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Abstract Endoplasmic reticulum (ER) stress induces a vari-
ety of neuronal cell death pathways that play a critical role in
the pathophysiology of stroke. ER stress occurs when
unfolded/misfolded proteins accumulate and the folding ca-
pacity of ER chaperones exceeds the capacity of ER lumen to
facilitate their disposal. As a consequence, a complex set of
signaling pathways will be induced that transmit from ER to
cytosol and nucleus to compensate damage and to restore the
normal cellular homeostasis, collectively known as unfolded
protein response (UPR). However, failure of UPR due to
severe or prolonged stress leads to cell death. Following acute
CNS injuries, chronic disturbances in protein folding and
oxidative stress prolong ER stress leading to sustained ER
dysfunction and neuronal cell death. While ER stress re-
sponses have been well studied after stroke, there is an emerg-
ing need to study the association of ER stress with other cell
pathways that exacerbate neuronal death after an injury. In this
review, we summarize the current understanding of the role
for ER stress in acute brain injuries, highlighting the diverse
molecular mechanisms associated with ER stress and its rela-
tion to oxidative stress and autophagy. We also discussed the
existing and developing therapeutic options aimed to reduce
ER stress to protect the CNS after acute injuries.
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Introduction

Endoplasmic reticulum (ER) plays a role in many essential
cellular processes that include maintenance of intracellular
Ca2+ homeostasis, folding of the newly synthesized secretory
and membranous proteins, and post-translational modifica-
tions [1, 2]. As ~30 % of the newly synthesized proteins are
rapidly degraded due to improper folding [3], any increase in
protein translation leads to a potential buildup of misfolded/
unfolded proteins that stresses the cell. If this is combinedwith
perturbations in the ER microenvironment such as alterations
in redox state, depletion of Ca2+ levels, and failure of post-
translational modifications, cells will be further stressed. As a
result, the protein folding capacity of ER will be compro-
mised, resulting in further accumulation of misfolded/
unfolded proteins leading to unfolded protein response
(UPR) generally referred as ER stress [4]. The major goals
of UPR/ER stress are (1) to shutdown protein translation to
reduce the newly synthesized protein load, (2) to induce ER
chaperones that promote protein folding, and (3) to activate
ubiquitylation and proteasomal degradation of the misfolded/
unfolded proteins. However, if stress is severe and persistent,
UPR signaling switches from prosurvival to proapoptotic. ER
stress is associated with numerous pathophysiological condi-
tions including diabetes, stroke, traumatic injury to CNS, and
many neurodegenerative disorders [5].

ER stress precipitates neuronal death by multiple synergistic
mechanisms. A major mechanism is the disruption of Ca2+

homeostasis that plays an important role in neuronal function
and survival [2]. ER is the major store for cellular Ca2+, and
disruption of ER-associated Ca2+ channels including ryanodine
receptors (RyRs) due to energy failure after stroke releases
intracellular Ca2+ that induces proteases and nucleases leading
to necrotic cell death. Depletion of Ca2+ stores in ER, activation
of ER-associated Ca2+-ATPases, and failure of endoplasmic
reticulum oxidoreductin-1 alpha (ERO1α) leading to disrupted
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protein disulfide bond formation also decrease protein folding
leading to further accumulation of unfolded proteins [2, 6–9].
Furthermore, ER stress induces cell death pathways associated
with autophagy and apoptosis [10]. All the above pathways
collaborate to precipitate the neuronal death due to ER stress
following acute CNS injuries (Fig. 1). Although limited UPR/
ER stress is needed to induce neuroprotective mechanisms,
excess ER stress leads to cell death and the molecular mecha-
nisms that facilitate the switch from protection to death are yet to
be understood completely. This review will discuss the current
understanding of the complex signaling events induced by ER
stress, highlighting the roles of ER stress in the pathophysiology
of acute CNS injuries and emerging therapeutic opportunities for
drug discovery.

UPR Signaling Pathways

UPR activates three major signaling pathways initiated by pro-
totypical ER-localized stress sensors: pancreatic ER kinase
(PKR)-like ER kinase (PERK), inositol-requiring enzyme 1
(IRE1), and activating transcription factor 6 (ATF6) [11]. Under

normal physiological conditions, all three effectors bind to the
ER chaperone 78 kDa glucose-regulated protein/binding immu-
noglobulin protein (GRP78/BIP) on their luminal domains; thus,
GRP78 suppresses their activity [12]. Under conditions of ER
stress, when misfolded proteins accumulate in the ER lumen,
GRP78 dissociates from the PERK, ATF6, and IRE1, allowing
their activation [4]. Activation of the ER signaling pathways
helps to fight the cellular stress due to UPR by suppressing the
translation of new proteins and thus reduce the load of unfolded/
misfolded proteins, by inducing the ER chaperones that promote
protein refolding and by activation of proteasome that degrades
the misfolded/unfolded proteins. Thus, the primary function of
theUPR/ER stress signaling is to promote the cell survival under
hostile conditions.

