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Abstract Dysfunction of growth factor (GF) activities con-
tributes to the decline and death of neurons during aging and
in neurodegenerative diseases. In addition, neurons become
more resistant to GF signaling with age. Micro (mi)RNAs are
posttranscriptional regulators of gene expression that may be
crucial to age- and disease-related changes in GF functions.
MiR-126 is involved in regulating insulin/IGF-1/phos-
phatidylinositol-3-kinase (PI3K)/AKT and extracellular
signal-regulated kinase (ERK) signaling, and we recently
demonstrated a functional role of miR-126 in dopamine neu-
ronal cell survival in models of Parkinson’s disease (PD)-
associated toxicity. Here, we show that elevated levels of
miR-126 increase neuronal vulnerability to ubiquitous toxicity
mediated by staurosporine (STS) or Alzheimer’s disease
(AD)-associated amyloid beta 1–42 peptides (Aβ1–42). The
neuroprotective factors IGF-1, nerve growth factor (NGF),
brain-derived neurotrophic factor (BDNF), and soluble amy-
loid precursor protein α (sAPPα) could diminish but not
abrogate the toxic effects of miR-126. In miR-126 overex-
pressing neurons derived from Tg6799 familial AD
model mice, we observed an increase in Aβ1–42 toxicity,
but surprisingly, both Aβ1–42 and miR-126 promoted
neurite sprouting. Pathway analysis revealed that miR-
126 overexpression downregulated elements in the GF/

PI3K/AKT and ERK signaling cascades, including AKT,
GSK-3β, ERK, their phosphorylation, and the miR-126
targets IRS-1 and PIK3R2. Finally, inhibition of miR-
126 was neuroprotective against both STS and Aβ1–42

toxicity. Our data provide evidence for a novel mecha-
nism of regulating GF/PI3K signaling in neurons by
miR-126 and suggest that miR-126 may be an important
mechanistic link between metabolic dysfunction and
neurotoxicity in general, during aging, and in the path-
ogenesis of specific neurological disorders, including
PD and AD.
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Introduction

Growth factor (GF) signaling pathways are essential for the
function and survival of neurons, and their dysfunction has
been implicated in the decline or death of neurons during
aging and in neurodegeneration. In particular, insulin/IGF-1
signaling pathways have been associated with age-related
neuronal dysfunction and neurodegenerative diseases, such
as Parkinson’s (PD) and Alzheimer’s disease (AD) [1–8].
The detailed mechanisms of GF dysfunctions in aging and
neurodegeneration, however, are still not well understood.
One current hypothesis is that neurons become more resistant
to GF actions over time [4–6, 8, 9].

Micro (mi)RNAs regulate gene expression at the posttran-
scriptional level [10]. They are involved in all aspects of cell
functions, including key signaling pathways that are important
in the maintenance of cellular homeostasis and response to
stress. There is evidence that miRNAs are involved in neuro-
nal aging and in the pathogenesis of neurodegenerative disor-
ders, but their precise relationships with GF activities are
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poorly understood [11–18]. In nonneuronal cells, IGF-1/phos-
phatidylinositol-3-kinase (PI3K) and extracellular signal-
regulated kinase (ERK) signaling is, in part, modulated by
miR-126 (reviewed in [14, 19]), and in hepatocytes, upregu-
lation of this miRNA has been associated with insulin resis-
tance [20]. miR-126 has also been described in the neuronal
context [21–27], and we have recently shown that miR-126
was upregulated in dopamine (DA) neurons in postmortem
PD patients’ brains and in pyramidal cortical neurons from
schizophrenia patients [14, 28, 29]. Moreover, our recent data
showed that elevated levels of miR-126 in the DA neuronal
context is neurotoxic to 6-hydroxydopamine (6-OHDA) by
impairing IGF/PI3K/AKT and ERK signaling, while its inhi-
bition is neuroprotective [28].

Because of the critical roles of GF-activated PI3K/
AKT and ERK signaling in neuronal function and age-
or disease-associated dysfunction, we hypothesized that
miR-126 might play a general role in regulating or
deregulating the effects of a variety of GFs in neurons,
including nerve growth factor (NGF) whose diminished
trophic effects on cholinergic neurons has been linked
to cognitive decline in aging and AD [30–33]; soluble
amyloid precursor protein α (sAPPα, one of the cleaved
products of amyloid precursor protein (APP)) that has
neurotrophic and neuroprotective properties [34, 35],
acts synergistically with NGF and IGF-1, and can re-
verse the toxic effects of amyloid beta (Aβ) [36, 34],
another product of APP cleavage which may be the
primary toxic agent in AD pathogenesis [37, 35]; and
brain-derived neurotrophic factor (BDNF) which is in-
volved in neuroplasticity and protection and has been
associated with aging and a variety of neuropsychiatric
and neurodegenerative disorders [38, 39].

Here, we show that elevated levels of miR-126 in corti-
cal and hippocampal neurons are neurotoxic and enhance
the effects of ubiquitous toxicity mediated by staurosporine
(STS), a general kinase inhibitor [40, 41], and cell-specific
toxicity due to Aβ1–42 peptides, which directly interact with
GF/PI3K signaling pathways [8, 34, 42, 43]. Neurotoxicity
could be diminished, but not abrogated, by IGF-1, NGF,
BDNF, and sAPPα, and inhibition of miR-126 was neuro-
protective. In neurons derived from Tg6799 mice, which is
a model of familial AD (FAD) [44], we observed an in-
crease in miR-126 expression and Aβ1–42 toxicity, but
surprisingly, and in contrast to littermate controls, both
Aβ1–42 and miR-126 promoted neurite sprouting. On the
mechanistic level, overexpression of miR-126 caused a
downregulation of factors in the PI3K and ERK signaling
cascades. Our data provide evidence for a novel mechanism
of regulating GF/PI3K signaling in neurons by miR-126
and suggest a functional role of this miRNA, broadly, in
aging neurons, and the pathogenesis of neurodegenerative
diseases.

