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Abstract There is a general consensus that breast can-
cer is a rising trend disease in the world. It is one of
the most common cancer types and is the leading cause
of death among women’s cancers. There are several
reasons for this high rate of mortality including metas-
tasis which is responsible for about 90 % of cancer-
related mortality. Therefore, recognition and understand-
ing of metastatic process is important, and by consider-
ing the key role of pathophysiological route in metas-
tasis as a multistep cascade of “invasion–metastasis,” it
might modify and improve our insight toward this com-
plex phenomenon. Moreover, it can provide novel ap-
proaches for designing advanced targeted therapies. The
present work aimed to review the published papers
regarding molecular basis of metastatic process of
breast cancer to brain metastasis, especially related
genes and signaling network. Furthermore, the use of
molecular aspects of metastatic breast cancer to brain
was discussed in horizon of future treatment of breast
cancer.
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Introduction

Metastasis is responsible for more than 90 % of cancer-
related mortality [1, 2]. The process of tumor metastasis
is highly selective and consists of a series of sequential,
interrelated steps [3]. During this process, cancer cells

disseminate from the primary tumor to distant organs,
or to other regions of the same organ to form secondary
metastatic tumor(s), and establish long distant or local
metastases, respectively [4]. Breast cancer (BC) is the
most common malignancy and one of the major causes
of cancer-related mortality among women [5]. The ma-
jority of deaths from breast cancer are due to metastasis
[6]. Breast cancer has great economic and psychological
burdens upon healthcare systems of patients, especially
when metastasized to the brain [7]. Brain is the fourth
most common site of breast cancer distant metastases,
after the bone, lung, and liver [8]. Approximately 10–
15 % of patients with breast cancer develop brain me-
tastasis (BM), even though autopsy studies have shown
much higher incidence [9]. There are many reports
indicating the increasing rate of BM within recent years
[7].

Recent increase in frequency and incidence of brain me-
tastasis may be due to several factors, including increased
aging population [10, 11] and increased awareness of the
warning signs and risk factors [11]; however, improvement
in treatment and advances in diagnostic methods are raising
the chance of early detection [12]. Prognostic factors of breast
cancer brain metastasis (BCBM) in the domain of central
nervous system, focus on different insights including identifi-
cation of high-risk individuals, and evaluation of therapeutic-
programming and outcomes [13–16]; higher tumor size and
grade [8, 9]; luminal B, triple-negative [17] and HER2-
positive tumors [8, 9, 14, 15, 17]; overexpression of p53,
p63, and Ki67 [8, 18]; multiple distant metastases [9, 17];
presence of lung metastases [14, 15, 18, 19]; lymph node
involvement [8, 14]; and Karnofsky performance status
(KPS) [16] (Fig. 1). Identification of risk factors and prognos-
tic markers would provide specific surveillance, management
of patients at risk [20], and designing therapeutic mo-
dalities to reduce the chance of metastasis [21].
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Cancer Stem Cells and Concept of Metastasis Cascade

Most tumors are heterogeneous and appeared to harbor a
slight population of self-renewing and expanding stem-
like cells, known as cancer stem cells (CSCs) [22–24].
CSCs share self-renewal, differentiation, organogenesis,
and features of normal stem cells [24, 25]. Recent studies
have shown that differentiated cancer cells can be induced
into a CSC-like state through a biologic multistep process
entitled epithelial–mesenchymal transition (EMT) [26]. In
addition to tumor progression and metastasis, EMT is a
main and essential part of embryogenesis and tissue re-
generation [27]. EMT consists of a series of radical
changes in cell phenotype, during which epithelial cells
lose their cell–cell adhesion structures and therefore their
polarity and rearrange their cytoskeleton. EMT is a critical
pathway in the mesenchymal movement of single migra-
tory cells, and therefore, cells that undergo EMT acquire
mesenchymal phenotype and become isolated, motile, and
resistant to apoptosis [26].

The EMT programs and early stages of cancer are regulated
by several key signaling pathways and transcription factors,
that lead to deregulation of the expression of epithelial
markers (e.g., E-cadherin), and enhancement in the expression
of mesenchymal markers (e.g., vimentin) [28]. SNAIL,
TWIST, and ZEB families of transcription factors are master
regulators of EMT [29]. On the other hand, TGF-β, Wnt, and
Notch signaling pathways are among the most critical regula-
tors of this process. Indeed, interactions between key tran-
scription factors and signaling pathways form an
autoregulatory network are believed to regulate different steps
of metastasis [30]. The CSCs are capable to continue the
metastatic dissemination process, known as metastatic cas-
cade (3).

