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Abstract Cigarette smoking is the major cause of preventable
death and morbidity throughout the world. Many compounds
are present in tobacco, but nicotine is the primary addictive
one. Nicotine exerts its physiological and pharmacological
roles in the brain through neuronal nicotinic acetylcholine
receptors (nAChRs), which are ligand-gated ion channels
consisting of five membrane-spanning subunits that can mod-
ulate the release of neurotransmitters, such as dopamine,
glutamate, and GABA and mediate fast signal transmission
at synapses. Considering that there are 12 nAChR subunits, it
is highly likely that subunits other than α4 and β2, which
have been intensively investigated, also are involved in nico-
tine addiction. Consistent with this hypothesis, a number of
genome-wide association studies (GWAS) and subsequent
candidate gene-based associated studies investigating the ge-
netic variants associated with nicotine dependence (ND) and
smoking-related phenotypes have shed light on the CHRNA5/
A3/B4 gene cluster on chromosome 15, which encodes theα5,
α3, and β4 nAChR subunits, respectively. These studies
demonstrate two groups of risk variants in this region. The
first one is marked by single nucleotide polymorphism (SNP)
rs16969968 in exon 5 of CHRNA5, which changes an aspartic
acid residue into asparagine at position 398 (D398N) of theα5
subunit protein sequence, and it is tightly linked SNP
rs1051730 in CHRNA3. The second one is SNP rs578776 in
the 3 -untranslated region (UTR) of CHRNA3, which has a

low correlation with rs16969968. Although the detailed mo-
lecular mechanisms underlying these associations remain to
be further elucidated, recent findings have shown that α5*
(where “*” indicates the presence of additional subunits)
nAChRs located in the medial habenulo-interpeduncular nu-
cleus (mHb-IPN) are involved in the control of nicotine self-
administration in rodents. Disruption ofα5* nAChR signaling
diminishes the aversive effects of nicotine on the mHb-IPN
pathway and thereby permits more nicotine consumption. To
gain a better understanding of the function of the highly
significant genetic variants identified in this region in control-
ling smoking-related behaviors, in this communication, we
provide an up-to-date review of the progress of studies focus-
ing on the CHRNA5/A3/B4 gene cluster and its role in ND.
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Introduction

Cigarette smoking is one of the most significant public health
problems in both developed and developing countries.
Although new efficacious techniques for smoking cessation
have helped to reduce the number of smokers significantly,
there were still approximately 38 million tobacco users in the
USA and 1 billion worldwide in 2012 [1]. Of these smokers,
approximately 60% are nicotine dependent [2]. The burden of
smoking-related diseases and the negative economic impact
on society caused by cigarette smoking is staggering.
According to the World Health Organization’s report, approx-
imately five million people each year die of smoking-related
illnesses [3], making smoking the largest cause of preventable
death in the world, and if the current trend continues, the
worldwide death toll caused by tobacco smoking will rise to
eight million annually by 2030 [4]. Moreover, smoking has
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various detrimental effects on physical health that often are
serious, carrying significant risks of cardiovascular diseases,
respiratory diseases, and lung cancer, among other ailments.

There are approximately 4000 compounds in cigarette
smoke; however, nicotine is the primary component respon-
sible for the development of nicotine dependence (ND) [5].
Nicotine exerts its pharmacological and physiological roles in
the brain through neuronal nicotinic acetylcholine receptors
(nAChRs), which are widely distributed in the central and
peripheral nervous systems. The nAChRs are ligand-gated
ion channels consisting of five membrane-spanning subunits
[6] that can modulate the release of neurotransmitters such as
dopamine (DA), GABA, and glutamate [7] and mediate fast
signal transmission at synapses [8]. There are 12 neuronal
acetylcholine receptor subunits, with nine α subunits
(α2–α10) and three β subunits (β2–β4) [6, 9, 10]. These
subunits arrange in numerous distinct pentameric nAChRs,
resulting in receptors that differ in distribution throughout the
body and in biologic functions and other pharmacologic prop-
erties [11]. Binding of nicotine to nAChRs forms the molec-
ular basis for the reward of nicotine and, eventually, the
development of ND. Thus, nAChRs represent not only plau-
sible candidate risk factors for ND but also targets for drugs
for treating ND and other psychiatric disorders.

Abundant data from twin studies demonstrate that along
with environmental factors, genetic variations are responsible
for ND, with an estimated heritability of about 50 % [12–16].
To identify susceptibility loci and genetic variants for ND and
its related phenotypes, many studies have been conducted
using various approaches such as genome-wide linkage anal-
ysis, candidate gene-based association, and genome-wide as-
sociation studies (GWAS). Of the genetic variants found to be
associated with ND, the variants in the CHRNA5/A3/B4 gene
cluster on chromosome 15, which encodes the α5,α3, and β4
subunits [17–20], have received much attention in the past
several years. Importantly, the variants in this gene cluster
have been associated, not only with ND, but with lung cancer
[21–23]. As a result of this genetic research, new effort has
been expended to understand how variants in this region
impact ND and its related phenotypes at the molecular level.

