS, and some adhesion mole-
cules like ICAM-1 and VCAM-1, which are considered to be
of crucial importance in the inflammatory processes of the
CNS and the induction of the immune response on the whole
[132, 133]. On the other hand, preservation of defense capac-
ities is necessary so that the nervous tissue and the whole
organism could react as a response to this stimulus [134]. Over
time, during the course of the disease, defense mechanisms
become exhausted, which is, to some extent, present even
during periods of clinical remission [83]. Therefore, the in-
creased AOPP concentration, which indicates a more inten-
sive inflammatory cascade, causes a higher level of nervous
tissue damage and thus a more severe clinical picture of
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neuroinflammation only under conditions of disrupted de-
fense potentials of the organism [135, 136]. Even though
positive correlations between AOPP concentrations and the
clinical finding and the length of MS were observed [137,
138], while interpreting these findings, AOPP concentration
was not of crucial importance, but it was the disruption of
defense mechanisms [137], because the effect shown by
AOPP in relation to myelin and axon damage was potentiated
in the group of patients with longer duration of the disease
[128].

It is assumed that in the interaction with myelin sheath,
AOPP is directly involved in the process of neoepitope crea-
tion, which leads to immunoinduction and favoring of further
damaging of the nervous tissue [126]. AOPP can also have a
direct immunogenic effect in the CNS by means of the prod-
ucts of the incomplete proteolytic degradation [129]. Starting
form this statement, the existence ofmorphological changes in
the brain tissue in MS patients, seen by radiological examina-
tion [129], could be understood as a consequence of this effect
of AOPP on the nervous tissue [139].

The results of the earlier studies show the increased con-
centration of oxidatively modified proteins in erythrocyte
membranes under conditions of oxidative stress [47]. There
is some evidence of the direct link between the erythrocytic
content of AOPP and MDA and the severity of the clinical
manifestation and the length of neuroinflammatory condition
[20, 139, 140].

The Damaging of GSH Homeostasis and the Level of SH
Groups in Neuroinflammation

Considering the higher concentration, and thus the greater
importance, in comparison to other redox-regulating mole-
cules in the cell, GSH concentration changes have been stud-
ied in many prooxidative conditions [56, 141, 142]. The
results of these studies agree with the conclusion that the
decline of GSH concentration is responsible for the evolution
of oxidative damages and the occurrence of their clinical
correlates.

The decline of GSH concentration and its increase after the
use of a substance which realizes the modulatory effect on the
intensity of the nitrosative and oxidative stress have shown a
negative correlation with the severity of EAE clinical mani-
festations [99]. Due to the fact that GSH synthesis in neurons
is directly dependent on the concentration of the existing GSH
and cysteine availability, it is not surprising that GSH declines
in EAE, when GSH is spent due to the buffering of redox
oxidative disbalance, and that it increases after the use of N-
acetylcysteine (NAC) which is the direct donor of cysteine.
Similar results have also been published in some other studies
[143]. The takeover of cysteine is mediated by the cystine/
glutamate transporter which is expressed on the BBB and
other CNS structures [144]. Due to the fact that this process

mediates the injection of cystine into the cell in contra-
transport with glutamate, the activity of this transporter is
reduced under conditions of disruption of the gradient of the
extracellular concentration of the glutamate which initiates
this process. The disruption of this gradient exists in neuroin-
flammation. The increased expression of this glutamatergic
transporter, EAAT1, in brain tissue of EAE animals [104]
confirms the existence of glutamatergic excitotoxicity. In this
way, glutamatergic excitotoxicity leads to the disruption of the
antioxidative capacity of the CNS [145, 146].

Special sensitivity of oligodendrocytes to the oxidative
damages is caused by the physiologically lower content
of GSH [147, 148]. Other glial cells activated in neuro-
inflammation because of high GSH concentrations show
a higher level of resistance to the nitrosative and oxida-
tive damages [149]. There are studies which indicate that
the supplementation of the precursors of GSH synthesis
increases the resistance and the regenerative ability of
oligodendrocytes [148]. This effect is probably mediated
also by the prevention of glutamatergic excitotoxicity,
which is confirmed by the reduction of the expression
of the EAAT1 transporter in the brain of EAE animals
treated with NAC [104, 128].