The metastatic cascade is a complex network of biological
events [31, 32]. The most accepted model for metastasis,
“seed and soil” theory, indicates that disseminated cancer cells
(the seed) can thrive only in permissive tissues (the soil) [33,
34]. Looking at the pathophysiological process of metastasis

as a series of distinguished steps, called “invasion–metas-
tasis cascade,” has increased our understanding of this
complex phenomenon [35]. On the formation of metasta-
ses, tumor cell growth and secretion of angiogenic factors
lead to an extensive vascularization within primary tu-
mors [34]. Thereupon, cells locally invade through the
surrounding extracellular matrix (ECM) and stromal cell
layers, via induction of EMT, enabling them to leave the
primary site [36]. Locally invasive tumor cells intravasate
and enter into the lumina of blood vessels or lymphatic
system to be disseminated [37]. Tumor cells must evade
the host’s immune system and apoptotic signals at the
same time to survive. Henceforth, tumor cells must reach
and attach to the vasculature of the brain, extravasate into
the parenchyma, and pass through the blood–brain barrier
(BBB) [38]. Interestingly, only a few tumor cells have a
chance to survive [39] and reinitiate their proliferative
program in foreign microenvironments and therefore form
micrometastases. Next, tumor cells may further proliferate
at metastatic site(s) and form secondary tumors. The latter
step, called “metastatic colonization,” is the most rate-
limiting step of metastasis [40]. In almost all steps, dy-
namic interactions of tumor cells with their specialized
niche have a profound effect and govern metastasis [30].

In stem cell biology, the tumor microenvironment, or
niche, is a specialized network [41] that supports stem
cell induction and maintenance and actively controls cell
function and proliferation. The niche consists of various
elements such as nutrients, soluble factors, vascular net-
works, stromal cells, and ECM architecture [42]. The
sophisticated patterns of interactions between different
cell populations determine tumor behavior and subse-
quently the outcome of the disease [43]. A favorable
microenvironment known as “pre-metastatic niche”
(PMN) is required to evolve in order to support the tumor
cells for development of macrometastasis from
micrometastasis [42]. Understanding the molecular as-
pects of the “pre-metastasis” niche generation and its
role in supporting the organ-specific metastasis may

Fig. 1 Predisposing factors in the
occurrence of BCBM.
Identification of risk factors
would provide accurate diagnosis
and better management of
patients. [KPS: patient’s ability to
perform everyday tasks on a scale
of 0 (dead) to 100, no symptom of
disease]

Mol Neurobiol (2016) 53:446–454 447



open new avenues toward achieving novel prognostic and
therapeutic approaches in breast cancer management [44].

Metastasis Organotropism of Breast Cancer

Studies have approved that distribution of metastases is a
disproportional highly selective process, in which each
primary tumor metastasize to a number of distinct organs
[45]. This sophisticated phenomenon in metastasis, called
organotropism (organ-specific metastasis) [46], has been
shown in breast tumors with remarkable trend in metasta-
sis to the bone, lung, liver, and brain [40]. Indeed, human
breast tumors are heterogeneous and are classified accord-
ing to the diverse gene-expression patterns. These mo-
lecular subtypes include luminal A and luminal B as the
estrogen-receptor- positive (ER+) tumors, and types of
estrogen-receptor-negative (ER−) including basal-like, hu-
man epidermal growth factor receptor 2 (HER2+/ER− or
Erbb2) [47–51]. Sometimes, normal breast-like [52, 53]
and luminal C [52] groups have been described as other
molecular subtypes. This classification has a considerable
clinical value, since some of the molecular subtypes show
aggressiveness and poor prognosis such as HER2 and
basal-like [49–52]. These subtypes are characterized with
differential statue and overlapped gene expression that
might determine the preferential site of relapse. Bone
metastases which are the most common type of metastasis
of breast cancer is more frequently originated from the
luminal subtypes and are found less frequently in the
basal subtype. Lung metastases are found less frequent
in the luminal A subtype [48] but are common in basal-
like and Erbb2 tumors [54]. The highest number of liver
metastases was observed in the Erbb2 group and has been
found with less frequency in luminal B subtype [48].
Erbb2, basal-like subtype or triple-negative breast cancer
(TNBC) have higher risk of developing brain metastases
among patients affected with breast cancer [55, 56]. The
architecture of the vascular and/or lymphatic system also
has key role in the dissemination pattern of circulating
tumor cells (CTCs) and intricate tumor–stroma interac-
tions at the target organ. Therefore, both the intrinsic
features of cancer cells and the distant organ microenvi-
ronment play critical roles in determining the efficiency of
organ-specific metastasis [45].