Replication of genetic association between the variants in
the CHRNA5/A3/B4 gene cluster and ND increases the valid-
ity of these findings. At the same time, it stimulates interest in
exploring the molecular mechanisms of variants within this
gene cluster underlying ND. Of the significant variants in this
gene cluster, single nucleotide polymorphism (SNP)
rs16969968 appears to be the most attractive as an ND factor,
as it results in an amino acid change from aspartate to aspar-
agine at position 398 of the nicotinic receptor α5 subunit
protein sequence. How the clustered nAChR subunits func-
tion in the development of ND is still unclear, although
evidence from mouse models with knockout (KO) or muta-
tions of nAChR subunits, especially the α5 subunit, suggests

that disruption of α5* nAChR signaling diminishes the stim-
ulatory effects of nicotine on the medial habenulo-
interpeduncular nucleus (mHb-IPN) pathway and thereby per-
mits consumption of greater quantities of nicotine [24].
Hence, it was thought that variants in the CHRNA5/A3/B4
gene cluster play an important role in ND through the aversive
effect of nicotine on the mHb-IPN pathway, whereas there are
few reports concerning the reinforcing effect of nicotine in
ventral tegmental area (VTA) DA neurons [25].

To gain a better understanding of the genetic factors that
contribute to ND and other smoking-related phenotypes, in
this review, we first focus on the significant association be-
tween the variants detected in the CHRNA5/A3/B4 gene clus-
ter and smoking-related phenotypes, and then present mecha-
nisms that could explain such associations at the molecular
level.

Association Between Common Variants in the CHRN
A5/A3/B4Gene Cluster and Smoking-Related Phenotypes

Nicotine Dependence

ND, as well as addiction to any other substance, is a compli-
cated phenotype. It involves many symptoms, consisting of
early-morning smoking, heavier smoking, tolerance, and ease
of relapse after quitting. More importantly, the development of
ND is not a sudden event; it has to go through a transition from
experimental smoking with the first puff to regular smoking
and finally to the establishment of ND [26]. There are a series
of assessment tools for ND; the more commonly used ones are
the Fagerström test for nicotine dependence (FTND) [27] and
the Diagnostic and Statistical Manual for Mental Disorders
(4th edition) (DSM-IV) [28]. Although both scales are com-
monly used to evaluate the severity of ND, there exists a
limited correlation between the two tools [27], because each
focuses on different aspects of ND. The FTND is a simplified
measure compared with the DSM-IV, which lays particular
emphasis on the number of cigarettes smoked per day (CPD)
and the time from waking to the first cigarette, whereas DSM-
IVmainly emphasizes the behavioral and emotional aspects of
addiction. Thus, when one considers the definition of ND
using the FTND, we usually choose CPD to represent it,
because of its easy measurement and appropriate matching
to ND.

The first report concerning the contribution of variants in
the CHRNA5/A3/B4 gene cluster to ND was published by
Saccone et al. in 2007 [17]. In this study, the authors examined
879 light smokers who had no symptoms of dependence, with
an FTND score of 0, and 1050 heavy smokers, with an FTND
score of >4.0, focusing on the transition from regular smoking
to addiction. Among 3713 SNPs in more than 300 candidate
genes analyzed, multiple risk SNPs were found in the CHRN

Mol Neurobiol (2016) 53:472–484 473



A5/A3/B4 gene cluster, with the most compelling evidence for
a risk allele coming from a non-synonymous SNP rs16969968
in the α5 nicotine receptor subunit gene (CHRNA5) (p=6.4×
10−4). Furthermore, this SNP exhibited a recessive mode of
inheritance, resulting in individuals with one copy of the risk
allele A having a 1.1-fold increase in the risk of developing
ND once exposed to cigarette smoking, whereas there was a 2-
fold increase with the AA genotype compared with subjects
having no copy. Since then, numerous candidate gene-based
analyses and large-scale GWAS, together with several meta-
analyses [29–31] which elaborated on Vandenbergh’s litera-
ture [32] have focused on the association of polymorphisms in
the CHRNA5/A3/B4 gene cluster with ND across different
populations, leading to the conclusion that variants in this
gene cluster contribute to the development of heavy smoking
and ND [17–22, 26]. Together, these studies demonstrate two
groups of risk variants in the cluster. The first one is marked
by SNP rs16969968 in exon 5 of CHRNA5, which changes an
aspartic acid residue into asparagine at position 398 (D398N)
of the α5 subunit protein sequence, or its tightly linked SNP
rs1051730 in CHRNA3. The other is SNP rs578776 in the 3′-
untranslated region (UTR) of CHRNA3, which has a low
linkage disequilibrium (LD) with rs16969968 (Table 1).