Material and Methods

Lentivirus Vectors and Cell Transduction

The third generation lentivirus system was kindly provided by
Drs. D. Trono and R. Zufferey, University of Geneva, Swit-
zerland [45, 46]. For neuron-specific expression of rno-miR-
126, the Synapsin promoter was subcloned from pHIV7/Syn-
EGFP (kindly provided by Dr. Atsushi Miyanohara (UCSD))
and inserted together with approx. 270 bp upstream and
downstream sequences of the rat miR-126 pre-miRNA [28]
and an IRES-GFP cassette downstream of the miRNA gene
into the pRRL.cPPT.WPRE.Sin-18 backbone. The following
primers were used to amplify the miRNA sequences from
genomic DNA by PCR (given without flanking sequences
for restriction sites): rno-miR-126 5′: GCACTATGCTGA
GGGCTGATTC; rno-miR-126 3′: TTCTACACCTCCTCTC
TCACC. The human sAPPα cDNAwas cloned according to
the strategy by Turner et al. [47] and inserted into the
pRRL.PGK.cPPT.WPRE.Sin-18 backbone. The lentivirus
construct CAG.NGF.GFP that expresses NGF from the chick-
en beta actin promoter with a CMV enhancer element was
kindly provided by Dr. I. Verma, Salk Inst. La Jolla, CA [48,
49]. For downregulating trkB expression, a set of four trkB-
s iRNA-express ing len t iv i rus vec to r s was used
( T R C N 0 0 0 0 0 2 3 4 1 6 , T R C N 0 0 0 0 0 2 3 6 9 9 ,
TRCN0000023701, TRCN0000023703; The RNAi Consor-
tium (http://www.broadinstitute.org/rnai/public/); Thermo
Scientific/Dharmacon (http://dharmacon.gelifesciences.com/
openbiosystems)).

All cloning experiments were based on standard molecular
biology techniques. Virus production, concentration by ultra-
centrifugation, and qRT-PCR- or p24 ELISA- (Clontech Lab-
oratories, Mountain View, CA) based titer determination were
performed according to published protocols [50–52]. Average
virus titers were 106–107 transducing units per μl.

Cell transductions were performed with multiplicity of
infections (MOI) of 10–20 in the presence of 5–7 μg/ml
hexadimethrine bromide (Polybrene, Sigma Aldrich, St. Lou-
is, MO). Cells were incubated with virus and polybrene for 5–
6 h before changing to fresh media. Expression of virus
vectors was determined by GFP fluorescence and qRT-PCR

Technologies Corporation (Cat. no. 4427975) and rat
snoRNA (Cat. no. U64702) or the Exiqon mmu-mir-126-5p
and RNU5G control (Exiqon, Woburn, MA).

Animals and Primary Cell Culture

All procedures involving animals were approved by the
IACUC committees at McLean Hospital or Hanyang Univer-
sity. Primary cortical or hippocampal neurons were obtained
from embryonic day 18 (E18) rat embryos (Sprague-Dawley,
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Charles River, MA), Tg6799 transgenic (MT) mice (Jackson
Laboratory, Bar Harbor, ME), or littermate controls (LM) at
postnatal day 1 as described [53, 28]. Briefly, dissected cortex
and hippocampus brain tissues were incubated in Accutase
(Invitrogen) for 10 min at 37 °C and then mechanically
triturated using fire-polished Pasteur pipettes. The cell sus-
pension was plated onto glass coverslips in 24-well plates
precoated with 37.5 μg/ml poly-D-lysin or poly-L-ornithine
(Sigma), 2.5 μg/ml fibronectin (Sigma) or laminin (Sigma) at
a density of 3.6×104 cells/cm2 in neurobasal media
(neurobasal media, 1 % heat-inactivated FBS, penicillin,
streptomycin, B27 supplement, glutamax, 2 mg/ml glutamic
acid, and additional 1 % horse serum for cortical cells
(Invitrogen)) or DMEM/F-12 supplemented with 10 % fetal
bovine serum (GenDEPOT, San Diego, CA), 100 U/ml pen-
icillin and 100 μg/ml streptomycin (Sigma, St. Louis, MO),
2 mM L-glutamine (Gibco, Carlsbad, CA), 5 % B-27 supple-
ment (Gibco, Carlsbad, CA), and 10 ng/ml bFGF (Invitrogen,
Carlsbad, CA). Neurobasal media was half-changed with
neural differentiation media (neurobasal media without serum
and glutamic acid) 4 days after plating to induce cholinergic
differentiation, and changed once a week. Cells were trans-
duced with lentiviruses 6 days after plating, and media was
half-changed with insulin-free media 5 days after transduc-
tion. Dox-inducible miR-126 expressing PC12 cell lines were
used for miR-126 inhibition assays by transfection with 50–
100 nM scrambled controls or miR-126 targeting locked
nucleic acids (LNATM, Exiqon, Woburn, MA) using lipofec-
tamine (Life Technologies, Rockville, MD) as previously
described [28].