Molecular Portraits of Breast Cancer Metastasis to Brain

Breast cancer brain metastasis is influenced by several
genes and signaling pathways. Genes that mediate brain
metastases may be excellent markers to predict the site of

recurrence and afford targeted treatment for an individual
patient [57].

Chemokine signaling plays important roles in cancer me-
tastasis [58, 59] and seems to be a worthy biological support
for the seed and soil theory [60]. Migration, which is one of
the most pivotal involved mechanisms in metastasis, is con-
trolled by chemokines [61–63]. The chemokines that are
expressed at specific organs determine the metastatic tropism
by promoting tumor cell adhesion to microvessels and facili-
tating angiogenesis, extravasation, tumor proliferation, surviv-
al, and subsequently metastatic colonization, through key
signaling pathways such as PI3K-Akt [64]. Chemokines such
as stromal-derived factor-1 (SDF-1α, also called CXCL12)
and C-C motif chemokine ligand 21 (CCL21) and their cor-
responding receptors CXCR4 and CCR7 play pivotal roles in
homing, motility, and proliferation of tumor cells at distinct
sites of metastasis [65]. It may be possible to predict the site of
metastasis by evaluating the expression pattern of chemokine
receptors in primary breast cancers [60]. It was reported that
CXCR4 had significantly higher expression in primary breast
cancer compared to normal breast tissues. CXCR4 is the
outmost chemokine receptor expressed in most cancers, while
SDF-1α has revealed to be highly expressed in common
metastatic sites of breast cancer [66]. There is compelling
evidence that CXCR4 may be one of the critical mediators
of metastatic breast cancer [65, 67]. Besides, by binding to
CXCR4, SDF-1α could activate multiple signaling pathways,
including phosphatidylinositol-3 kinase (PI-3K/AKT),
mitogen-activated protein kinase (MAPK), nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB), as
well as Crk [66, 68]. It has been demonstrated that PI-3K/
AKT signaling pathway activation via CXCR4/SDF-1α is
indispensable for breast cancer cell migration through the
BBB barrier [68]. AKT, which is a downstream target of PI-
3K, plays a critical role in promoting tumor cell survival by
inactivating the apoptotic machinery [66] and chemotherapy
resistance [69].

Direct contact between astrocytes, protective cells of
BBB, and tumor cells induces calcium sequestration [69]
and subsequently activate the AKT/MAPK signaling
pathways [70]. These pathways stimulates upregulation
of interleukin six (IL-6), IL-8 [69], BCL2L1, TWIST1,
and GSTA5. In fact, these anti-apoptotic genes are re-
sponsible for breast cancer metastases to the brain and
chemotherapy resistance in tumor cells [70, 69]. In addi-
tion to calcium, phospholipid-binding proteins such as
annexin A1 (ANXA1 or lipocortin) ignite CXCR4-
mediated migration of breast cancer cells in response to
SDF-1α [71]. Experimental studies have shown that co-
operation of SDF-1α with CXCR4 leads to penetration of
breast cancer cells into human brain microvascular endo-
thelial cells (HBMEC). Suppressing the CXCR4/ SDF-
1α-mediated signaling pathway can be considered as a
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therapeutic approach for inhibition of breast cancer inva-
sion and vascular permeability [66, 68]. The Cxcr4 and
Cxcl12 signaling axis can be blocked by Slit family of
secreted proteins (Slit1, 2, and 3) and their corresponding
receptors (Robo1, 2, 3, and 4) [72]. Slits and Robos have
critical roles in neuronal development and migration [73]
and are candidate as tumor suppressor genes that are
silenced in approximately 50 % of human breast tumors
[72].