The association of these SNPs with ND can be modified by
different factors. For instance, Weiss et al. [19] reported that
individuals who became regular smokers before the age of 16
showed a signification association between SNP rs16969968
and the severity of ND, whereas Grucza et al. [38] found that
the same SNP exhibited its effects mainly on late-onset
smokers, after 16 years of age. What causes such inconsistent
results remains to be investigated. In addition, other environ-
mental factors, such as parental monitoring [39], childhood
adversity [40], and peer smoking [41] have been reported to
influence the association between SNPs rs16969968 or
rs1051730 and ND.

On the other hand, there are a few reports concerning the
effect of common variants in CHRNB4 on ND. Three inde-
pendent GWAS meta-analyses revealed the importance of the
CHRNA5/A3/B4 gene cluster in influencing ND, but failed to
identify any SNP in the β4 receptor subunit gene as a con-
tributor to the genetic association signal for heavy smoking
[29, 42, 43]. Thus, for the time being, we are not clear on
whether common variants in CHRNB4 play any role in the
development of ND, although such a role is theoretically
possible because of the high LD patterns across CHRNA5,
CHRNA3, and CHRNB4 (Fig. 1).

Lung Cancer

Lung cancer, which can be divided into two major histopath-
ologic types (small-cell lung carcinoma (SCLC) and non-
small-cell lung carcinoma (NSCLC)), is the leading cause of
cancer-related deaths throughout the world [44]. Among

multiple risk factors associated with lung cancer, cigarette
smoking is the most important one, as many carcinogens are
present in cigarette smoke and others, such as (4-(N-
nitrosomethylamino)-1-(3-pyridyl)-1-butanone) (NNK) and
(N -nitrosonornicotine) (NNN), are metabolized from nicotine
[45, 46]. Both of these compounds can stimulate the growth
[47] or inhibit apoptosis [48] of lung cancer cells.

In parallel with the studies of ND, several SNPs within the
CHRNA5/A3/B4 gene cluster seem to increase the risk of lung
cancer according to several GWAS and candidate gene-based
association studies [21, 22, 49, 50]. Hung et al. [22] first found
that SNP rs16969968 was robustly associated with lung can-
cer after studying nearly 317,139 SNPs in 4614 subjects of
European descent. Since then, this finding has been replicated
in different ethnic populations [49, 51–53]. Furthermore,
Saccone et al. [29] demonstrated the presence of a significant
association between rs16969968 and lung cancer (p<10−20) in
a meta-analysis of six datasets of European-ancestry subjects
(N=13,614) [29]. However, whether the association of this
SNP with lung cancer is directly or indirectly mediated by the
variant’s association with ND has been the subject of exten-
sive debate in the past several years. One group of investiga-
tors favoring a direct role of variants in the CHRNA5/A3/B4
gene cluster in lung cancer reasoned that the association was
observed even in non-smokers [22] and remained significant
after adjustment for smoking quantity [54, 55]. The other
group, preferring an indirect role of the variant in lung cancer,
argued that the studies failed to detect a significant association
between the variant and lung cancer in never smokers [56].
The inaccurate measurement of uptake of carcinogens by self-
reported CPD supports this view [57].

There might have some other elements, such as different
ethnic backgrounds of the populations examined, sample
sizes, and measurement strategies for smoking-related pheno-
types, which contribute to the above-mentioned conflict. For
example, the populations used in most of these studies were of
European origin [21, 22], a group that has a 37–43 % frequen-
cy of the rs16969968 A allele, whereas the A nucleotide is not
detected or is uncommon in African, East Asian, and Native
American populations [18]. Consequently, the association
between variants in the CHRNA5/A3/B4 gene cluster and lung
cancer needs to be further investigated in well-designed stud-
ies, especially in other ethnic samples.

Smoking Initiation and Cessation

Cigarette smoking can be divided into three behaviors: initi-
ation, ND, and cessation. Many variables influence the three
processes, including age, education, social status, and so on.
Although the variants in the CHRNA5/A3/B4 gene cluster are
strongly associated with ND and smoking quantity, this region
appears to play a smaller or less significant role in smoking
initiation and cessation.
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Thorgeirsson et al. [50] reported that the variants in CHRN
A5/A3/B4 did not influence smoking initiation and experimen-
tation. Similarly, Lips et al. [58] and Kaur-Knudsen et al. [54]
also concluded that the variants in the cluster on chromosome
15 did not play a role in identifying non-smokers and smokers.
At the same time, Maes et al. [59] showed that the SNPs
associated with ND did not show a significant association with

either smoking initiation or regular smoking in a twin study. On
the other hand, Sherva et al. [60] reported an association
between rs16969968 in the CHRNA5 gene and enhanced plea-
surable responses to initial cigarette smoking, suggesting that
phenotypes related to subjective experiences during smoking
experimentation may mediate the development of ND.
Meanwhile, Stephens et al. [61] conducted a meta-analysis

Table 1 Reported association of rs16969968, rs1051730, and rs578776 with nicotine dependence

dbSNP ID Sample origin Sample
size

Cases
(N)

Controls
(N)

Minor allele
frequency

Odds ratio p value Reference

rs16969968 (CHRNA5) European (USA+Australia) 1929 1050 879 0.38 –a 6.42E−04 [17]