PERK Pathway

The primary cellular response to ER stress is transient global
translation attenuation [4]. Dissociation of GRP78 initiates
dimerization and autophosphorylation of PERK leading to
its activation. PERK activation is the first indicator of UPR
that is evident during the early hours of reperfusion after

Fig. 1 Interaction of ER stress, oxidative stress, mitochondrial
dysfunction, and autophagy following acute CNS injuries. Oxidative
stress/ROS trigger ER stress, and ER stress exacerbates ROS
production. UPR leads to activation of ER transmembrane kinases
PERK, IRE1, and ATF6. PERK activates phosphorylation of eIF2α and
halts protein translation but can also induce expression of ATF4 due to
presence of alternate ORFs in ATF4 mRNA. ATF4 induces CHOPwhich
in turn induces many downstream genes leading to apoptosis and
autophagy. Further, CHOP also induces ER oxidase ERO1α, thus

rendering the ER more oxidized. JNK activated by IRE1-TRAF2-
ASK1 complex induces autophagy and apoptosis if unrestrained. The
proapoptotic BCL-2 family members residing on ER induce Ca2+ release
from ER leading to mitochondrial dysfunction, ROS generation, and
apoptosis. ATF6 translocates to the nucleus and activates the
transcription of ERAD genes and XBP1. In the nucleus, the cytosolic
fragment of cleaved ATF6 binds to cis-acting ER stress response element
and UPR element and upregulates major ER chaperones and ERAD
components responsible for cell survival
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cerebral ischemia [13]. Once activated, PERK phosphorylates
serine 51 residue of eukaryotic translation initiation factor 2
subunitα (eIF2α) preventing the 80S ribosomal assembly and
thus curtails global protein synthesis [14, 15]. However, cer-
tain PERK downstream proteins like activating transcription
factor 4 (ATF4) continued to be translated due to the presence
of specific arrangement in the open reading frame 2 (ORF2) of
ATF4 messenger RNA (mRNA) [16]. ATF4 is known to
promote cell survival by inducing ER stress target genes that
control amino acid metabolism, redox reactions, stress re-
sponse, and protein secretion [17]. However, prolonged acti-
vation of ATF4 induces its downstream proinflammatory tran-
scription factor C/EBP homologous protein/growth arrest and
DNA damage-inducible gene 153 (CHOP/GADD153) and
further downstream growth arrest and DNA damage-
inducible gene 34 (GADD34) which forms a complex with
protein phosphatase 1 (PP1) that mediates translational recov-
ery by dephosphorylation of p-eIF2α [18]. The importance of
PERK pathway in curtailing ER stress has been well docu-
mented. Cells lacking PERK and knock-in cells that express a
nonphosphorylatable form of eIF2α (S51A) showed signifi-
cant hypersensitivity to ER stress [19]. Furthermore, attenua-
tion of translational recovery by pharmacological inhibition of
p-eIF2α dephosphorylation using salubrinal protects cells
from ER stress-induced apoptosis [20]. Salubrinal prevents
formation of GADD34/PP1 complex and thus attenuates de-
phosphorylation of p-eIF2α [20]. Salubrinal administration
was shown to decrease neuronal death in experimental rodent
models of epilepsy, excitotoxicity, and focal ischemia [21, 22].
Thus, activation of PERK-eIF2α pathway is critical for sur-
vival of neurons during the acute phase after a brain insult.
However, uncontrolled activation of PERK pathway promotes
cell death via transcriptional responses mediated by ATF4 and
CHOP, which inhibit the expression of prosurvival B cell
lymphoma 2 (BCL-2) and anti-apoptotic gene BCL-2-
associated X protein (BAX) downstream to CHOP and acti-
vate BCL-2-interacting mediator of cell death (BIM), p53
upregulated modulator of apoptosis (PUMA), and tribbles
homolog 3 (TRB3) [23, 24].

IRE1 Pathway

IRE1α is a 100 kDa type I transmembrane protein that has a
Ser/Thr kinase domain and an endoribonuclease domain [25].
During ER stress, GRP78 dissociation leads to dimerization
and activation of IRE1 [26]. Upon activation, the endonucle-
ase activity of IRE1 specifically cuts a 26-nucleotide intron
from the transcription factor X-box binding protein 1 (XBP1)
mRNA leading to a shift in its open reading frame [26].
Processed XBP1 mRNA is translated into a 54 kDa protein
that induces the expression of glucose-regulated proteins such
as GRP78 and GRP94 [27]. Once adequate new GRP78
protein has been synthesized, it binds to unfolded proteins

(enabling them to refold) and to PERK and IRE1 to restore the
normal ER function. IRE1α activation and XBP1 processing
are early neuroprotective events after acute brain insults like
ischemia [22, 28, 29]. However, depending on ER stress
levels, the IRE1α promotes either adaptation or apoptosis.
Under chronic ER stress, IRE1α’s RNase relaxes its endonu-
cleolytic activity to cleave ER-localized mRNAs and noncod-
ing RNAs, leading to apoptosis [30–33]. Interestingly, kinase-
inhibiting RNase attenuators (KIRAs) allosterically inhibit
IRE1α’s kinase/RNase activity by breaking oligomers leading
to inhibition of apoptosis [34]. Furthermore, blocking IRE1α
with KIRA6 (an optimized KIRA) promotes cell survival and
preserves physiological functions against chronic ER stress
in vivo [34].