NF-κB regulates the motility of breast cancer cells through
direct upregulation of CXCR4 expression. This complex,
upregulates the expression of several prometastatic and
proangiogenic genes including IL-6, IL-8, vascular endothe-
lial growth factor (VEGF), and urokinase-type plasminogen
activator (uPA) [65]. uPA convert plasminogen into plasmin
which in turn inhibits the L1 cell adhesion molecule
(L1CAM). L1CAM is an essential molecule for infiltration
of metastatic breast cancer cells into brain capillaries and has a
pivotal role in metastatic outgrowth of cancer cells. Further-
more, overexpression of anti-PA serpins (including
neuroserpin and serpin B2), a family of protease-enzyme
inhibitors, as brain metastatic cells originated from breast
cancer tissues, can suppress plasmin and as a result provoke
the metastatic process [39]. The uPA also degrades matrix
components and activates matrix metalloproteinases
(MMPs) through NF-κB activation [6, 74]. As one of the
important biological markers in breast cancer [75], MMPs,
which belong to a zinc-dependent endopeptidase family, are
involved in different steps of tumor progression and facilitate
cancer cell invasion and metastasis. These proteins act as
enzymes that degrade structural components of the extracel-
lular matrix. They are divided into two major types, soluble
and membrane-MMP types. Based on substrate specificities
and structural similarities, 28 human MMPs have been iden-
tified and categorized so far [76]. MMPs have also been
broadly studied in context of breast cancer prognosis [77].
The mean messenger RNA expression of MMP-2, MMP-7,
MMP-9, MMP14 genes besides tissue inhibitors of
metalloproteinase-1 (TIMP-1) and TIMP-2 have shown to
be significantly higher in breast cancer compared to normal
tissue. This expression profile would be important in
predicting the aggressive behavior of breast cancer cells [75].

There are many researches that highlighted the upregula-
tion of MMPs in normal breast epithelium which was associ-
ated with invasive tumor formation through increase in geno-
mic instability and EMT. Moreover, MMPs have critical roles
in creating the pre-metastatic niche [74], and they induce
growth factor signaling as well as TGF-β, FGF-2, and
VEGF-A through enhancing their availability to correspond-
ing receptors. It results in tumor evolution through stimulation
of tumor fibroblasts and angiogenesis [74]. Among MMPs,
MMP-2 and MMP-9 are known as type IV collagenases, or as
an alternative gelatinase A and B, respectively [78]. Upon

their function, MMP2/9 degrade type IV collagen, which is
believed to be involved as a main component of the vascular
basement membrane structure [75, 79]. Besides, MMP-2 is
capable to hydrolyze other constituents of connective tissues
such as elastin, laminin, fibronectin, proteoglycans, and
fibrillin [79]. MMP-7 is upstream of MMP-2 and MMP-9
and turns them on to be critically involved in the degradation
of the ECM components including type IV collagen [75].
Animal model studies have demonstrated that the MMP-2,
MMP-3, and MMP-9 proteins expression is meaningfully
higher in neoplastic compared to normal brain tissue. It has
been proposed that MMP-2 [77, 80], MMP-3, and MMP-9
[77] might be active in the process of metastasis of breast
cancer to the brain. It was confirmed that there is an associa-
tion between MAPK pathway elements such as extracellular-
signal-regulated kinase1/2 (ERK1/2), MMP expression, and/
or astrocyte activity. It is assumed that astrocyte factors and
the ERK1/2 signaling pathway may be associated with the
development of BCBM. Animal studies have shown that
ERK1/2 modulate the MMP2 to be modified by astrocyte
factors [80].

Joyce and his colleagues confirmed the role of cathepsin S
(CTSS) which encodes a lysosomal cysteine protease playing
crucial role in metastatic seeding and outgrowth. They also
demonstrated that CTSS modulates the organotropism and
regulates BCBM through facilitating the transmigration of
CSCs into BBB [81]. It was described that cyclooxygenase-2
(COX-2, also known as PTGS2) alters membrane arachidonic
acid into prostaglandins and is able to upregulate the MT1-
MMP, which itself activates MMP-2 that may provoke angio-
genesis. COX-2 is well known to be involved in precursor
lesions of various solid tumors and contributes to tumorigen-
esis by hindering the signaling pathways of the pro- and anti-
apoptotic proteins [76]. COX2 accompanies the epidermal
growth factor receptor (EGFR) and the alpha-2,6-
sialyltransferase (ST6GALNAC5), which are highly distin-
guished genes among involved genes in breast cancer brain
metastasis [82]. These genes are active when the tumor cells
enter into the brain through the BBB (extravasation). The
MMP1 and angiopoietin-like four (ANGPTL4) [82] are other
involved proteins in this way which play pivotal role in
driving the TGF-β and Notch signaling [32] and they thus
mediate intravasation and extravasation processes [40]. The
latent TGF-β-binding protein (LTBP1) as a major modulator
of TGF-β activation, fascin-1 or FSCN1, and retinoic acid
receptor responder protein3 (RARRES3) are other involved
proteins [82]. Except ST6GALNAC5, they are linked to breast
cancer infiltration of the lungs, suggesting that they have these
mediators in commonwith cerebral and pulmonarymetastases
[82]. Moreover, eukaryotic translation initiation factor two
(EIF2S3), FABP7, NMDA receptor regulated 1(NARG1),
zinc finger proteins [involved in transcription and translation],
aldehyde dehydrogenase 1 family, member A1 (ALDH1A1)
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[involved in metabolism], EGFR [involved in signal transduc-
tion], integrin alpha-6 (ITGA6), integrin, and laminin [in-
volved in adhesion], ERGIC [involved in transportation]
make a long list of proteins which have been shown to be
expressed in breast cancer brain metastases [57].