European (USA+Australia) 1929 1050 879 0.383 1.31 1.30E−04 [33]

Caucasian 1236 955 281 0.34 –a 7.00E−03 [18]

European American 1968 1093 875 0.378 1.37 6.30E−08 [20]

European American 377 271 106 0.415 1.79 9.00E−04 [19]

European American 2062 1063 999 0.35 1.4 4.14E−07 [34]

European (meta) 24,807 14,452 10,355 –a 1.327 5.96E−31 [30]

German (3 cohorts) 5561 –a –a 0.38 1.18 1.90E−04 [35]

Mixed ethnic ancestry 571 –a –a 0.357 –a <0.0001 [36]

Caucasian 3441 –a –a 0.41 –a 1.10E−04 [37]

rs1051730 (CHRNA3) USA+Australia 1929 1050 879 0.38 –a 9.93E−04 [17]

European (USA+Australia) 1929 1050 879 0.382 1.3 2.01E−04 [33]

Caucasian 1236 955 281 0.32 –a 2.00E−02 [18]

European American 1933 1073 860 0.378 1.37 9.30E−08 [20]

European American 377 271 106 0.415 1.79 9.00E−04 [19]

European American 2062 1063 999 0.349 1.4 5.88E−07 [34]

German (3 cohorts) 5561 –a –a 0.38 1.19 7.50E−05 [35]

Mixed ethnic ancestry 571 –a –a 0.358 –a <0.0001 [36]

Caucasian 3441 –a –a 0.41 –a 1.50E−04 [37]

rs578776 (CHRNA3) USA+Australia 1929 1050 879 0.22 –a 3.08E−04 [17]

European (USA+Australia) 1929 1050 879 0.241 0.746 1.06E−04 [33]

Caucasian 1236 955 281 0.28 –a 9.00E−03 [18]

European American 1564 707 839 0.244 0.75 1.37E−06 [20]

European American 377 271 106 0.218 0.6 4.80E−03 [19]

European (meta) 22,915 13,391 9524 –a 0.776 1.38E−25 [30]

German (3 cohorts) 5561 –a –a 0.26 0.85 9.30E−04 [35]

Mixed ethnic ancestry 571 –a –a 0.331 –a 2.40E−03 [36]

Caucasian 3441 –a –a 0.24 –a 2.00E−02 [37]

a Not available from original report

78650K 78550K

7856552078595269

CHRNA5

CHRNA3

78621295 7859305278641245 78624294
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rs16969968

rs578776rs1051730

Fig. 1 Schematic diagram of the human CHRNA5/A3/B4 cluster.
Horizontal black arrows indicate the direction of transcription of each
gene. Green and pink rectangles indicate exons and untranslated regions,

respectively, while horizontal black lines represent introns. The genetic
variants (rs1051730, rs578776, and rs16969968) significantly associated
with ND are indicated by vertical arrows
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including 56,034 subjects in 41 studies spanning nine coun-
tries, which showed a significant association of rs578776 with
age of first regular tobacco use (β=0.02; p=0.004).

There are three main smoking cessation pharmacother-
apies: varenicline, nicotine replacement therapy (NRT), and
buproprion. Each has its specific pharmacologic effects. It is
likely that one treatment will work for some people but not
others with different genetic backgrounds. Studies of whether
the variants in the CHRNA5/A3/B4 gene cluster play a role in
smoking cessation has yielded inconsistent conclusions, with
some studies demonstrating a significant role of SNPs in this
gene cluster in quitting [58, 62–65], whereas others did not
[36, 66–68]. Freathy et al. [67] showed strong evidence of an
association between rs1051730 and an increased likelihood of
continued smoking in pregnancy, supporting a role of genetic
factors in influencing smoking cessation. Furthermore, Chen
et al. [69, 70], in their two studies, demonstrated that variants
in the CHRNA5 gene (rs16969968 or rs16969968–rs680244
haplotype) predicted both ND and smoking cessation. They
noted that the high-risk allele of rs16969968 was associated
with a lower likelihood of quitting and of cessation failure at
end of treatment in the placebo group or the group without any
pharmacologic treatment. However, genetic variants did not
predict abstinence across active treatment conditions. Thus,
Chen et al. [69, 70] suggested that pharmacological cessation
treatment might mitigate the genetic risks of cessation diffi-
culty, which might be the explanation for the inconsistent
results concerning smoking cessation. Generally speaking,
two types of study designs are used in smoking cessation
studies. They are either prospective or retrospective, each with
different sample selection. This might have different implica-
tions. The former identified the genetic risk for smoking
cessation, while the latter one placed the emphasis on phar-
macologic effects in persons with different genetic back-
grounds. There exists a potential limitation for individual
study because of differences in sample size, heterogeneity of
samples, and analysis approaches, all of which should be
taken into consideration in follow-up studies.