Drug Treatment and Measurement of Cell Viability

Neuronal cultures were maintained in insulin-free media for
6 days before treatment with STS (Cayman Chemical Com-
pany, Ann Arbor, MI), Aβ1–42 (AnaSpec Inc., Fremont, CA),
IGF-1 (Peprotech, Rocky Hill, NJ), BDNF (Peprotech), or the
IGF-1R tyrosine kinase inhibitor AG1024 (Millipore,
Tenecula, CA). STS was dissolved in DMSO (100 μM stock
solution) and applied for 24 h at a final concentration of 0, 25,
50, 100, or 300 nM in the primary cultures or PC12 cells,
respectively. Lyophilized Aβ1–42 peptides were dissolved in
1 % NH4OHM and then immediately diluted with 1×
Dulbecco’s phosphate-buffered saline (PBS) without MgCl2
and CaCl2 (Gibco/Life Technologies #14200-075), as a
150 μM final stock solution for stabilization. The Aβ1–42

stock solution was incubated at 37 °C for 72 h to produce
oligomers. For titration, cells were treated with 0, 0.1, 1, 2, or
10 μM Aβ1–42 oligomers for 48–72 h; 1 μM of the final
concentration was applied in primary cultures and 2 μM in
PC12 cells. Formation of toxic Aβ1–42 oligomers were con-
firmed in Western blots and toxicity titration assays. IGF-1
(20 ng/ml) was added 30 min before the addition of STS or

Aβ1–42. AG1024 was prepared as 2 mM stock solution in
DMSO and 0.5 μM of the final concentration was added
30 min prior to IGF-1 treatment.

Cell viability was determined using the activity of lactate
dehydrogenase (LDH) in collected cell culture medium, ac-
cording to the manufacturer’s instructions (Roche, Indianap-
olis, IN), and absorbance measured at 490 nm.

Protein Sample Preparation and Western Blot

Protein samples were purified from harvested cells in lysis
buffer (100 mM Tris-HCl (pH 7. 5), 10 mM EDTA, 10 mM
EGTA, 1 % SDS, 20 mM NaCl (Sigma, St. Louis, MO))
containing 1 mM PMSF, protease inhibitor cocktail, and
phosphatase inhibitor cocktail (Thermo Fisher Scientific
Inc., Waltham, MA). Lysates were centrifuged at 14,000 rpm
for 30 min at 4 °C and the supernatants collected and stored at
−80 °C before use. Equal amounts of protein sample were
used for Western blots as previously described [50, 28]. West-
ern blots were performed with the following primary antibod-
ies: PI3-kinase p85β (Santa Cruz Biotechnology, Santa Cruz,
CA, 1:1250); IRS-1, AKT, phospho-AKT, ERK, phospho-
ERK, GSK-3β, and phospho-GSK-3β (Cell Signaling,
1:1250); 6E10 (Covance, Princeton, NJ, 1:1000); 22C11
(Millipore, 1:1000); and β-actin (Covance, 1:10,000). Alka-
line phosphatase (AP)-conjugated anti-mouse or anti-rabbit
secondary antibodies (Invitrogen, 1:2500) and Immun-StarTM

AP substrate (Bio-Rad, Hercules, CA) were used for protein
detection. sAPPα in the media from PGK.sAPPα-transduced
PC12 cells was measured inWestern blots using the 22C11 or
6E10 antibody. Quantification of immunoreactive bands was
performed using Image J (NIH, http://rsb.info.nih.gov/ij/).
Experiments were performed at least in triplicate for the
same samples.

Immunocytochemistry

Cultured neurons were fixed in 4 % paraformaldehyde (Fisher
Scientific, Waltham, MA) and rinsed with PBS. Cells were
then incubated with blocking buffer (10 % normal goat serum
and 0.1 % Triton X-100) for 30 min at room temperature.
Immunostaining was performed using primary antibodies
against choline acetyltransferase (ChAT; Millipore, Tenecula,
CA, 1:500), β-III tubulin (Tuj1; Covance, 1:1000), or Tau
(Tau46, Cell Signaling, 1:500), followed by incubation in
Alexa Fluor 568- or Alexa Fluor 488-conjugated anti-mouse
or anti-rabbit secondary antibodies (Invitrogen, 1:1000), or
alkaline phosphate substrate solution (Vector Lab,
Burlingham, CA). After counterstaining with 1 μg/ml
Hoechst 33342 (Sigma) for 2 min, cover glasses were
mounted onto glass slides using Gel-Mount anti-fade media
(Electron Microscopy Sciences, Hatfield, PA).
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Cell Counting and Neurite Length Measurement

Neurons were counted from images taken with an inverted
Zeiss Axiovision microscope (Carl Zeiss Microimaging, Inc.,
Thornwood, NY) connected to a fluorescence light source and
digital camera (Zeiss AxioCam HRc). In each condition, 30
sections per coverslip were quantified and a total of 300–1400
cells were analyzed. Two investigators, blinded to the treat-
ment groups, independently performed counting and duplicate
analyses. Neurite lengths of Tau-positive cells were counted
from 16 microscopic images per condition and analyzed using
Image J (NIH, http://rsb.info.nih.gov/ij/) by two independent
assessors blinded to the conditions. The length of neurites was
measured using the freehand line tool by drawing lines
starting from the basal line of the cell surface to the end of
the neurite projection on the image. Each protruding tip from
the basal line of the soma was counted as an individual neurite
(83–114 cells and 300 neurites per group). The lengths and
counts of neurites were presented as a relative value compared
to untreated LM control group.