There are results which indicate that the use of NAC
directly reduces TNF-α expression and thus the cell damages
mediated by it [148–150]. This mechanism of NAC effect lays
in the basis of NO· concentration decline in EAE animals
treated with NAC, due to the fact that the reduction of
TNF-α also reduces its direct stimulatory effect on iNOS
activity [151, 152]. Some studies indicate that thiol supple-
mentation prevents cell death mediated by the activation of
ASK1 complex, also known as apoptosome, which reduces
cell damages in the CNS [153], the consequence of which is
the benign clinical presentation of the disease. The increased
production of NO· during inflammation is important for the
process of GSH consumption in the CNS [154]. In the direct
interaction of NO· and GSH and other low molecular weight
antioxidants, S-nitrosoglutathione (GSNO) and S-
nitrosothiols (RSNO) are created [142, 155]. In this way, the
thiol content is reduced and the redox oxidation buffering
capacity of the CNS is directly modified [156, 157]. RSNO
is mostly created by means of GSNO, wherein NO· from
GSNO moves to the protein thiol groups [158, 159]. In this
way, GSNO increases bioavailability of NO· and participates
in the regulation of NO· depots in the CNS and the regulation
of nitrosative stress intensity [160, 161]. GSNO achieves its
effect in the process of degradation to NO· and GSSG in the
reaction which is spontaneous or mediated by low molecular
weight thiols [161]. GSH concentration decline under condi-
tions of NO· overproduction is, among other things, condi-
tioned by the overproduction of RSNO [104, 118]. On one
hand, NO·-mediated damages could be prevented in this way
[162–164], but since NO· can be further released from RSNO,
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which can multiply its concentration, its adverse effects could
also be potentiated [161, 165]. There are results which indi-
cate that RSNO can also manifest independent immunogenic
features, which contribute to the intensification of the inflam-
matory processes in the CNS [166]. The results of some
studies indicate the presence of antibodies on RSNO, or the
products of its interaction with other biomolecules, in the
plasma or CSF of MS patients [167].

The special importance of thiol redox system in the CNS is
in the process of cell signalization in the CNS and in the
process of CNS growth and development and control of cell
death [143]. As a part of signal pathways in the CNS, pro-
duced RSNO is important for the balance of the activities of
many enzymes, like S-nitrosoglutathione reductase,
thioredoxin reductase, Cu/Zn SOD, carbonyl reductase, and
protein disulfide isomerase [129, 157]. RSNO can also medi-
ate S-nitrosylation of the p65 subunit of NF-κB, which in-
hibits translocation of this transcriptional factor into the nu-
cleus, and thus potentiate the antiinflammatory effect [168].
On the other hand, it is known that proinflammatory cyto-
kines, TNF-α, IFNγ, and IL-1b, lead to demyelination of the
p65 subunit, thus intensifying the inflammation process [169].
It seems that the interaction between GSH and NO· is another
important place in neuroinflammation pathogenesis where
nitrosative and oxidative stress converge. There are results
which show that RSNO produced in such way performs
covalent modification of all isoenzymatic forms of NOS, thus
reducing their activity and disabling the production of new
quantities of NO· [170]. In this way, controlled production of
NO· is achieved, and that is why the RSNO amount could be
the direct indicator of NOS activity [161, 171].

GSH concentration reduction in neurons of MS patients
leads to actin polymerization and rearrangement of these
filaments, which is confirmed by the histological finding of
the analyzed demyelinating plaque. ATP quantity is reduced
in this process, which further potentiates prooxidative pro-
cesses and damages created by their activity [142]. There are
results which indicate that the level of GSH concentration
declines, which is the consequence of its consumption during
the buffering of redox oxidative damages and RSNO forma-
tion, which is confirmed by the results of the experimental
[172] and clinical research [128]. In the research of Prasad
et al. [173], GSH treatment has not shown the protective effect
in relation to the intensity of the process of neuroinflammation
and its clinical correlates. On the contrary, GSH concentration
decline and RSNO concentration increase had an important
effect on the reduction of the intensity of inflammatory pro-
cesses in the CNS, also affecting the reduction of its clinical
manifestation [173]. The assumed mechanisms of these ef-
fects seem to be the consequence of the overrated role that
NO·, released from RSNO, can participate in the processes of
posttranslational modification of different signal molecules
important for the process of neuroinflammation [174, 175].

The decline of GSH concentration in erythrocytes during
the acute attack of MS was shown in some of the earlier
studies [176]. There are results which indicate that the antiox-
idative supplementation based on the large amount of thiol
potentiates the increase of antioxidative capacity of erythro-
cytes [177]. The decline of GSH concentration is interpreted
by the accelerated consumption with the aim of compensating
the prooxidative condition which exists in these cells [178].
This is supported by results which indicate a negative corre-
lation between the decline of intracellular concentration of
GSH, the intensity of oxidative and nitrosative stress, and
the length of this state [179].