Analysis of Rare Variants in the CHRNA5/A3/B4 Gene
Cluster

As mentioned above, multiple common variants in the CHRN
A5/A3/B4 gene cluster have consistently been found to be sig-
nificantly associated with ND and smoking-related phenotypes.
Among these, a non-synonymous change (rs16969968) in
CHRNA5 is the most strongly associated SNP in several
GWAS [42, 71]. Additionally, a group of highly correlated
SNPs, specifically rs588765, was shown to increase CHRNA5
messenger RNA (mRNA) expression, thus leading to an in-
creased risk of ND [30, 72]. Despite these convincing results,
only a small proportion of the variance (~5 %) in smoking-
related behaviors can be explained by these SNPs [30]. Rare

variants, generally defined as those having a minor allele fre-
quency of <1%, constitute another major part of genetic variants
other than common ones. Thus, rare variants may well account
for the inadequate explanations of the heritability of smoking-
related traits, as identified by recent GWAS.

Although rare variants may play a critical role in develop-
ing or maintaining ND, the function of these variants in the
CHRNA5/A3/B4 gene cluster in the risk of ND has not been
intensively investigated [73]. This is, we suspect, largely
because their low frequency in populations increases the dif-
ficulties in ensuring adequate statistical power. Nevertheless,
Wessel et al. [74] recently investigated the contribution of rare
variants in nAChR subunit genes to FTND scores in
treatment-seeking smokers and observed an association of
rare SNPs in CHRNA5 with the FTND score. This finding
motivated the interest of Haller and her colleagues in studying
rare variants in other nAChR subunit genes in relation to ND.
First, the same research team undertook pooled sequencing of
the coding and flanking sequences of CHRNA5, CHRNA3,
CHRNB4, CHRNA6, and CHRNB3 in African-American
(AA) and European-American (EA) ND smokers and in light
smokers without symptoms of dependence [75]. They found
that rare missense variants at conserved residues in CHRNB4
(for example, rs61737499 and rs12914008) or CHRNA3
(rs8192475 in strong LD with rs12914008) are associated
with a lower risk of ND and fewer CPD in both AAs (p=
0.0025 and p=6.6×10−5, respectively) and EAs (p=0.023 and
p=0.021, respectively) [75].

Using HEK293 cells, Haller et al. examined whether infor-
mation from this type of functional testing of rare non-
synonymous variants in CHRNB4 can significantly improve
the association between genotype and phenotype [76].
Consistent with the results from Liang et al. [77], the authors
suggested that reduced sensitivity to activation by agonists
(nicotine or ACh) results in a higher risk of ND and that,
conversely, increased sensitivity reduces the risk. Moreover,
an in vivo study has been conducted using models [78] where
mice injected in the mHb with lentiviruses carrying the WT
β4 subunit or β4 rare missense variants showed aversion to or
preference for nicotine, depending on the SNP. For instance,
habenular expression of the β4 gain-of-function variant
rs61737499 resulted in strong aversion, whereas transduction
with the β4 loss-of-function variant rs56235003 failed to
induce nicotine aversion. In sum, these functional studies
demonstrate the vital role of rare variants in the CHRNA5/
A3/B4 gene cluster in smoking-related behaviors.

Functional Studies of the Compelling SNP rs16969968

When the association of a variant with a phenotype of interest
is revealed, it represents not only an association with the tested
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genetic variant(s), but also an association with untested, high-
ly correlated SNPs that could span several genes on the same
chromosome. To understand the molecular mechanism of the
CHRNA5/A3/B4 gene cluster associated with ND and/or lung
cancer, one needs to determine which SNP might alter bio-
logical function. It appears that the most compelling SNP,
rs16969968, is likely to be a biological contributor to ND,
because it changes an amino acid in the α5 nicotinic receptor
protein. The position of the change is in the large cytoplasmic
domain adjacent to the conserved amphipathic α-helix, so it is
far from the extracellular acetylcholine binding site and un-
likely to influence the sensitivity of agonist binding. In such a
region, the negatively charged Asp398 might promote Ca2+

permeability, whereas Asn398, replaced by an amide group
instead of the negatively charged carboxyl group, might in-
hibit it.

Consistent with this hypothesis, recent studies have dem-
onstrated that the D398N polymorphism affects the function
of (α4β2)2α5 nAChRs [18, 79]. When the two forms of the
human α5 subunit (N398 and D398) were expressed in
Xenopus oocytes, using α4 and β2 subunits as a concatamer
structure, (α4β2)2α5 nAChRs containing the risk allele of α5
associated with increased risk of nicotine addiction exhibited
diminished agonist-evoked intracellular calcium response, re-
duced calcium permeability, as well as enhanced short-term
desensitization compared with (α4β2)2α5 nAChRs
possessing the major allele of α5 [79]. These results were
qualitatively similar to those of an earlier study that involved
expression in HEK293T cell of human α5 subunits with
mouse α4 and β2 subunits [18]. The incorporation of α5
SNP into HEK293T cells transfected with α4β2 cDNA re-
duced the maximum response to a nicotinic agonist without
altering its surface expression. However, these obviously dif-
ferent effects of rs16969968 are seen only on the (α4β2)2α5
nAChRs; whether the SNP has a similar effect on the function
of (α3β4)2α5 nAChRs is unclear.