Statistical Analysis

Microsoft Excel software (Microsoft Corp., Redmond, WA)
was used for statistical analyses. Data were compared between
different experimental groups or within a group using un-
paired two-tailed Student’s t test. Differences of comparison
were considered statistically significant when p values were
less than 0.05 (p<0.05).

Results

Overexpression of MiR-126 Increases STS Toxicity
and Decreases the Neuroprotective Effects of IGF-1

To express GFP or miR-126 together with GFP specifically in
neurons, we used lentivirus vectors that contain the Synapsin
promoter (Syn.GFP and Syn.miR-126, respectively)
(Fig. 1a, b). Virus-transduced cortical or hippocampal primary
cultures were tested in STS or Aβ1–42 toxicity assays (Sup-
plementary Material Fig. S1a–c) in combination with trophic
factors expressed from viral vectors (CAG.NGF [48, 49] and
PGK.sAPPα (Supplementary Material Fig. S1d)) or were
supplemented to the cultures (IGF-1 and BDNF).

We first tested the effects of miR-126 on toxicity to STS,
which causes a general inhibition of protein kinase activities
and whose effects can be ameliorated by IGF-1 [40, 41].
Overexpression of miR-126 increased STS toxicity and re-
duced the protective effects of IGF-1 when compared to naïve
and virus GFP controls (Fig. 1c). The effect of IGF-1 was
inhibited in the presence of the IGF-1 receptor (IGF-1R)

inhibitor AG1024 in both control and miR-126-transduced
cells, confirming that miR-126 acts on IGF-1 signaling path-
ways [54, 20, 55, 28] (Fig. 1d). To confirm apoptotic neuronal
cell death measured by LDH, we immunostained the cultures
with β-III tubulin and the nuclear marker Hoechst 33342.
Apoptotic neurons were characterized by swollen cytoplasm
and condensed or fragmented nuclei (Supplementary Material
Fig. S2). The percent of apoptotic neurons over all apoptotic
cells was increased in Syn.miR-126-transduced cultures, dem-
onstrating neuron specificity of the miR-126 effects.When we
examined miR-126 expression levels, we found that the en-
dogenous miRNA was increased (1.5–2-fold) in STS- and
IGF-1-treated cells (Fig. 1e), while in the Syn.miR-126-trans-
duced cells, STS caused a decrease and IGF-1 a slight increase
in miRNA levels, which could have been associated with
different Synapsin promoter regulation as a consequence of
cell treatment.

Overexpression of MiR-126 Is Neurotoxic, Increases Aβ1–42

Toxicity, and Modulates Neuroprotection by IGF-1, NGF,
BDNF, and sAPPα

We next focused on other factors that are associated with PI3K
or ERK signaling and which are involved in the neuronal
aging process or disease-specific pathogenesis. Aβ1–42, which
is thought to be the primary toxic agent in AD pathogenesis
[37, 35], acts on the insulin/IGF-1 or NGF receptor and, thus,
competes with insulin/IGF-1 or NGF on PI3K signal activa-
tion [34]. In contrast, sAPPα can act synergistically with NGF
and IGF-1 to reverse amyloid Aβ toxicity [36, 34]. We,
therefore, tested the effects of overexpressed miR-126 on
toxic Aβ1–42 peptides and neuroprotection by IGF-1, NGF,
and sAPPα in Aβ1–42 vulnerable cell types, including cortical
and hippocampal neurons (Figs. 2 and S3). No differences
between naïve and control Syn.GFP-transduced cells were
observed regarding Aβ1–42 toxicity and the effects of trophic
factors (Supplementary Material Fig. S3a and b). In the miR-
126 overexpressing neurons, the miRNA alone was cell toxic
and exaggerated Aβ1–42 toxicity (Fig. 2a, Supplementary
Material Fig. S3c). IGF-1, NGF, and sAPPα reduced Aβ1–42

toxicity in both virus controls and miR-126 overexpressing
cells and sAPPα acted synergistically with IGF-1 and NGF,
and the effects of IGF-1 in Syn.GFP control, Syn.miR-126,
and Syn.miR-126/PGK.sAPPα transduced cells could be
inhibited in presence of AG1024 (Fig. 2b). Assessment of
miRNA expression levels revealed no marked changes in the
virus-transduced cells and factor-treated cells (Fig. 2c, d).

We also tested the effects of miR-126 overexpression in
BDNF-treated cortical neurons, because recent data have
shown that BDNF protects cortical neurons from Aβ toxicity
[56]. BDNF had a neuroprotective effect toward Aβ1–42 tox-
icity in both Syn.GFP controls and Syn.miR-126-transduced
cells, but could not fully abrogate the increased neurotoxicity
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caused by miR-126 (Fig. 3a). In both conditions, the neuro-
protective effects of BDNF were diminished when the expres-
sion of its receptor trkB was inhibited by trkB-siRNAs, dem-
onstrating that miR-126 affects the BDNF/trkB signaling cas-
cade (Fig. 3a, b).

MiR-126 Increases Aβ1–42 Toxicity in Tg6799 Neurons
and Modulates Neurite Sprouting

We next evaluated the effects of miR-126 in primary cortical
cultures from Tg6799 mutant mice because these animals
exhibit a massive accumulation of Aβ1–42 in the brain [44].
Overexpression of miR-126 increased Aβ1–42 toxicity in both
littermate controls (LM) and Tg6799 mutant (MT) cells and to
a greater extent in the latter cell population (Fig. 4a). As
shown in the rat primary cultures (Fig. 2), endogenous miR-
126 expression was not significantly upregulated in LM

neurons after Aβ1–42 treatment, but increased in Tg6799 cells
(Fig. 4b).