Activation of ER-localized caspase-12 is known to occur
following acute brain injuries [35–37]. Indeed, mice lacking
caspase-12 are resistant to ER stress-induced apoptosis [38].
In unstressed conditions, GRP78 binds to both IRE1α [12]
and procaspase-12 [39], whereas during ER stress, GRP78
dissociates from IRE1α and procaspase-12 and binds to un-
folded proteins. The dissociation of IRE1α and procaspase-12
from GRP78 was observed in cultured astrocytes after
acidosis-induced ER stress [40]. Although direct evidence is
lacking on the interaction between IRE1α and procaspase-12,
the IRE1α binding partner tumor necrosis factor receptor-
associated factor 2 (TRAF2) is known to interact with
procaspase-12 to promote clustering and activation of
procaspase-12 during ER stress [41]. Activated IRE1α re-
cruits TRAF2 to the ER membrane, which is regulated by c-
Jun NH2-terminal inhibitory kinase (JIK) [41, 42]. The
IRE1α/TRAF2 complex then recruits apoptosis signal-
regulating kinase 1 (ASK1) and activates the downstream
JNK pathway, which promotes neuronal death [43, 44]. Fur-
thermore, the dominant-negative TRAF2 inhibits the activa-
tion of JNK by IRE1 [42]. Post-ischemic inhibition of JNK
with a cell penetrating, protease inhibitor peptide called D-
JNK-1 was shown to result in a robust and long-term neuro-
protection and improved neurological function after focal and
global ischemia [45]. Small molecule inhibitors of JNK like
SP600125 reduce cerebral infarct volume after experimental
ischemia inmice [46].Moreover, JNK inhibition also prevents
mitochondrial translocation of BAX and BIM, release of
cytochrome c and second mitochondrial-activated factor
(Smac), and subsequent activation of caspase-9 and caspase-
3 [46]. Overall, IRE1α signaling effectively controls cell fate
but can be controlled pharmacologically to reduce the cell
death under sustained ER stress.

ATF6 Pathway

Dissociation of transcription factor ATF6 from GRP78 leads
to translocation of ATF6 to Golgi, where it is cleaved by site-1
and site-2 proteases to yield an active N-terminal 50 kDa
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domain (N-ATF6/p50ATF6) that translocates to the nucleus
[47]. In the nucleus, ATF6 binds to cis-acting ER stress
response element and UPR element and upregulates major
ER chaperones and ER-associated protein degradation
(ERAD) components [47]. Studies with mice lacking ATF6
suggested that ATF6α is required to optimize ER functions
such as protein folding, secretion, and degradation to protect
cells from chronic ER stress [48]. Further, ATF6α ablation
protected neurons against 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-induced neurotoxicity by increas-
ing ER chaperones and ERAD [49]. Thus, ATF6 activation
appears to be a prosurvival endogenous adaptation to coun-
teract ER stress.

Synergy of ER Stress and Oxidative Stress

Reactive oxygen species (ROS) are produced at low levels
during normal physiological conditions and are scavenged by
endogenous anti-oxidant enzymes that include superoxide
dismutase, glutathione peroxidase, and catalase [50]. Follow-
ing insults like ischemia, generation of ROS overrides the
ability of the endogenous anti-oxidant system leading to oxi-
dative stress and neuronal cell death [51]. On the other hand,
production of ROS also increases after CNS insults. Post-
mortem brains of patients suffered from neurodegenerative
disorders display increased ROS in affected brain regions
[52]. Excessive Ca2+ influx into the cell after an insult due
to NMDA receptor activation leads to increased superoxide
production by cytosolic NADPH oxidase and mitochondrial
electron transport chain [53, 54]. NADPH oxidase is known to
be the primary source of superoxide production via NMDA
activation [55]. NADPH oxidase is composed of catalytic and
regulatory subunits, and when they get activated, they trans-
locate to plasma membrane and combine with an assembly
subunit [55]. Neurons predominantly express the NOX2 iso-
form of NADPH oxidase that contains the gp91 catalytic
subunit and requires the p47phox assembly subunit [53],
and inhibition or genetic deletion of NOX2 and/or p47phox
was shown to reduce neuronal damage after stroke experi-
mental stroke [56]. Alleviation of either ER stress or oxidative
stress protects neurons from apoptosis in neurodegenerative
disorders [57]. Many studies further indicate that ER stress
and oxidative stress potentiate each other in several conditions
including diabetes, atherosclerosis, renal dysfunction, and
neurodegenerative diseases [25, 58, 59]. Interestingly, NOX-
mediated oxidative stress was shown to be induced by UPR/
ER stress, and ER stress-mediated apoptosis was shown to be
blocked by genetic deletion of NOX2 or treatment with the
anti-oxidant N-acetylcysteine [60].

