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Abstract Alzheimer’s disease (AD) is the most common
neurodegenerative disease in the elderly. Recently, genome-
wide association studies (GWAS) have been used to investi-
gate AD pathogenesis. However, a large proportion of AD
heritability has yet to be explained. We previously identified
the cell adhesion molecule (CAM) pathway as a consistent
signal in two AD GWAS. However, it is unclear whether
CAM is present in the Genetic and Environmental Risk for
Alzheimer’s Disease Consortium (GERAD) GWAS and brain
expression GWAS. Meanwhile, we think integrating AD
GWAS and AD brain expression datasets may provide

complementary information to identify important pathways
involved in AD. Here, we conducted a systems analysis using
(1) KEGG pathways, (2) large-scale AD GWAS from
GERAD (n=11,789), (3) two brain expression GWAS
datasets (n=399) from the AD cerebellum and temporal cor-
tex, and (4) previous results from pathway analysis of AD
GWAS. Our results indicate that (1) CAM is a consistent
signal in five AD GWAS; (2) CAM is the most significant
signal in AD; (3) we confirmed previous AD risk pathways
related to immune system and diseases, and cardiovascular
disease, etc.; and (4) we highlighted the purine metabolism
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pathway in AD for the first time. We believe that our results
may advance our understanding of AD mechanisms and will
be very informative for future genetic studies in AD.

Keywords Genome-wide association study . Alzheimer’s
disease . Brain expression . Pathway analysis

Introduction

Alzheimer’s disease (AD) is the most common neurodegen-
erative disease in the elderly [1]. Recently, genome-wide
association studies (GWAS) have been used to investigate
AD pathogenesis. GWAS have yielded important new insights
into the genetic mechanisms of AD [2]. However, newly
identified AD susceptibility loci exert very small risk effects
and cannot fully explain the underlying genetic risk [3]. A
large proportion of AD heritability has yet to be explained.
Fortunately, the existing large-scale GWAS datasets provide
strong support for the investigation of AD mechanisms using
pathway analysis methods [4–9].

Lambert et al. [4] used two different pathway analysis tools
to analyze a large GWAS in a French population (French
GWAS). They identified significant pathways related to the
immune system [4]. Jones et al. [6] performed multiple path-
way analyses of two large GWAS datasets including the
French GWAS and the Genetic and Environmental Risk for
Alzheimer’s Disease Consortium (GERAD) GWAS. They
observed significantly enriched pathways related to metabo-
lism and the immune system [6]. We performed multiple
pathway analyses of two publicly available AD GWAS
datasets (French and Pfizer GWAS datasets) [7].We identified
cell adhesion molecules (CAM) as a consistent signal in AD.
Recently, Ramanan et al. [8] performed a pathway enrichment
analysis on GWAS data from the 742 Alzheimer’s Disease
Neuroimaging Initiative (ADNI) participants. They confirmed
the involvement of CAM in AD (P=5.60E−04) [8].

Based on the above findings, we think that CAM may be a
consistent signal in multiple AD GWAS. However, it was
unclear whether CAM involvement was present in the
GERAD GWAS dataset. Evidence also shows that genetic
variants that modify gene expression in the brain may influ-
ence AD risk [10]. In order to verify CAM to be a consistent
signal in multiple AD GWAS, we conducted a pathway anal-
ysis of the GERAD GWAS dataset and brain expression
GWAS dataset. Meanwhile, we think that integrating the AD
GWAS and AD brain expression datasets may provide com-
plementary information to identify important pathways in-
volved in AD. Here, we conducted a systems analysis using
(1) KEGG pathways, (2) large-scale AD GWAS from
GERAD (n=11,789), (3) two brain expression GWAS
datasets (n=399) using quantitative expression trait loci from

the human cerebellum and temporal cortex, and (4) previous
results from pathway analysis of AD GWAS.

Materials and Methods

AD GWAS Dataset

The GERAD GWAS dataset included 11,789 samples from
individuals of European ancestry (3941 AD cases and 7848
controls) [11]. A total of 529,205 autosomal single nucleotide
polymorphisms (SNPs) passed quality control checks. SNPs
were tested for association with AD using logistic regression
under an additive model. Here, we selected 761 significant
SNPs with P≤1.00E−03. For more detailed information,
please refer to the original study [11].