In addition to neurotoxicity, we also evaluated the effects of
miR-126 on neurite sprouting in Tau-immunostained LM
control and Tg6799 MT neurons. In the LM cells, Aβ1–42

slightly decreased the length of neurites per cell and this effect
was significantly exaggerated when miR-126 was
overexpressed (Fig. 4c). Untreated Tg6799 neurons had a
reduction in neurite lengths when compared to LM controls,
and both Aβ1–42 treatment and miR-126 overexpression sig-
nificantly increased neurite lengths to levels seen in the un-
treated LM controls, however, to a lesser extent in Aβ1–42-
treated miR-126 overexpressing cells (Fig. 4c). These data
indicate that in normal neurons, elevated levels of miR-126
exaggerate an inhibitory effect of Aβ1–42 on neurite sprouting,
while in Tg6799 neurons, miR-126 promotes neurite
sprouting to a similar extent as seen with Aβ1–42 but has no
synergistic effect.

Fig. 1 Overexpression of miR-126 increases STS toxicity and impairs a
protective effect of IGF-1. a, b Transduction of cortical neurons with
Syn.GFP control or Syn.miR-126.IRES.GFP (Syn.miR-126) revealed
expression of GFP (a) and 4-fold upregulation of miR-126 (b). Neurons
were immunostained for ChAT (red), and miR-126 expression was mea-
sured by qRT-PCR. Size bars=20 μm. c LDH assays demonstrate an
increase of STS toxicity and a reduction of neuroprotection by IGF-1 in
miR-126-transduced cortical neurons. Data are plotted as relative cell
death to Triton-X (1 %) induced maximum cell death. *p<0.05

comparing treated to untreated condition. #p<0.05 comparing miR-126
to Syn.GFP control. d The effects of IGF-1 can be inhibited by AG1024
(0.5 μM). Data are plotted as percent cell death relative to untreated
Syn.GFP control. *p<0.05 comparing IGF-1-treated to IGF-1-untreated
condition. e Expression levels of endogenous and virus-expressed miR-
126 in STS and IGF-1-treated neurons. *p<0.05 comparing Syn.GFP to
untreated condition. #p<0.05 comparing Syn.miR-126 to untreated
condition
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Increased Levels of MiR-126 Affect the Expression of Factors
in IGF-1/PI3K/GSK-3β and ERK Signaling

To evaluate the effects of increased miR-126 on cellular
signaling events in STS or Aβ1–42 toxicity, we measured the
expression of factors in the IGF-1/PI3K/AKT and ERK

pathways (Figs. 5 and 6, Supplementary Material Fig. S4),
including GSK-3β, which is regulated by pAKTand has been
linked to Tau phosphorylation, amyloid production, and neu-
ronal death [57].

In STS toxicity, IRS-1 the adapter molecule of IGF-1R and
a validated target of miR-126 [20, 58] was upregulated in

Fig. 2 Overexpression of miR-126 modulates Aβ1–42 toxicity and the
neuroprotective effects of IGF-1, NGF, and sAPPα. a LDH assays show
that overexpression of miR-126 is neurotoxic and increases the toxic
effects of Aβ1–42. IGF-1, NGF, and sAPPα protect cortical neurons
against Aβ1–42 toxicity in both control and miR-126 virus-transduced
neurons with a synergistic effect of sAPPα in combination with IGF-1
and NGF. Data are plotted relative to untreated Syn.GFP control.

*p<0.05 comparing treated to untreated condition. #p<0.05 comparing
Syn.miR-126 to Syn.GFP controls. b The neuroprotective effects of IGF-
1 can be abrogated by AG1024. Data are plotted as percent cell death
relative to untreated control. *p<0.05 comparing IGF-1-treated to IGF-1-
untreated condition. c, d Aβ1–42 and IGF-1 or NGF do not significantly
change miR-126 levels in virus controls or miR-126 overexpressing cells
(c), or in control/miR-126 or sAPPα/miR-126-transduced neurons (d)

Fig. 3 Overexpression of miR-126 modulates Aβ1–42 toxicity and the
neuroprotective effects of BDNF in cortical neurons. a LDH assays show
that overexpression of miR-126 increases the toxic effects of Aβ1–42 and
that BDNF (10 ng/ml) protects against Aβ1–42 toxicity in both virus
control and miR-126-transduced neurons and that the neuroprotective

effects of BDNF are inhibited in neurons that express trkB-siRNAs.
*p<0.05 comparing treated to untreated condition. #p<0.05 comparing
Syn.miR-126 to Syn.GFP controls. bWestern blots demonstrating >75%
downregulation of trkB in trkB-siRNA-expressing neurons. *p<0.05
comparing si-trkB+ to si-trkB− condition
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Fig. 4 Overexpression of miR-126 increases Aβ1–42 toxicity in Tg6799
neurons and modulates neurite sprouting. a LDH assays show that
overexpression of miR-126 increases the toxic effects of Aβ1–42 in
littermate (LM) controls and Tg6799 mutant (MT) cortical neurons.
*p<0.05 comparing treated to untreated control. #p<0.05 comparing
Syn.miR-126 to Syn.GFP controls. b The endogenous miR-126 levels
are significantly increased in Aβ1–42-treated Tg6799MT neurons, but not
in LM controls. *p<0.05 comparing treated to untreated control. #p<0.05

comparing MT to LM controls. c Assessment of neurite lengths in Tau-
immunostained neurons shows that Aβ1–42 treatment significantly de-
creases neurite sprouting in miR-126 overexpressing LM controls.
Tg6799 MT neurons exhibit less neurite sprouting than LM controls,
and both miR-126 and Aβ1–42 significantly increase sprouting, which
was partly abrogated by Aβ1–42 in the miR-126 overexpressing cells.
*p<0.05