ER provides a unique oxidizing-folding environment that
favors the formation of the disulfide bonds, and hence, protein
folding generates ROS as a byproduct in the ER lumen [61].
Activation of the UPR in a controlled manner on exposure to

oxidative stress might be an adaptive mechanism to preserve
cell function and survival. However, excess ER stress pro-
motes the accumulation of ROS and thus exacerbates the
oxidative stress [61].

PERK pathway is a molecular mechanism that links oxi-
dative stress and ER stress. Transcription factor nuclear factor
(erythroid-derived 2)-like 2 (Nrf2) induces the expression of
many anti-oxidant genes and hence considered as a master
regulator of the anti-oxidant response of cell [62]. Under
physiological conditions, Kelch-like ECH-associated protein
1(KEAP1) binds to Nrf2 to maintain in an inactive form.
Whereas, PERK-dependent phosphorylation of Nrf2 dissoci-
ates Nrf2 from the Nrf2/KEAP1 complex allowing its trans-
location to the nucleus to promote the expression of anti-
oxidant genes [63]. Moreover, Nrf2 together with ATF4 in-
duces anti-oxidant response element (ARE)-dependent gene
transcription, suggesting the convergence of ER stress and
oxidative stress signaling pathways [64]. The ER oxidoreduc-
tase ERO1α forms disulfide bonds that are essential for pro-
tein refolding and thus helps to relieve ER stress. However, as
ERO1α transfers electrons to molecular oxygen during its
activity, it forms ROS as a byproduct [65]. The proapoptotic
transcription factor CHOP (downstream to PERK) induces
ERO1α expression, thus rendering the ER more oxidized,
and cells lacking CHOP attenuated ERO1α induction against
ER stress [18]. As a result, ER calcium channel inositol 1,4,5-
triphosphate receptor (IP3R) releases intracellular Ca2+ from
ER lumen to the cytosol [66]. The IP3R-induced Ca2+ release
is blocked by small interfering RNA (siRNA)-mediated si-
lencing of ERO1α or IP3R1 and by loss-of-function muta-
tions in ERO1α or CHOP [66]. Further, due to release from
ER store, Ca2+ concentration within the mitochondria eventu-
ally stimulates ROS production [67]. The close proximity of
ER and mitochondria leads to accumulation of Ca2+ in the
mitochondrial microenvironment and further sensitizes the
mitochondria to ROS that eventually causes the opening of
mitochondrial permeability transition pore [68]. During early
stages of apoptosis, cytochrome c released from the mitochon-
dria translocates to ER and selectively binds to IP3R, resulting
in a sustained increase of cytosolic Ca2+ [69]. ER stress further
triggers release of cytochrome c from the mitochondria lead-
ing to more Ca2+ release from the ER in a feedback loop [69].
Furthermore, mitochondrial ROS leads to thiol oxidation of
ryanodine receptors (RyRs; another ER Ca2+ release channel),
causing its activation and release of Ca2+ from the ER [70, 71].
Thus, Ca2+ acts as an input signal in activating IP3Rs or the
RyRs, a process known as Ca2+-induced Ca2+ release [72].
The ER Ca2+ released through RyRs and IP3Rs may contrib-
ute to excitotoxicity of neurons [73]. The involvement of
glutamate-mediated excitotoxicity is well documented after
acute CNS injuries and chronic neurodegenerative disorders
[74, 75]. Interestingly, the ER stress inhibitor salubrinal pro-
tects oligodendrocytes and neurons from glutamate receptor-
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mediated excitotoxicity [21, 76]. Collectively, it appears that
ER stress, oxidative stress, and mitochondrial dysfunction are
closely linked events.