Two AD Brain Expression GWAS Datasets

The brain expressionGWAS datasets were originally analyzed
by Zou et al. [10]. A total of 773 brain samples from the
cerebellum and temporal cortex were available for analysis.
The samples were divided into four datasets: 177 non-AD
cerebellar samples, 197 non-AD temporal cortex samples, 197
AD cerebellar case samples, and 202 AD temporal cortex case
samples. Zou et al. analyzed 213,528 cisSNPs within ±100 kb
of the 24,526 tested transcripts. Levels of 24,526 transcripts
for 18,401 genes were measured using WG-DASL assays.
False discovery rate (FDR)-based P values were used to
correct for multiple testing.More detailed results are described
in Supplementary Tables [10].

Previous Results from Pathway Analysis of AD GWAS

Prior to this study, six pathway analyses of AD GWAS have
been reported with five studies using the KEGG database
[4–9]. We compared our findings with the previous pathway
analyses of AD GWAS. All of the pathway analysis results
were publicly available from the original studies [4–9].

AD GWAS Dataset Preprocessing

ProxyGeneLDwas used to assign SNPs to specific genes [12].
This software flexibly takes into consideration the complex
linkage disequilibrium (LD) patterns in the human genome
and corrects for the inflation of significance caused by gene
length. In brief, ProxyGeneLD begins with the retrieval of LD
structures in the HapMap genotyping data (Utah residents
with ancestry from northern and western Europe (CEU) sam-
ples of HapMap phase II, release 22) [12]. If a group of
markers is in high LD in HapMap (r2>0.8), they are tied to
a “proxy cluster” and taken as a single signal [5]. Next, each
marker in the AD GWAS with statistically significant
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evidence of association is evaluated to see whether (a) it
belongs to any proxy cluster and (b) whether the marker itself
or any marker in the cluster is located in a genetic region [5]. If
a marker or cluster overlaps a region extending across a gene,
then it is assigned as showing possible association with that
gene. For more detailed algorithms, please refer to the original
study [12].

AD Brain Expression GWAS Datasets Preprocessing

Here, we selected the 197 AD cerebellar case samples and 202
AD temporal cortex case samples from Zou et al. [10]. For
each dataset, we selected cisSNPs associated with gene ex-
pression with P<1.0E−4 and with AD risk with P<1.0E−3 in
the meta-analysis of the Alzheimer’s Disease Genetic Consor-
tium (ADGC) dataset [10]. In the end, we selected 3660 cis-
SNPs associated with the expression of 298 genes in the
cerebellum and 3659 cisSNPs associated with the expression
of 298 genes in the temporal cortex. More detailed results are
described in Supplementary Tables from the original study
[10].

Pathway-Based Testing for AD Genes

The KEGG pathways in WebGestalt were used in our
research (May 10, 2014) [13]. For a given pathway, a
hypergeometric test was used to detect the overrepresen-
tation of AD-related genes among all of the genes in the
pathway [13]. The P value of K AD-related genes in the
pathway was calculated using

P ¼ 1−
X

i¼0

K
S
i

� �
N−S
m−i

� �

N
m

� �

where N is the total number of genes of interest, S is
the number of all of the AD-related genes, m is the
number of genes in the pathway, and K is the number
of AD-related genes in the pathway. The FDR method
was used to correct for multiple testing. Any pathway
with an adjusted P<0.05 and at least five upregulated or
downregulated AD genes was considered significant. In
order to reduce the multiple-testing issue and to avoid
testing overly narrow or broad pathways, we selected
pathways that contained at least 20 and at most 300
genes for subsequent analysis.

Pathway-Based Meta-analysis of AD GWAS and Brain
Expression GWAS

We used Fisher’s method to combine the P values for each
pathway identified in AD GWAS and AD brain expression

GWAS [14]. For a given pathway, the formula for the statistic
is

x2 ¼ −2
X

i¼ 1

k

ln pið Þ

where pi is the P value of the pathway in the ith study
and k is the total number of studies. x2 follows a chi-
square distribution with 2k degrees of freedom [14]. The
pathway-based meta-analysis was carried out using the
program R (http://www.r-project.org/).