Angiotensin II upregulates MMP2/MMP9 through which
the sequential steps of cancer metastasis would be motivated.
This progressive/ programming cascade includes promoting
cancer cell adhesion to endothelial cells, transendothelial mi-
gration, and subsequently tumor cell migration across ECM,
and subsequently facilitating the formation of metastatic foci at
secondary sites [83]. MMP-9 is known as a major modulator of
HER2/neu expression in human mammary epithelial cells.
HER2/neu proto-oncogene or erbB-2 belongs to the ErbB
protein family and is a cell surface receptor tyrosine kinase
(RTK) that is principally contributed in cell growth and differ-
entiation [83, 84]. ErbB-2 has been shown to be upregulated in
20–30 % of human breast cancers [85], while 34 % of HER2-
positive breast tumors have led to brain metastases. HER2
pathway starts to relay the signals of several signaling proteins
and pathways including PI3K/Akt, when it is activated [86].
Overexpression ofHER2 upregulates the expression ofMMP-9
and MMP-2 proteases [87], transmembrane proteins as well as
plexin-B1 [86], and cluster of differentiation CD151 [88].
Accordingly, it was demonstrated that the CD151 and plexin-
B1 play major roles in motility, invasion, and metastasis of
cancer cells [88]. Of note, estrogen receptor beta (eRβ) and
pea3 are among other proteins whose expression has been
increased in response to HER2 overexpression. Importantly,
they lead to IL-8 upregulation, which belongs to the superfam-
ily of CXC chemokines and becomes overexpressed when its

promoter is bound with the latter proteins [89]. IL-8 is a major
mediator of angiogenesis and is capable to induce this process
through stimulating the proliferation and sprouting of endothe-
lial cells [40, 90]. In addition, the potential effects of TGF-β on
HER2 signaling have been demonstrated. It was shown that IL-
6, TGF-β, and IGF receptors are actively involved in the
progression of breast cancer cells to the brain [91]. Therefore,
by blocking the TGF-β, HER2 crosstalk may restrain breast
cancer cells from progression and metastasis [92].

ErbB2 overexpression can also be associated with over
expression of VEGF in breast cancer cells [85, 87]. It is also
known as a vascular permeability factor (VPF) and major
regulator of new blood vessel formation (angiogenesis) during
tumor development [93]. It was described that it stimulates the
proliferation and transendothelial migration of tumor cells,
which is a key event in cancer metastasis inducing the expres-
sion of metalloproteinases and plasminogen proteins [38].
Potential of breast cancer cells to form brain metastases is a
main consequence of the latter mentioned inductions [90].
VEGF also promotes the growth of BM induced by breast
cancer in nude mice, and targeting endothelial cells with a
VEGF receptor-specific tyrosine kinase inhibitor can reduce
angiogenesis and restrict the growth of brain metastases [90]
(Fig. 2).

Therapeutic Approach

BM represents a significant healthcare concern and has a
drastic deleterious impact on patient mortality [94]. Of note,
not all the brain lesions are considered as primary tumor and

Fig. 2 Multistep process and signaling network of BCBM. From the
figure, we can see that BCBM is influenced by several genes and
signaling pathways. Potentially, inhibition of these pathways can be a

valuable therapeutic approach, especially early signaling pathways,
because of this approach leads to inhibit more of accessory signaling
pathways involved in progression of metastasis
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the possibility of metastasis from other organs especially
breast should always be noted [95]. The biology of the prima-
ry tumor, the number and location of metastatic lesions, and
the phase of systemic disease are important considerations for
the treatment of brain metastasis [34].