ER Stress and Mitochondrial Dysfunction

Cell death signaling pathways originating from membrane
receptors, such as protein kinase A, serine/threonine kinase
Akt (protein kinase B), protein kinase C (PKC), extracellular
signal-regulated protein kinases (ERK1/2), c-Jun N-terminal
kinase/stress-activated protein kinase (JNK/SAPK), and p38
mitogen-activated protein kinase (p38 MAPK), cytosol, nu-
cleus, lysosome, and ER converge leading to mitochondrial
membrane permeabilization [77]. As a result, the inner mito-
chondrial components such as cytochrome c, caspase-9, apo-
ptotic protease-activating factor 1 (APAF-1), and apoptosis-
inducing factor (AIF) release into cytosol to initiate both the
caspase-dependent and caspase-independent apoptotic path-
ways [78]. Ample evidence suggests the activation of these
pathways in rodent models of stroke [79–83]. The principal
proteins involved with mitochondrial membrane perme-
abilization are the proapoptotic BCL-2 family members in-
cluding BAX, BCL-2 homologous antagonist killer (BAK),
BH3-interacting domain death agonist (BID), BCL-2-
associated death promoter (BAD), BIM, and PUMA [84].
Among them, BAX and BAK cause mitochondrial membrane
disruption via channel formation in the outer mitochondrial
membrane interacting with the mitochondrial adenine nucle-
otide translocator and the voltage-dependent anion channel
[82, 85]. The BH3-only proteins BID and PUMA facilitate
BAX and BAK channel formation, whereas BAD and BIM
act to inhibit prosurvival BCL-2 and BCL-xL [84, 86]. The
post-stroke alterations in the expression of both proapoptotic
and anti-apoptotic BCL-2 family members were observed in
rodent models [87]. Although BCL-2 family members have a
direct effect on mitochondrial membrane, at the same time,
they are also located in ER and influence ER function [88]. It
has been estimated that 5–20% of the mitochondrial surface is
in close appositions with the ER [89]. ER stress leads to
upregulation of the expression of proapoptotic BAX, BIM,
and PUMA and activation of caspase-2 and caspase-9 and
dissipation of mitochondrial transmembrane potential (ΔΨm)
[90, 91]. Interestingly, BIM and PUMA induce cytochrome c
release and apoptosis exclusively in the presence of ER-
localized BAK [91]. The post-stroke temporal profile of
markers for ER and mitochondrial dysfunction suggests that
ER dysfunction may be upstream of mitochondrial dysfunc-
tion [13, 92–94]. Phosphorylation of PERK and eIF2α was
observed much earlier than cytochrome c release during re-
perfusion after transient cerebral ischemia, implying that ER
dysfunction precedes mitochondrial impairment [95]. Amajor
consequence of overactivation of PERK phosphorylation is
the induction of its downstream transcription factor ATF4 that

induces the expression of BAX, BIM, and PUMA that con-
currently inhibits BCL-2 expression. This tips the balance
toward apoptosis. ER stress-inducing agents are known to
activate AIF and caspase-12 and their subsequent redistribu-
tion to the nucleus [96]. Knockdown of either AIF or caspase-
12 showed that AIF primarily controls apoptosis caused by
disrupted Ca2+ homeostasis, whereas caspase-12 regulates
both AIF and other apoptotic mechanisms [96]. Thus, ER
stress and mitochondrial dysfunction collaborate to modulate
apoptotic after stroke and other CNS insults.

ER Stress and Autophagy

As discussed above, PERK overactivation leading to the
induction of CHOP and its downstream proapoptotic genes
is shown to induce neuronal death by apoptosis. Some studies
also thought that neuronal death due to autophagy is also a
major consequence of ER stress [10, 97, 98]. In support,
oxidative stress potentiated by ER stress also triggers autoph-
agy [99]. Furthermore, ER stress increases the formation of
autophagosome via IRE1-JNK signaling pathway [100], and
dysfunction of ERAD and autophagy and the resulting failure
of protein folding render cells vulnerable to ER stress [100].

Autophagy is constitutively active in healthy neurons and
is vital to cell survival [101].Mice lacking essential autophagy
genes such as Atg5 and Atg7 result in neurodegeneration,
suggesting that it is important for normal neuronal function
[102]. In addition, mitophagy (autophagic removal of mito-
chondria) is considered to be an adaptive mechanism in re-
sponse to hypoxia that is necessary to maintain redox homeo-
stasis and cell survival [103]. Previous studies showed that
both mitochondrial and ER fragments damaged by ROS are
sequestered in autophagolysosomes to prevent leakage of
calcium into the cytosol from these organelles and subsequent
activation of apoptosis [104]. While limited amount of au-
tophagy is essential, abnormal activation of autophagic path-
way leads to secondary brain damage as seen after both
chronic and acute insults to CNS [105].

Controlled activation of autophagy under mild physiolog-
ical stress is beneficial for recycling the contents of the cell,
but excessive activation of autophagy under severe patholog-
ical stress can be detrimental and kills the cells. Previous
studies showed that the autophagy markers like Beclin-1 and
LC3-II are induced following cerebral ischemia [10, 102]. It
seems that BCL-2-interacting domain of Beclin-1 serves as a
point of crosstalk between autophagy and apoptosis [78].