Results

Pathway Analysis of GERAD GWAS

Using the AD GWAS, we found 320 AD genes using
ProxyGeneLD. After FDR correction for multiple testing,
we identified 14 significant KEGG pathways (P<0.05)
with at least five AD genes, among which CAM
(hsa04514) was the most significant pathway (Table 1).
Nine of the 133 genes in the CAM pathway were identi-
fied. We also observed a significant overrepresentation of
KEGG pathways related to metabolism (metabolic path-
ways and purine metabolism), cardiovascular diseases
(dilated cardiomyopathy, arrhythmogenic right ventricular
cardiomyopathy (ARVC), and hypertrophic cardiomyopa-
thy (HCM)), and neurological disorders (Alzheimer’s dis-
ease and Huntington’s disease) (Table 1).

Pathway Analysis of Brain Expression GWAS Datasets

We got 425 AD genes regulated by cisSNPs in the cere-
bellar or temporal cortex. After FDR correction, we iden-
tified 20 significant KEGG pathways (P<0.05), which
included at least five AD genes (Table 2). We found a
significant overrepresentation of KEGG pathways related
to the immune system and diseases, neurodegenerative
diseases and cardiovascular diseases, metabolism, and
genetic and environmental information processing. The
antigen processing and presentation and CAM pathways
were the most and the second significant signals
(Table 2).

Pathway-Based Meta-analysis of AD GWAS and Brain
Expression GWAS

We combined the findings from the AD GWAS and the AD
brain expression datasets. Using pathway-basedmeta-analysis
and FDR correction for multiple testing, we identified CAM
(hsa04514) and antigen processing and presentation to be the
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most and the second significant signals (Table 3). Here, we list
the top 20 significant pathways (Table 3). Based on the KEGG
classifications, these pathways can be divided into six main
classes: immune system and diseases (n=8), cardiovascular
disease (n=4), environmental information processing (n=2),
metabolism (n=2), neurodegenerative system and disease (n=
2), cellular processes (n=1), and infectious diseases (n=1)
(Table 3).

Comparison with Previous Studies Using Single GERAD
GWAS and Other GWAS

Jones et al. [6] analyzed the GERAD GWAS and reported
six immune system-related pathways including asthma
(hsa05310), hematopoietic cell lineage (hsa04640), graft-
versus-host disease (hsa05332), allograft rejection
(hsa05330), autoimmune thyroid disease (hsa05320), and
type I diabetes mellitus (hsa04940). Here, we confirmed
these six pathways, which were all ranked to be top 20
significant signals (Table 3). Meanwhile, we identified
another two immune pathways including antigen process-
ing and presentation (hsa04612) and systemic lupus ery-
thematosus (hsa05322). Previous pathway analysis using
French AD GWAS reported weak association between
antigen processing and presentation (hsa04612) and AD
with P=0.02 [4]. Here, we identified it to be the second
and significant signals with P=1.87E−07 (Table 3).

We previously integrated three previous large-scale AD
GWAS including GERAD GWAS using a gene-based meta-
analysis and subsequently conducted a pathway analysis [9].
We highlighted, for the first time, the involvement of cardio-
vascular disease-related pathways in AD [9]. There are four
pathways related to cardiovascular disease in the KEGG
database including viral myocarditis (hsa05416), dilated
cardiomyopathy (hsa05414), hypertrophic cardiomyopa-
thy (hsa05410), and arrhythmogenic right ventricular
cardiomyopathy (hsa05412). In our research, we identi-
fied all the four pathways to be significantly associated
with AD, among which viral myocarditis was the third
significant signal with P=7.79E−07 (Table 3). After
careful comparison with previous pathway analyses of
AD GWAS [4–9], we reported, for the first time, the
involvement of the purine metabolism (hsa00230) path-
way in AD, which is the eighth significant signal in
Table 3. More detailed comparison results are described
in Table 3.