Appropriate diagnostic approaches are presently available
such as computed tomography (CT) and contrast-enhanced
magnetic resonance imaging (MRI). When it comes to the
diagnosis of brain metastases, MRI is the ideal test [95].
Molecular diagnosis may also be useful, for example, miR-
205 that is negatively regulated by HER2/neu overexpression
and miR-342 that is involved in the breast tumor’s invasive
behavior, these may be used as potential biomarkers for diag-
nosis of triple-negative breast cancer [96]. Treatment options
of brain metastasis for diagnosed patients include surgery,
whole brain radiotherapy (WBRT), stereotactic radiosurgery
(SRS) [97], and chemotherapy that among themWBRT is the
most common selected choice [12, 98]. In patients with sev-
eral brain metastases, studies have identified that the use of
surgical resection simultaneously with radiotherapy is highly
preferred to using of radiotherapy solely. Additionally, pa-
tients who take systemic chemotherapy after brain radiother-
apy show significant higher curative outcome [99]. The other
commonly used method, chemotherapy, has played trivial
roles in the treatment of BM; however, the intact BBB blocks
the passage of many chemotherapeutic drugs into the brain
[16].

Targeted therapies are the most attractive molecular thera-
peutic approaches that have shown to be promising. In these
methods, certain proteins and signal transduction pathways
that are involved in BCBM are specifically targeted, for in-
stance targeting the angiogenesis by anti-VEGF agent [100].
Targeting poly-adenosine diphosphate ribose polymerase
(PARP), which plays an important role in DNA damage
repair, and its corresponding pathway using specific inhibitors
such as iniparib, olaparib, and veliparib may have a critical
role in increasing the responses of tumor cells to chemother-
apy and radiotherapy [94]. In addition, targeting HER2 tyro-
sine kinase by their specific inhibitors such as gefitinib, erlo-
tinib, lapatinib, and trastuzumab constitute one of the effective
strategies of targeted therapeutic approaches [12]. Notably,
trastuzumab is a humanized monoclonal antibody that binds
to a specific epitope of the HER-2/neu (c-erbB-2) protein.
This interaction suppresses signal transduction pathways that
regulate cell growth, survival, migration, differentiation, and
angiogenesis, thereby decreases malignancy [16, 101] and
also increases the sensitivity of tumor cells to both endocrine
therapy and certain chemotherapeutic agents [16]. Lapatinib
inhibits the dual epidermal growth factor receptor and HER2
tyrosine kinase [95] and corresponding downstream signaling
proteins and therefore cell proliferation and migration [102].
In targeted therapy of metastasis, inhibition of early signaling
pathways is important, because this approach would be

associated with inhibition of more accessory signaling path-
ways involved in progression of metastasis. Certainly, inhibi-
tion of EMT leads to the prevention of early steps of metas-
tasis. Recent studies on stem cell showed that gene expression
profiling of cancer stem cells is similar to gene expression
profiling of induced pluripotent stem cells. These cells can be
changed into mesenchymal-like phenotype by enhanced gene
expression including insulin-like growth factor (IGF) or its
binding protein as transferrin (IGFBP) [103]. It is possible to
hypothesize that EMT and generation of mesenchymal-like
cells are inhibited by expression inhibition of IGF and IGFBP
genes, and potentially, these genes can be a more practical
target therapy. However, many experimental researches are
warranted to confirm this hypothesis.

BM as one of the metastatic organotropism of breast cancer
has a great unpleasant effect upon patients and their families.
Hence, a more comprehensive understanding of molecular
aspects of metastatic cascade is essential to achieve an appro-
priate strategy in accurate diagnosis and novel methods of
therapeutics. Using this viewpoint, many results have been
reported in studies of involved signaling pathways in BCBM,
ranging from CXCR4/ SDF-1α, PI-3K/AKT, MAPK, NF-κb.
Comparison between pathways involved in BCBMwith other
pathways leading to metastasis of breast cancer cells to other
organs as well as lung can shed further light on a new set of
genes that play critical role in BCBM, as well. These findings
could be important because these may lead to provide a new
target-based therapy. Beyond question, further research is
required to explore the unknown aspects of signaling network
in BCBM. As a final word, the main concern is whether the
results achieved in vitro and/or in vivo are translatable in
human.
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