Morel et al. [25] went a step further, adopting lentiviral re-
expression vectors to achieve targeted expression of mutant
α5 in the VTA of the brain using a knockin mouse model. It
was observed that mice with the SNP rs16969968 in the VTA
yielded intermediate behavioral and electrophysiological phe-
notypes compared with α5 KO mice, suggesting the non-
synonymous α5 variant rs16969968, frequently present in
subjects of European descent, exhibits a partial loss-of-
function in vivo. This leads to increased nicotine consumption
in the self-administration paradigm, thus defining a critical
link between this SNP, its expression in VTADAneurons, and
nicotine intake.

Besides rs16969968, there may be a second biologic mech-
anism in the CHRNA5/A3/B4 gene cluster associated with
heavy smoking and ND, including different extents of expres-
sion of CHRNA5 mRNA in the brain [80]. Joint statistical
analysis of the two loci (or haplotypes) demonstrates that the

amino acid change through SNP rs16969968 and varying
CHRNA5 mRNA expression tagged by rs588765 (or
rs578776, rs3743078) independently contribute to ND. The
risk allele of rs16969968 occurs primarily on the low mRNA
expression allele of CHRNA5, whereas the non-risk allele of
rs16969968 occurs on both high- and low-expression alleles
tagged by rs588765 in CHRNA5. When the non-risk allele
occurs against the background of low mRNA expression of
CHRNA5, the risk for ND and lung cancer is significantly
lower than in persons with higher mRNA expression (Fig. 2).
Together, these studies reveal three levels of risk associated
with CHRNA5 and at least two distinct mechanisms confer-
ring risk for ND: altered receptor function caused by
rs16969968 and variability in CHRNA5 mRNA expression.

However, there is another hypothesis, from a different
perspective, to explain the vital function of SNP
rs16966698. For example, Hong et al. [81] hypothesized that
the smoking variance explained by the allele-modulated cir-
cuits was much higher than the smoking variance explained
by the genotype alone, making brain circuit measures an
intermediate marker for the convergent effects of genes.
Thus, the α5 gene variant Asp398Asn is associated with a
dorsal anterior cingulated-ventral striatum/extended amygdal
circuit, so that the Asn “risk allele” reduced the intrinsic
resting functional connectivity strength in this circuit. At the
same time, the findings from this work suggest a plausible
circuit-level explanation for why rs16969968 and rs578776
represent two independent smoking-related signals in the
CHRNA5/A3/B4 gene cluster. The authors of this study dis-
tinguished the rs578776-related dACC-thalamus circuit,
which appeared sensitive to the “state” of smoking, from the
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rs16969968-influenced dACC-ventral striatum circuit,
predicting nicotine addiction severity.

From Association to Mechanism: Role of the α5 Subunit

Numerous genetic studies have revealed a strong association
between variants in the CHRNA5/A3/B4 gene cluster and
increased vulnerability to ND [17, 50], creating a need to
explore the underlying mechanisms. Moreover, to determine
the function of the clustered nAChR subunits, KO mice and
knockdown rats have been employed primarily because of the
lack of receptor agonists and antagonists with selectivity for
all three subunits. So far, only α5 and β4 KO mice are
available [82–84], and mice that do not express theα3 subunit
usually die soon after birth as a result of multi-organ dysfunc-
tion [84]. Thus, recent studies mainly focus on the function of
α5 and β4 subunits in determining the cause of the high risk
of ND, with a special focus on the α5 subunit because of the
functional SNP rs16969968.

The α5 nAChR subunit demonstrates a relatively discrete
mRNA expression profile in the brain, with the highest den-
sities of expression found in the mHb, which projects almost
exclusively to the IPN via the fasciculus retroflexus [85, 86].
Recently, Fowler et al. [24] adopted the α5 KO mouse model
(analogous to individuals with reduced α5 receptor function)
to examine the underlying mechanism of ND. The α5 KO
mice responded far more vigorously than wild-type (WT)
mice to nicotine infusions at high doses and consumed signif-
icantly more nicotine than their WT littermates when tested
under a progressive ratio schedule for reinforcement. Whereas
the WT mice tried to control their nicotine intake through
intravenous self-administration to achieve a consistent, de-
sired blood concentration, KO mice did not, appearing to
consume greater amounts as the dosage increased (Fig. 3).
This finding leads to a hypothesis that deficient α5* nAChR
signaling attenuates the negative effects of nicotine that limit
its intake. Consistent with this result, the samemanipulation in
rats weakened the aversive effects of higher doses of nicotine
but did not alter the reinforcing effects of nicotine on the brain
reward system, as measured by nicotine-induced elevations
and lowering of intracranial self-stimulation (ICSS) thresholds
[24]. These findings are complemented by another study
conducted by the same team [87], employing a conditional
place preference task to represent the differential effects of
nicotine dose on reward in α5 KO and WT mice [88].
Moreover, Fowler et al. showed that the mHb-IPN pathway
of the KO mice was far less sensitive to nicotine-induced
activation than that in WT mice by using Fos immunoreactiv-
ity as a measure of neuronal activation [24]. RNA
interference-mediated knockdown of the α5 nAChR subunit
in the same rat brain region also resulted in similar responses
to nicotine [24]. Intriguingly, virus-mediated re-expression of