The hippocampal neuronal death after hypoxic-ischemic
injury was shown to be mitigated in mice lacking the autoph-
agy modulator Atg7 indicating the significance of autophagy
after cerebral ischemia [106]. Pharmacological inhibition of
autophagy using 3-methyladenine (3-MA) and bafliomycin
A1 (BFA) or the cathepsin B inhibitor benzyloxycarbonyl-
phenyl-alanyl-fluoromethyl ketone (Z-FA-FMK) reduced
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infarct volume after focal ischemia. The neuroprotective ef-
fects of 3-MA and Z-FA-FMK associated with the inhibition
of LC3-II and cathepsin B and increased expression of BCL-2
[107]. In addition, preconditioning-induced ischemic toler-
ance was observed to be mimicked by inducers of autophagy
[108]. Although oxidative stress and ER stress that precipitate
neuronal death after ischemia were shown to potently stimu-
late autophagy [109], the precise molecular mechanisms by
which ER is selected as autophagic cargo and the crosstalk
between ER stress-induced autophagy and activation of cell
death pathways after stroke are not yet clearly understood.

Autophagy is beneficial after ER stress to clear the unfold-
ed proteins independent of the ubiquitin-proteasomal system
[25]. However, increased cytosolic Ca2+ and PERK and IRE1
pathways induced after UPR have been implicated as media-
tors of ER stress-induced autophagy in mammalian cells [10,
110, 111]. It is not clear how PERK-eIF2α regulates autoph-
agy, but the autophagy mediator Atg12 was thought to be
induced downstream of ATF4 [110]. Mutations in the PERK
phosphorylation site of eIF2α prevent Atg2 upregulation, and
conversion of LC3-I (free form) to LC3-II (lipidated form)
further supports that PERK pathway is a mediator of autoph-
agy [110]. IRE1 pathway downstream of UPR/ER stress is
also thought to play an essential role in ER stress-mediated
autophagy. Accumulations of LC3-positive vesicles were
shown to decrease in mouse embryonic fibroblasts lacking
IRE1α, indicating that it is a major mediator autophagy [10].
Furthermore, XBP1 ablation also induces autophagy and pro-
tects against amyotrophic lateral sclerosis and Huntington’s
disease [112, 113]. Although both PERK and IRE1 are in-
duced after stroke, their involvement in post-ischemic autoph-
agy is not yet evaluated. It appears that ER stress-induced
autophagy could be neuroprotective based on the observation
that ER stress inhibitor salubrinal inhibited the activation of
autophagy and neuroprotection after ischemic preconditioning
[114].

ER Stress and Cerebral Ischemia

Cerebral ischemia/stroke is a major cause of death and dis-
ability worldwide. The pathology of ischemic stroke is very
complex that involves multiple cell signaling pathways lead-
ing to neuronal loss [78]. Due to energy depletion during
cerebral ischemia, neurons in the ischemic zone are unable
to maintain the imbalance between ionic gradients, which
eventually results in increased neuronal depolarization follow-
ed by excessive glutamate release [115]. Further, neurons in
the surrounding areas also release glutamate and spread ische-
mic depolarization from the site of initial damage, which leads
to widespread disturbance of Ca2+ homoeostasis. Excessive
intracellular Ca2+ release leads to activation of signaling pro-
cesses that kills neurons and impairs CNS functions [115].
Following cerebral ischemia, low energy levels can disrupt

normal protein folding leading to activation of UPR/ER stress,
which plays a critical role in the ischemic brain damage [22].
Chronic disturbances in protein folding and oxidative stress
prolong ER stress leading to sustained ER dysfunction and
neuronal cell death after stroke [116]. Good evidence exists to
suggest that focal ischemia leads to depletion of Ca2+ from ER
stores [2], accumulation of unfolded proteins in the ER lumen
[6], inhibition of protein synthesis [117], activation of ER
st ress downst ream proapopto t ic genes such as
CHOP/GADD153 [22, 118], and further downstream of PU-
MA [119] and BIM [120], indicating a role for UPR/ER stress
in post-ischemic brain damage. Cerebral ischemia also leads
to oxidative stress which integrates with ER stress/UPR (if
they are limited) as an adaptive mechanism to preserve cell
function and survival [61, 121, 122]. In addition, ROS can
trigger ER stress [123], and ER stress can exacerbate ROS
production [18, 61, 124]. Therefore, the post-ischemic neuro-
nal death is mediated in part by the cooperative action of
oxidative stress and ER stress. Further, as discussed in the
earlier sections, ER stress and mitochondrial dysfunction also
collaborate to promote apoptosis after stroke. Therefore, con-
trolling ER stress exerts a significant protective effect on the
ischemic brain, thus offers the prospect of new strategies for
stroke therapies. The neuroprotective effect of ischemic pre-
conditioning has been attributed to attenuation of ER stress
response after ischemic insults [125]. Mice lacking PERK did
not show eIF2α phosphorylation or reduced protein transla-
tion during transient cerebral ischemia [126]. Downstream to
PERK-eIF2α, ATF4 and CHOP knockout mice showed less
brain damage, improved behavioral outcome, and decreased
neuronal cell death after ischemia [29, 127]. Further,
GADD34 induction is known to accompany ischemic penum-
bra and accounts for the translational recovery via dephos-
phorylation of eIF2α during stroke [126]. Attenuation of
translational recovery protects cells from accumulation of
misfolded proteins, and thus, treatment with salubrinal
sustained eIF2α phosphorylation and limited infarct size in a
rat model of cerebral ischemia [22]. Interestingly, a chemical
chaperone sodium 4-phenylbutyrate (4PBA) ameliorated is-
chemic brain injury associated with diabetes by reducing ER
stress and apoptosis [128]. Further, (−)-epigallocatechin-3-
gallate, which is an abundant constituent of green tea, also
provided neuroprotection via inhibition of ER stress after
transient focal ischemia [129]. Together, these findings strong-
ly suggest that ER stress is induced by cerebral ischemia and
that pharmacological manipulation of ER stress signaling
could have important therapeutic effects as an acute
intervention.