Fig. 5 Overexpression of miR-
126 modulates IGF-1/AKT/GSK-
3β and ERK signaling in STS and
IGF-1-treated neurons. Quantifi-
cation of Western blots (a) shows
that IRS-1 (b), AKT, pAKT,
ERK, pERK, GSK-3β, and
pGSK-3β (c) are downregulated
in miR-126 overexpressing cells
when compared to virus-treated
controls. In addition, the
pAKT/AKT, pERK/ERK, and
pGSK-3β/GSK-3β ratios are in-
creased, and the pGSK-3β/GSK-
3β ratios decreased in STS/IGF-
1-treated and miR-126-
transduced cells. Data are plotted
as relative percent expression to
untreated controls. *p<0.05
comparing treated to untreated
condition. #p<0.05 comparing
ratios for Syn.miR-126 to ratios
of Syn.GFP controls
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controls when exposed to IGF-1, but its expression was re-
duced in the miR-126 overexpressing cells (Fig. 5a, b). In
IGF-1-untreated controls, STS treatment did not change the

expression levels of AKT, ERK, and GSK-3β, but caused a
downregulation of pAKT, pERK, and pGSK-3β and altered
their respective ratios (Fig. 5a, c). The addition of IGF-1

Fig. 6 Overexpression of miR-126 modulates AKT/GSK-3β and ERK
signaling in Aβ1–42-, IGF-1-, and sAPPα-treated neurons. Quantification
of Western blots (a) shows that IRS-1 is upregulated in Aβ1–42- and IGF-
1- or sAPPα-treated neurons, but downregulated when miR-126 is
overexpressed (b). Expression levels of p85β are also increased in
controls, but to a lesser extent in miR-126-transduced cells. c Aβ1–42

and IGF-1 or sAPPα treatment cause upregulation of AKT, pAKT, ERK,
pERK, and GSK-3β and to a lesser extent pGSK-3β in control cells. In
contrast, except for pERK and pGSK-3β, miR-126 overexpressing

neurons show downregulation of these molecules. While the pAKT/
AKT ratios are unchanged and the pERK/ERK and pGSK-3β/GSK-3β
ratios are reduced in the controls, miR-126 overexpressing cells have
reduced pAKT/AKTand markedly increased pERK/ERK and pGSK-3β/
GSK-3β ratios. In the miR-126 overexpressing cells, sAPPα alone or in
combination with IGF-1 increases the pERK/ERK and pGSK-3β/GSK-
3β ratios. *p<0.05 comparing treated to untreated condition. #p<0.05
comparing ratios for Syn.miR-126 to ratios of Syn.GFP controls
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increased AKT, pAKT, pERK, and pGSK-3β, but not ERK
and GSK-3β. In contrast, overexpression of miR-126 in STS-
and IGF-1-treated neurons caused downregulation of AKT,
ERK, GSK-3β, pAKT, pERK, and pGSK-3β, an upregula-
tion of the AKT/pAKT and ERK/pERK ratios, while the
pGSK-3β/GSK-3β ratio in the IGF-1 condition was
decreased.

In Aβ1–42 toxicity, IGF-1, NGF, and sAPPα caused upreg-
ulation of IRS-1 in control neurons but downregulation when
miR-126 was overexpressed (Fig. 6a, b, Supplementary Ma-
terial Fig. S4a). The expression levels of p85β, a component
of the PI3K complex and another validated target of miR-126
[55, 59, 54], were also increased in the controls, but un-
changed or only slightly increased in the miR-126-
transduced cells (Fig. 6a, b, Supplementary Material
Fig. S4a). In controls, Aβ1–42 and GF treatment were associ-
ated with the upregulation of AKT, pAKT, ERK, pERK, and
GSK-3β and to a lesser extent pGSK-3β (Fig. 6a, c, Supple-
mentary Material Fig. S4b). In contrast, except for an upreg-
ulation of pERK and pGSK-3β, these molecules were down-
regulated in miR-126 overexpressing neurons. Moreover, in
Aβ1–42 and factor-treated controls, the pAKT/AKT ratios
were largely unchanged, while the pERK/ERK and pGSK-
3β/GSK-3β ratios were reduced. In contrast, miR-126 over-
expression caused a slight decrease of the pAKT/AKT ratios
and a striking increase in the pERK/ERK and pGSK-3β/
GSK-3β ratios. Altogether, overexpression of miR-126 in
neurons had profound impacts on the activation status of
signaling pathways related to IGF-1, NGF, and sAPPα in
STS and Aβ1–42 toxicity.

Inhibition of MiR-126 Is Neuroprotective

Finally, we evaluated whether inhibition of miR-126 would be
neuroprotective to STS and Aβ1–42 toxicity. For this, we used
a toxicity assay based on virus-transduced PC12 cells as

previously published in [28]. Consistent with our data on 6-
OHDA, inhibition of miR-126 reduced STS toxicity and
enhanced the neuroprotective effects of IGF-1 (Fig. 7a) and
also diminished the toxic effects of Aβ1–42 (Fig. 7b).