the α5nAChR subunit in the MHb-IPN pathway of the KO
mice abolished the increased nicotine intake seen at higher
doses of nicotine [24]. Taken together, these findings indicate
that the α5 receptor subunit is responsible for transmission of
some aversive qualities of nicotine. In other words, nicotine-
induced activation of the MHb-IPN pathway by the α5 recep-
tor subunit results in a negative motivational signal that limits
further nicotine intake. Hence, disrupted sensitivity of the
MHb-IPN tract to nicotine in the α5 KO mice induces greater
nicotine intake.

In addition to the α5 nAChR subunit, evidence suggests
that β4* nAChRs in the mHb-IPN pathway play a key role in
regulating nicotine consumption. For example, Frahm et al.
[89] reported that mice overexpressing the β4 subunit as a
result of bacterial artificial chromosome (BAC) transgenic
technology consumed far less nicotine than their WT counter-
parts, and this effect could be reversed by lentiviral-mediated
expression of the α5 D397N variant in the mHb [89], sug-
gesting that, similar to the α5 nAChR subunit, the β4 subunit
regulates sensitivity to the aversive effects of nicotine that
control the quantities of drug consumed.

Apart from their role in the aversive effects of nicotine
through the mHb-IPN pathway, the α5 and β4 nAChR sub-
units also have a potential action in nicotine withdrawal.
Withdrawal symptoms can be divided into two classes: so-
matic and affective. The first ones are characterized by in-
creased grooming, scratching, and shaking [90, 91], whereas
the latter include primarily depressed mood, anxiety, difficulty
concentrating, and so on [90, 92, 93]. The initiation of with-
drawal can be precipitated by administration of nicotine an-
tagonists such as mecamylamine during chronic nicotine

Fig. 3 Increased total nicotine intake (mg/kg) in α5−/− mice compared
with WT mice receiving infusions of high doses of nicotine. Data are
presented as mean (±SEM) total nicotine intake at each dose. p<0.001
indicates statistically significant differences between these groups at the
same nicotine dose. Adapted from the report by Fowler et al. [24], with
the permission of Nature Publishing Group, license number
3416820244064
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exposure. A recent study showed that chronic nicotine-treated
β4 KOmice displayed significantly milder somatic withdraw-
al symptoms than WT mice when the symptoms were precip-
itated by mecamylamine [94]. Furthermore, α5 KO mice that
were dependent on nicotine (delivered through subcutaneous-
ly implanted osmotic minipumps) did not show somatic signs
of nicotine withdrawal [95]. Considering that β4* and α5*
nAChRs are robustly expressed in the mHb-IPN pathway and
that mecamylamine was infused directly into either the mHb
or the IPN of nicotine-dependent WT mice, the precipitated
expression of somatic withdrawal symptoms demonstrates
that these two nAChR subunits and perhaps others enriched
in the mHb-IPN pathway are critical for the expression of
nicotine withdrawal. On the contrary, Fowler et al. [87] con-
cluded that the reward-inhibiting effects of precipitated nico-
tine withdrawal were not regulated by α5* nAChRs based on
the fact that the magnitude to which mecamylamine precipi-
tated elevations of ICSS thresholds was similar in nicotine-
dependent WTand KOmice [87]. Interestingly, another study
[96] showed that α5* nAChRs are more closely associated
with physical signs of nicotine withdrawal than with affective
symptoms, because chronic nicotine-treated α5 KO mice still
appeared anxious during withdrawal.

Addiction to cigarette smoking depends not only on the
attenuating aversion of high doses of nicotine and nicotine
withdrawal, as described above, but also on the reinforcing
effects of low doses of nicotine, the balance between the
rewarding and aversive actions of the drug [90, 92].
Furthermore, although the α5 nAChR subunit is most densely
expressed in the mHb-IPN pathway, its expression is also
found in many other addiction-relevant brain regions; for
instance, a high percentage in the VTA, which underlies the
rewarding and addictive properties of drugs of abuse through
the dopaminergic (DAergic) neurons [97]. Consequently, the
α5* nAChRs are subjected to the same action in the VTA that
explains their role in ND. However, many studies trying to
identify the role of the α5 receptor subunit in the mHb-IPN
pathway failed to find an effect in the VTA, especially in the
dopaminergic neurons [24, 87]. There was a first report that
comprehensively analyzed the role of the α5 nAChR subunit
in the VTA DA system [25]. This study investigated the
reinforcing effects of nicotine in drug-naive α5 KO mice by
using an acute intravenous nicotine self-administration task
and ex vivo and in vivo electrophysiological recording of
nicotine-elicited DA cell activation. The fact thatα5KOmice,
compared with WT mice, exhibited decreased sensitivity of
the DAergic system and a dramatic shift to high nicotine doses
in an acute nicotine injection paradigm [25] suggested a
crucial role of α5* nAChRs in determining the minimum
nicotine dose necessary for DA activation and thus nicotine
reinforcement (Fig. 4). In addition, normal responses like
those in WT mice were restored in KO mice by generalized
lentiviral-mediated re-expression of the α5 subunit in all VTA