ER Stress and TBI

Similar to stroke, secondary neuronal death that starts imme-
diately after the insult is a leading cause of morbidity and
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mortality following acute injuries to CNS like traumatic brain
injury (TBI) and spinal cord injury (SCI) with limited avail-
able therapeutic options [130, 131]. Many stress genes related
to ER and mitochondrial function were shown to be induced
quickly after TBI [37, 132–134]. A rapid increase in the
expression of molecular chaperones specific to ER (GRP78),
mitochondria (HSP60), and cytosol (HSP70) was observed
for 4 h after experimental TBI combined with hypoxia [134].
A sustained expression of potent ER stress markers such as
peIF-2α, ATF4, IRE1, and CHOP was observed in the cere-
bral cortex days after induction of experimental TBI [100].
Furthermore, treatment with docosahexaenoic acid (an
omega-3 fatty acid) attenuates ER stress, reduces the accumu-
lation of ubiquitinated proteins, and promotes early recovery
of sensorimotor function after TBI [132]. The anti-apoptotic
BAX inhibitor 1 (BI-1), which is an ER resident protein,
modulates UPR signaling via regulating the release of Ca2+

[135]. Transgenic mice that constitutively express BI-1 pro-
tein exhibit decreased expression of ER stress markers, re-
duced brain damage, and improved behavioral outcome in
rodent models of acute brain injury [130]. Mice lacking BI-1
showed increased vulnerability to experimental chronic mild
stress accompanied by changes in the size and morphology of
hippocampus and enhanced ROS production and ER stress
response [135]. Previous studies also showed that selective
inhibition of eIF2α dephosphorylation with salubrinal reduces
neuronal damage in animal models of stroke and epilepsy [21,
22]. We also observed that salubrinal induces neuroprotection
after experimental TBI [136]. Overall, a combined strategy of

reducing ER stress and oxidative stress might lead to a better
outcome after TBI.

ER Stress and SAH

Recent reports indicate that ER stress also plays a role in
regulating early brain damage after experimental subarach-
noid hemorrhage (SAH) [106]. An interesting observation is
that enhancing ER stress by treating with tunicamycin signif-
icantly improved the neurological deficits, attenuated the ex-
pression of caspase-3, reduced the number of apoptotic neu-
rons, and enhanced the expression of autophagy markers after
endovascular perforation model of SAH [137]. In contrast,
treatment with the ER stress inhibitor TUDCA after SAH
aggravated neurological deficits and apoptotic cell death ac-
companied by decreased autophagy [137]. The autophagy
inducer rapamycin (RAP) administration decreased transloca-
tion of cytosolic BAX to the mitochondria and release of
cytochrome c to the cytosol after experimental SAH in rats
[138]. Endothelial apoptosis plays an important role in the
development of cerebral vasospasm after SAH [139]. The
proapoptotic transcription factor CHOP, which is implicated
in post-stroke secondary brain damage, also plays an impor-
tant role in mediating the cerebral vasospasm after SAH [139].
siRNA-mediated knockdown of CHOPwas shown tomitigate
apoptosis associated with cerebral vasospasm by reducing the
expression of proapoptotic genes BIM and caspase-3 after
SAH [139]. CHOP siRNA treatment reduced the number of
apoptotic endothelial cells in basilar artery as well after SAH

Table 1 Therapeutic opportunities based on modulating UPR/ER stress and its associated pathways

Target Compound Mode of action/outcome Reference

GRP78 (ER chaperone) BIX Induces GRP78 expression; neuroprotective
after stroke

[143]

PERK-eIF2α pathway Salubrinal Inhibits eIF2α dephosphorylation;
neuroprotective after stroke

[20–22]

NO signaling pathway L-NNA, ONO-1714, L-NAME, L-NMMA Inhibits NOS; neuroprotective after stroke [9, 144–146]

Nrf2-KEAP1 pathway Carnosic acid, triterpenoids, sulforaphane,
tertbutylhydroquinone, melatonin

Activates Nrf2 anti-oxidant pathway;
neuroprotective after stroke and TBI

[147–149]

ROS/ER stress Edaravone Free radical scavenger; neuroprotective
after hypoxia/ischemia and TBI