Discussion

Neuronal functions depend on a balance between neurotoxic-
ity and neuroprotection, with the latter mediated in part by GF/
PI3K signaling pathways. In aging and age-related neurolog-
ical diseases, slow progressive neuronal dysfunction is a con-
sequence of an imbalance of many mechanisms, which may
be general or disease specific. Because of its implication in
aging and neurodegenerative diseases, insulin/IGF-1 signal-
ing is one of the pathways of great interest. For example, there
is evidence that AD may be a metabolic disorder with an
impairment of glucose utilization and energy production, as
a consequence of insulin deficiency and resistance to insulin/
IGF-1/PI3K signaling in the brain (sometimes called “brain-
diabetes” or “type-3-diabetes”) [2–8, 60–62]. Dysfunctional
insulin/IGF-1 signaling contributes to all aspects of AD-type
neurodegeneration, including dysregulated Αβ, Tau
hyperphosphylation, and oxidative stress [8, 63–67, 35]. The
PI3K signaling pathway is also used by other GFs, including
BDNF and NGF, and there is evidence that resistance to NGF
signaling contributes to the loss of cholinergic neurons and
cognitive decline seen both in aging and dementia [30–33].
The molecular mechanisms underlying these disturbances are
largely unknown, and our data provide evidence that miR-126
may play a role in these processes.

MiR-126 is involved in regulating IGF-1/PI3K/AKT, p38
MAPK, or ERK signaling in a multitude of nonneuronal cells
[14, 54, 19, 68–70]. In the neuronal context, it is expressed in
rodent or human cortical, hippocampal, cerebellum, ventral

Fig. 7 Inhibition ofmiR-126 is neuroprotective. a, bNaïve PC12 cells or
transduced cell lines that express a virus control or doxycycline (Dox)-
inducible miR126 [28] were transfected with 70–100 nM scrambled
(LNAsc) or miR-126 targeting LNAs (LNA126) and treated with
300 nM STS and 20 ng/ml IGF-1 (a) or 2 μM Aβ1–42 (b). LDH assays
show that both IGF-1 and LNA126 improve cell survival in STS-
untreated cells and are neuroprotective in STS-treated conditions

(*p<0.05 comparing cell death relative to untreated LNAsc controls).
Similarly, LNA126 improves survival of Aβ1–42-untreated cells and are
neuroprotective in Aβ1–42-treated conditions. (*p<0.05 comparing
LNAsc/Aβ1–42+ to LNAsc/Aβ1–42−; #p<0.05 comparing LNA126/
Aβ1–42− to LNAsc/Aβ1–42−; §p<0.05 comparing LNA126/Aβ1–42+ to
LNAsc/Aβ1–42+)
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mesencephalon, and motor neurons [21, 22, 26, 23, 27], and
the miRNA is differentially expressed in the cortex, hippo-
campus, and cerebellum during early human development
[27]. Recently, we found an upregulation of miR-126 in
postmortem DA neurons from PD and in pyramidal cortical
neurons from schizophrenia patients [14, 28, 29], and in DA
cell systems, elevated levels of miR-126 increased neurotoxic
to 6-OHDA by downregulating IGF-1/PI3K and ERK signal-
ing [28]. Our new finding that miR-126 also increases STS
and Aβ1–42 toxicity in cortical and hippocampal neurons and
diminishes the protective effects of a variety of growth factors
suggests that miR-126 could be involved in the general sur-
vival mechanisms of neurons and that its deregulation could
contribute to neuronal dysfunction in aging and in combina-
tion with cell- and disease-specific events to neurodegenera-
tion. Thus, miR-126 may be an important mechanistic link
between metabolic dysfunction and neurotoxicity.

In AD pathogenesis, there is evidence that insulin/IGF-1
affects Aβ metabolism and function, e.g., stimulating its
trafficking from the Golgi apparatus, its extracellular secre-
tion, and increasing transcription of Aβ degrading proteins
[63–67, 35]. In turn, Aβ acts on the insulin/IGF-1 or NGF
receptor and, thus, competes with insulin/IGF-1 or NGF on
PI3K signal activation [34] (Fig. 8). Aβ appears to alter
insulin/IGF-1 signaling by inappropriately increasing the ac-
tivation of PI3K/AKT/mammalian target of rapamycin
(mTOR) and JNK signaling and feedback inhibition of normal
activation, thereby reducing normal insulin/IGF-1 functions,
including normal on/off switching and the protective effects of
FOXO activation and mTOR inactivation [43]. Also, intracel-
lular Aβ appears to directly interfere with PIK3 activation of
AKTand subsequent GSK-3β phosphorylation which is part-
ly responsible for Tau hyperphosphorylation and the regula-
tion of Tau gene expression [71–73, 57, 74, 34, 42]. In
contrast, as shown in our study and previously demonstrated
by Luo et al. [36] and Jimenez et al. [34], sAPPα acts syner-
gistically with NGF or IGF-1 and reverses amyloid Aβ tox-
icity. Similarly, a neuroprotective role of BDNF against Aβ
toxicity in cortical neurons [56] was also observed in our
study. The finding that elevated levels of miR-126 exaggerate
Aβ toxicity in both GF-untreated and protective conditions
suggests that dysfunctional miR-126may be a central factor in
its pathogenesis via specifically deregulating PI3K/AKT sig-
naling cascades (Fig. 8). This notion is corroborated by the
observation that cortical neurons from Tg6799 mice had ele-
vated miR-126 and an increase in Aβ toxicity. Both, miR-
126 or Aβ alone, or in combination, negatively affected
neurite sprouting in littermate control neurons, but in-
creased sprouting in the cells with FAD-associated mu-
tations. FAD mutations seem to have inhibiting or pro-
moting effects on neurite growth and plasticity, and the
latter has been associated with increased GSK-3β activ-
ity and Aβ1–24-induced phosphorylation of Tau [75, 76].