Under in vitro conditions, it has been shown that the
inhibition of inflammation caused by lipopolysaccharides
increases the intracellular content of thiol [180]. The as-
sumed mechanism of such effect could be S-nitrosylation
of free GSH which modulates the activity of Th17 cells,
whose effects are independent of Th1 and Th2 cell re-
sponse [181]. In this way, a protective effect is achieved
on the appearance, the course, and the clinical manifesta-
tion of neuroinflammation.

While the content of nonprotein thiol is important for the
cell antioxidative capacity, numerous protein SH groups are
important components of the antioxidative capacity of the
plasma and CSF [163]. These SH groups, as well as SH
groups of the cell membrane, are the suitable substrates for
the activity of ROS of various alkylation agents, which leads
to the reduction of their concentration and the loss of the role
they have in the organism [182]. There are results which show
the decline of the total SH groups in plasma and CSF in both
CIS and RRMS groups [128]. Results of other studies also
indicate the decline of total SH group concentration in MS
patients during the relapse of the disease, with the increase of
SH group concentration after corticosteroid therapy and the
establishment of clinical remission [48]. Calabrese et al. [183]
point to the big pathogenetic importance of the reduction of
SH group concentration in the acute inflammation of the
nervous tissue. In the studies of Scapagnini et al. [184], it
has been shown that the use of different antioxidants prevents
the loss of the total quantity of SH groups. It is assumed that
this effect is achieved by modulating the intracellular signal-
ization by the stimulation of HSP32 and heme oxygenase-1,
which are the key factors in the earliest phases of neuroin-
flammation. The reduction of the intensity of neuroinflamma-
tion and oxidative and nitrosative stress after the use of inter-
feron therapy leads to the increase of SH group concentration,
with the simultaneous improvement of clinical findings [133,
185]. However, there are studies with a larger number of
included patients which do not find such a correlation of the
changes in SH group concentration and the clinical findings
[83].

It has been shown that restoring GSH levels via supple-
mentations based upon thiols could be less effective if GPx
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activity is impaired [186]. There is evidence that GPx activity
approached significant decreased values in MS compared to
values obtained in control subjects [22, 187]. There are results
which demonstrate that some drugs, being evaluated for ther-
apy in MS, suppress inflammatory activation caused by lipo-
polysaccharides in vitro, enhancing total thiol levels. That was
mediated by distinct mechanisms which were partly depen-
dent on GSH-related enzymes, but other than GPx [180].
There is also a report that states that mitoxantron therapy
induces the marked decrease in GPx activity in MS patients,
after its initial elevation, which is followed by significant
amelioration of clinical severity [188]. There are reports
which suggest that both enzymatic and nonenzymatic antiox-
idants could regulate the function of immunologic cells en-
rolled in neuroinflammation and its promotion [189]. GPx can
act as an inhibitor on 5-lipoxygenase in monocytes and mac-
rophages within inflammatory-mediated processes, in this
way decreasing the intensity of neuroinflammation, since 5-
lipoxygenase is highly induced in the named inflammatory
cells [190].

Pathogenetic Aspects of the Change in Catalase
and Superoxide Dismutase Activity in Neuroinflammation

Catalase (CAT) is the main part of the brain antioxidative
response [55, 57]. It is an intracellular antioxidant enzyme
mainly located in cellular peroxisomes and cytosol which has
been found in all cell types of the CNS, including also oligo-
dendroglia which are particularly vulnerable to the effects of
oxidative injuries [191]. Some authors demonstrated that var-
ious CAT treatment protocols might be useful in suppressing
MS progression under experimental [86, 192] and clinical
[193] conditions. Lower CAT activity in MS patients might
be a consequence of the insufficiency of CNS antioxidative
responses due to disease duration [48]. Thus, the CATactivity
can be influenced by the limitation of GSH bioavailability,
since it is well known that CATactivity is especially important
in case of GSH depletion, which is demonstrated in MS [25].
Calabrese et al. [148] demonstrated an approximately three-
fold increase of CAT activity in the CSF of MS patients
compared to control values. Considering CATactivity induce-
ment in disease protection, there is also a demonstration of
amelioration of experimental demyelization induced by com-
bining scavenging of superoxide and hydrogen peroxide by
viral-mediated gene transfer of the human CAT gene [55]. The
findings by van Horssen et al. [21] demonstrate that antioxi-
dative enzymes, including CAT and SOD, are markedly up-
regulated in active demyelinating MS lesions.