[150, 151]

TUDCA, 4PBA Reduces ER stress; neuroprotective [128, 152, 153]

NADPH oxidase Apocynin Inhibits ROS generation; neuroprotective
after stroke and TBI

[154–156]

ASK1 Fused heterocyclic compounds Inhibits ASK1 activity; neuroprotective [157]

Oxidative stress ER stress U83836E, resveratrol, curcumin,
OPC-14177, lipoic acid

Inhibits lipid peroxidation;
neuroprotective after TBI

[158]

Docosahexaenoic acid Reduces ER stress and abnormal protein
accumulation; recovers neuronal
function after TBI

[131]

BIX BIP protein inducer X, ROS reactive oxygen species, NOS nitric oxide synthase, L-NNA nitro-L-arginine,ONO-1714 inhibitor of inducible NOS, L-
NAME L-NG-nitroarginine methyl ester, L-NMMA NG-monomethyl-L-arginine, TUDCA taurine-conjugated ursodeoxycholic acid, GRP78 glucose
regulatory protein 78 kDa, PERK protein kinase RNA-like endoplasmic reticulum kinase, eIF2 eukaryotic translational initiation factor 2,KEAP1Kelch-
like ECH-associated protein 1, ASK1 apoptosis signal-regulating kinase 1, Nrf2 nuclear factor (erythroid-derived 2)-like 2
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[139]. Further studies on ER stress and interconnected autoph-
agy mechanisms will help to develop new therapeutic targets
to minimize vasospasm and brain damage after SAH.

ER Stress and SCI

ER stress was also shown to play an important role in apopto-
sis following SCI [140]. Weight drop-induced SCI in mice
was shown to rapidly induce PERK, ATF6, and IRE1α sig-
naling pathways at the injury epicenter [141]. Although ER
stress response seems to be protective after mild SCI, it leads
to apoptosis after severe SCI in a rat contusive model [142].
Following SCI, ER stress response varies depending on spe-
cific cell type. A recent study showed that astrocytes are more
vulnerable to ER stress than oligodendrocyte precursor cells
after SCI [142]. In contrast, increased expression of
proapoptotic CHOP was observed in neurons and oligoden-
drocytes, but not in astrocytes after SCI, and mice lacking
CHOP showed attenuation of UPR and apoptosis after SCI
[141, 143]. Furthermore, CHOP null mice showed significant
functional recovery with increased white matter sparing and
higher levels of myelin basic protein and claudin 11 after SCI
[141]. Thus, attenuation of ER stress is protective after SCI as
well.

Therapeutic Opportunities for Neuroprotection
by Modulating ER Stress

Recent studies showed that ER stress can be modulated to
alter the pathological outcome by either inhibiting or potenti-
ating various proteins of PERK, ATF6, and IRE1 pathways.
Some of these drugs are shown in Table 1. Pretreatment of
mice with BIP-inducible factor X (BIX) that selectively in-
duces GRP78 expression reduces infarct volume and apopto-
tic neuronal death in the ischemic penumbra [159]. Acting
upstream of CHOP and ATF4, pharmacological inhibition of
ERO1α, and thus eIF2α dephosphorylation by small mole-
cule inhibitor salubrinal protect neurons from cell death in
in vitro and in vivo models of epilepsy and stroke by
prolonging the protein synthesis inhibition and thus reducing
the load of unfolded proteins [20–22]. Inducible nitric oxide
synthase (iNOS) knockout mice show reduced CHOP induc-
tion followed by delayed secondary brain damage after stroke
[160]. Hence, many NOS inhibitors can also induce neuro-
protection after acute CNS insults (Table 1). Crosstalk be-
tween ER stress and oxidative stress potentiates each other,
and hence, activating endogenous anti-oxidant pathways is
another feasible strategy for protecting brain after ischemic
and traumatic injuries. Many compounds that induce the
endogenous Nrf2-KEAP1 anti-oxidant pathway show neuro-
protection in ischemia and TBI animal models [147–149,

161]. Furthermore, combination therapies that inhibit both
ER stress and oxidative stress might be a potentially better
therapeutic strategy for preventing post-stroke and post-TBI
secondary brain damage. Many anti-oxidant drugs like
edaravone and apocynin were shown to curtail ischemic and
traumatic brain damage effectively [150, 151, 154–156].

Conclusions

Multiple cell death pathways may have common upstream
initiators, and their identification might help in the develop-
ment of new strategies for stroke therapy. Hence, therapeutic
strategies need to focus on combinatorial targets/mechanisms
to inhibit alternate cell death pathways. Oxidative stress ap-
pears as a master regulator of cell death by influencing ER and
mitochondria. Therefore, the molecular crosstalk between ER
stress, mitochondria dysfunction, oxidative stress, and autoph-
agy represents a vicious cycle that can be pharmacologically
targeted to minimize neuronal death after acute injuries to
CNS.
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