However, the exact role that miR-126 plays in these
functions needs further investigation.

A series of miR-126 targets has been described (summa-
rized in [14]), including factors in ERK signaling, which was
also downregulated in the miR-126 overexpressing neurons.
One of these targets is SPRED1 [54, 28], which inhibits
MAPK/ERK signaling, and this pathway is involved in neu-
ronal cell function, aging, and degeneration, including Tau
regulation [77]. Recently, delta-like 1 homologue (Dlk1), an
epidermal growth factor-like homeotic protein that can control
extracellular IGF-1 levels by binding IGF-binding protein 1
(IGFBP1)/IGF-1 complexes [78], was identified as a novel
target of miR-126 [79]. Dlk1 activates the MEK/ERK path-
way [80], plays a functional role in motor neurons [81], and
has been identified as a novel target of the orphan nuclear
receptor Nurr1 in meso-diencephalon DA neurons [82]. MiR-
126 may also not exclusively regulate PI3K signaling. For
example, in the hippocampus of aged Ames dwarf and growth
hormone receptor knockout mice, miR-470, miR-669b, and
miR-681 were identified as potential suppressors of IGF-1R
and AKT [17]; in glioblastoma cells, miR-7 inhibits IGF-1/
AKT signaling by targeting IRS-1 [83]; and in transfected
N2A cells that stably express APP, overexpression of miR-

Fig. 8 Schematic summary of the effects of miR-126 in neurotoxicity
and GF protection. miR-126 targets key factors in PI3K/AKT/GSK-3β
and ERK signaling, including IRS-1, p85β, SPRED1, and DLK-1, and
increases the effects of pan-neuronal (STS) or disease-associated (6-
OHDA, Aβ1–42) toxicity. Aβ1–42 competes with IGF-1 and NGF on IR/
IGF-1R or TrkA/p75NTR receptor binding and appears to directly interfere
with PI3K activation of AKT. sAPPα acts synergistically with NGF or
IGF-1 and reverses Aβ1–42 toxicity. The recently identified miR-126
target DLK1 binds IGFBP1/IGF-1 complexes and can indirectly or
directly influence IGF-1/PI3K and ERK signaling
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98 downregulates its target IGF-1 and indirectly increases Aβ
production and Tau phosphorylation [84]. In addition, miR-
320, which is expressed in neurons, including pigmented
neurons in the substantia nigra [22], influences IGF-1 signal-
ing through regulation of IGF-1/2, IGF-1R, phosphoinositide-
3-kinase regulatory subunit 1 (p85α; PIK3R1), and the glu-
cose transporter 4 (SLC2A4) [85, 86].

Although levels of miR-126 appear to be low in neurons,
small increases seem to have striking effects on cell function.
Our observation that neurotoxicity is a consequence of 4-fold
upregulated miR-126 is consistent with findings in hepato-
cytes, in which rotenone-induced dysfunctional mitochondria
caused insulin resistance that was associated with a 3- to 4-
fold increase of miR-126, a 75 % decrease of IRS-1, an
insulin-induced reduction of glycogen, and downregulation
of the pAKT/AKT and pGSK-3β/GSK3-3β ratios [20]. To-
gether, these data indicate that small changes of miR-126
levels could have profound effects on cell function pointing
to a potential potent role of this miRNA in fine-tuning and
balancing (or dysbalancing) GF/PI3K signaling in neurons. In
fact, inhibition of miR-126 is neuroprotective and increases
the neuroprotective effects of GFs without seemingly
compromising normal neuronal cell function. Given its low
expression levels, this could indicate that miR-126 may be
dispensable for normal cellular homeostasis, while being det-
rimental when upregulated in the context of neuronal insult.
This notion is supported from studies on miR-126 k.o. mice
[87, 79]. While about 40 % of mice die embryonically or
perinatally with severe vascular abnormalities, surviving ani-
mals appear to be normal with no reported vascular defects or
brain damage, supporting the hypothesis that miR-126 may be
dispensable in adult brain cells. Therefore, diminishing or
eliminating miR-126’s function may be a strategy to promote
GF activities. The single locus of miR-126 in intron 7 of the
EGFL7 gene makes it an optimal target for gene editing, since
its targeted deletion does not alter the expression of EGFL7 in
homozygous transgenic mice [87].

In summary, our results provide evidence for a novel
mechanism of regulating GF/PI3K and ERK signaling by
miR-126 in neurons and suggest that GF/pathway deregula-
tion by dysfunctional miR-126 may be a contributing mech-
anism in the resistance of neurons to GF signaling events
during aging and in the pathogenesis of neurodegenerative
diseases, such as PD and AD. While small increases in miR-
126 increase neuronal vulnerability to toxic insult in both
normal cells and seemingly augmented in cells with disease-
associated mutations, such as in FAD, inhibiting miR-126
confers neuroprotection without compromising normal neu-
ronal cell functions, suggesting that nonfunctional or dispens-
able miR-126 in neurons may have therapeutic potential.
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