cells or targeted to VTA DA cells specifically [25]. These
findings have defined novel, largely unexpected roles for the
α5 nAChR subunit in reinforcing the effects of nicotine,
although it acts only as an accessory subunit instead of con-
tributing to the nicotine binding site. This aspect of the re-
search may broaden our horizons in understanding the under-
ling mechanisms of the CHRNA5/A3/B4 gene cluster in the
development of ND, although independent verification of the
findings is still lacking.

Conclusions and Future Research

Cigarette smoking continues to be a major health threat world-
wide, underscoring the need to fully understand the etiology
of ND. Research has implicated variants in the CHRNA5/A3/
B4 gene cluster on chromosome 15 in the development of ND
[17, 18, 20, 34]. There is now a compelling body of evidence
linking SNPs rs16969968 (or its strongly linked SNPs) and
rs578776 (or rs588765) to smoking-related phenotypes
[17–20, 34]. Joint statistical analyses of the two loci men-
tioned above suggest the existence of two independent mo-
lecular mechanisms in ND. One is the amino acid change
through SNP rs16969968, and another is differing degrees
of CHRNA5 mRNA expression tagged by rs588765 (or
rs578776, rs3743078) [80]. However, these findings reveal
only a small portion of both common and rare variants in the
CHRNA5/A3/B4 cluster. Thus, additional loci associated with
smoking-related phenotypes await discovery. In particular,
despite its difficulty, much attention should be paid to studies
of rare variants in this gene region in order to understand in
depth the genetics of ND.

Fig. 4 Crucial role of α5* nAChRs in intravenous self-administration
task (IVSA). α5−/− mice exhibited a decreased sensitivity of the DA
neurons and a dramatic shift to high nicotine doses compared with WT
mice. Data are presented as mean (±SEM) total nicotine intake at each
dose. ***p<0.001; **p<0.01. Adapted from the report by Morel et al.
[25], with the permission of Nature Publishing Group, license number
3416821041833
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There still is some controversy as to the relation between
the implicated SNPs and lung cancer, although the findings
from GWAS are robust [55–57]. Whether this association is
direct or merely a byproduct of ND must be investigated
further. Because there have been no specific pharmacological
reagents for the α5, α3, or β4 nAChR subunits that are useful
in elucidating such complicated relations, design of highly
specific nAChRs ligands is of prime importance.
Alternatively, knockin mouse model studies may directly
examine the effects of variants given a constant carcinogen
exposure. In other words, if, for example, SNP rs16969968
can be inserted into mice while ensuring that other conditions
remain the same, the difference between the two groups of
mice would be only in this SNP. Supposing that there is a
difference in lung cancer between the two groups of mice, we
can conclude that rs16969968 acts directly in the development
of lung cancer. However, if not, we are more willing to believe
that the SNP plays an indirect role.

As with the rapid development of the large-scale GWAS,
extensive genomic information concerning ND is now avail-
able. This lays emphasis on the urgency of understanding the
biological mechanisms of how α5, α3, and β4 nAChR sub-
units modulate smoking-related behaviors, which presents
both opportunities and challenges. An important means to
tease out the functional role of these receptor subunit genes
in the neurobiology of ND is through genetic engineering
technologies. Significant progress has been made in the past
few years by using both in vitro and in vivomodels, highlight-
ing the importance of the α5 nAChR subunit in regulating
ND. However, these functional studies so far reveal only a
critical role of the α5 subunit in controlling the aversive and
withdrawal effects of nicotine. How the α3 or β4 nAChR
subunits function in ND has not been clarified yet, primarily
because of the smaller number of functional studies of these
two subunits. Even though there are a few studies suggesting a
role of the α5 subunit in the rewarding effect of nicotine, most
of them remain to be validated in independent studies. Thus,
this part of research is in its early stages, and more relevant
studies are greatly needed so as to fully understand the under-
lying mechanisms of ND. In addition, as discussed above,
there exists a significant interaction between SNPs or haplo-
types in the CHRNA5/A3/B4 gene cluster and the success of
cessation measures. Those with the high-risk SNPs or haplo-
types appear more biologically predisposed to having diffi-
culty quitting without pharmacologic treatment, a problem
that may be ameliorated by effective pharmacologic treatment.
Thus, identification of molecular mechanisms underlying ND
and responsiveness to pharmacologic treatment for ND will
improve the development of novel, tailored smoking cessation
therapies.
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