The changes of the activity of SOD in neuroinflammation
are expected due to the fact that SOD represents the first line
of antioxidative defense of the organism [26, 29, 53]. In the
CNS, Cu/ZnSOD (SOD1) is highly expressed in astrocytes,
MnSOD (SOD2) is expressed in neurons, while the

extracellular Cu/ZnSOD (SOD3) is characterized by a de-
creased expression compared to the previous two SOD iso-
morphs [26]. The results of the studies which have tested
SOD1 activity changes in neuroinflammation indicate the
increase of the gene expression for SOD1 in the active MS
plaques [194]. Other studies point to the decrease of the
activity of this enzyme with the increase of SOD2 activity in
EAE [55]. The studies of Horssen et al. [21] have shown the
increase of the total activity of SOD in acute MS attacks,
which is supported by the results of the recent studies on
SOD activity in plasma [194]. Taking into account the exis-
tence of oxidative and nitrosative stress in the CNS [194], the
reduction of SOD activity in neuroinflammation could be a
part of the reduction of the total antioxidative defense, which
is suggested by the results of similar studies [25, 27, 111]. The
reduction of SOD activity opens up the possibility for further
evolution of oxidative damages inside the CNS by the previ-
ously described mechanisms [61]. This is the explanation for
the highly important negative correlation between the activity
of this enzyme and the severity of the clinical picture and the
radiological finding of patients with acute attacks of neuroin-
flammation [103].

Some earlier studies point to the increase of SOD activity in
CSF in acute MS attacks [195], contrary to the results which
suggest the decline of SOD activity in these patients [104]. It
is possible that ROS, directly or by means of inflammatory
mediators, achieve the effect on the gene expression of this
enzyme [28], wherein the suppressor effect of ROS on SOD
expression is potentiated over time [27]. The increase of SOD
activity in erythrocytes during inflammatory processes has
also been shown [123, 196]. SOD increase occurs as a conse-
quence of adaptive compensatory reactions on prooxidative
processes [21] and indicates the preservation of antioxidative
potential, while a smaller increase of the activity or its absence
could be a consequence of the inactivation of this enzyme by
the prolonged oxidative stress which is a characteristic of MS
patients even in the absence of the acute disease attacks [83].
There are studies [123] which find a correlation between SOD
activity in erythrocytes and the severity of clinical picture. On
the other hand, there are results which deny this type of
correlation [197], although these results also suggest that the
decline of SOD activity is in a negative correlation with the
disease duration. Results of some studies also suggest a strong
direct correlation between the decline of both total and cell
antioxidative potential and the time during which the organ-
ism is exposed to prooxidative effects [122]. This effect is
potentiated with the increase of patients’ age [24]. It has been
shown that antioxidative potential in a dose- and time-
dependent form increases the antioxidative capacity of eryth-
rocytes, thus increasing SOD activity, which prevents the
occurrence of various degenerative diseases [198]. This is
supported by the results of an experimental study which has
shown that SOD activity increases and the clinical
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presentation of neuroinflammation is mitigated after the anti-
oxidative treatment [99]. It is interesting that erythrocytes, as
circulating cells, are always exposed to the adverse effects of
ROS, even in the absence of clinical relapses of the disease
[22, 82], which makes the change of antioxidative capacity of
these cells one of the important links in neuroinflammation
pathogenesis [118, 119].

Modulation of Oxidative Stress
in Neuroinflammation—Therapeutic Perspectives

The role of oxidative stress in the pathogenesis of neuroin-
flammation and demyelination is undoubtedly big. The effect
of various antioxidative approaches like supplementation of
oxidative enzymes in oligodendrocyte culture has been con-
firmed, thus achieving the protective effect, compared to the
damages caused by ROS [148]. The supplementation of cys-
tine and cysteine has shown a favorable effect on this cell line,
increasing the intracellular level of GSH [153]. As shown in
other experimental studies, by similar mechanisms, NAC
achieves protective features in relation to the clinical manifes-
tation of EAE [99]. The earliest supplementation by antioxi-
dants has shown the direct but delayed favorable effect in
relation to the clinical presentation of EAE, even after a short
application at the beginning of the disease and a further
suspension of the use of these enzymes [198]. The existence
of protective features of the use of antioxidative enzymes
before EAE induction was also indicated because the occur-
rence of the disease after a premedication with these enzymes
was delayed and slow; in one percent of the cases, it did not
even occur [86]. The largest number of studies indicates that
the use of antioxidants affects the change of neuroinflamma-
tion course under experimental conditions, which is reflected
in the reduction of the severity of clinical presentation of the
disease and the total reversibility of the changes that occurred,
faster achieving of remission level, and the delayed and slow
course of EAE [118].

This review gives an advanced insight into the roles and
the importance of oxidative stress during neuroinflamma-
tion and offers the possibility for applying antioxidative
treatments in acute attacks of neuroinflammation. In this
way, neuroinflammation might be controlled in early
phases characterized by reversibility, at the same time
delaying later phases which are accompanied with irrevers-
ible neurological disabilities.
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