Discussion

Recently, multiple AD GWAS have been conducted. In this
research, we consider CAM to be a consistent signal in mul-
tiple AD GWAS. We analyzed the GERAD GWAS and AD
brain expression GWAS. We identified the involvement of
CAM in AD by pathway analysis of the AD GWAS and AD
brain expression GWAS. Based on previous and our results

Table 1 Significant KEGG pathways with P<0.05 in the AD GWAS dataset

Pathway ID Pathway name C O E R rawP adjP Gene ID

hsa04514 Cell adhesion molecules (CAMs) 133 9 0.99 9.12 7.41E−07 1.04E−05 3122 1002 9369 26285 3118
5817 5819 1462 4756

hsa05414 Dilated cardiomyopathy 90 6 0.67 8.98 5.87E−05 3.00E−04 6262 22801 108 3674 10369 6444

hsa05010 Alzheimer’s disease 167 8 1.24 6.46 3.84E−05 3.00E−04 348 4722 2776 6868 3709
841 25825 1340

hsa05416 Viral myocarditis 70 5 0.52 9.63 2.00E−04 4.00E−04 3122 3118 841 4626 6444

hsa05412 Arrhythmogenic right ventricular
cardiomyopathy (ARVC)

74 5 0.55 9.11 2.00E−04 4.00E−04 6262 22801 3674 10369 6444

hsa04080 Neuroactive ligand-receptor interaction 272 9 2.02 4.46 2.00E−04 4.00E−04 2890 9340 1138 2898 9934
53829 8001 1136 1143

hsa00230 Purine metabolism 162 7 1.2 5.82 2.00E−04 4.00E−04 5144 29922 2977 5315 5152
108 5142

hsa05410 Hypertrophic cardiomyopathy
(HCM)

83 5 0.62 8.12 4.00E−04 7.00E−04 6262 22801 3674 10369 6444

hsa04270 Vascular smooth muscle contraction 116 5 0.86 5.81 1.80E−03 2.50E−03 5581 2776 3709 2977 108

hsa04020 Calcium signaling pathway 177 6 1.31 4.57 2.20E−03 2.80E−03 6262 814 2185 2776 3709 108

hsa04360 Axon guidance 129 5 0.96 5.22 2.80E−03 3.30E−03 8829 57144 10725 84448
57522

hsa05016 Huntington’s disease 183 5 1.36 3.68 1.21E−02 1.30E−02 23186 4722 2776 841 1340

hsa04060 Cytokine-cytokine receptor interaction 265 6 1.97 3.05 1.47E−02 1.47E−02 3626 8809 91 3556 8807
83729

C the number of reference genes in the category,O the number of genes in the gene set and also in the category, E expected number in the category, R the
ratio of enrichment, rawP the P value from hypergeometric test, adjP the P value adjusted by the multiple test adjustment
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from pathway analysis of AD GWAS, CAM is a consistent
signal in the French [4], Pfizer [4], ADNI [8], GERAD [11],
and AD brain expression GWAS [10]. Meanwhile, we com-
bined the findings from the AD GWAS and the AD brain
expression GWAS datasets by a pathway-based meta-analysis
method.We further identified CAM (hsa04514) to be the most
significant signal (Table 3). In addition to the CAM, we
identified significant pathways related to immune system
and diseases, cardiovascular disease, metabolism, neurode-
generative system and disease, cellular processes, and infec-
tious diseases. We confirmed previous findings and highlight-
ed the purine metabolism pathway (hsa00230) in AD for the
first time, which is the eighth significant signal in Table 3.

Until now, the exact pathogenetic role of purine metabo-
lism in AD is still unknown. Kaddurah-Daouk et al. [15] used
targeted metabolomics platform to profile cerebrospinal fluid
from 40 AD, 36 mild cognitive impairment (MCI), and 38
control subjects. Levels of 71 metabolites, including 24
known compounds quantified by the liquid chromatography
electrochemical array (LCECA) platform, were measured.
There are six known compounds in purine metabolism

including guanosine, hypoxanthine, uric acid, xanthine,
xanthosine, and paraxanthine. The results showed that AD
subjects had elevated xanthosine versus controls [15]. MCI
subjects had elevated hypoxanthine and uric acid versus con-
trols. Metabolite ratios revealed changes of uric acid/xanthine,
xanthine/hypoxanthine, and xanthine/xanthosine within the
purine pathway. A partial correlation network showed total
tau most directly related to purine pathway [15]. These find-
ings indicate that AD is associated with an overlapping pattern
of perturbations in the purine pathway [15].

In addition to the AD, the involvement of purine metabo-
lism in other neurodegenerative diseases has been reported.
Johansen et al. [16] compared plasma profiles from people
with idiopathic Parkinson’s disease (PD) and those whose
disease was due to amutation in LRRK2, aswell as nonrelated
control subjects. Although the two PD categories sharedmuch
in common, the profile of a dozen mostly unknown metabo-
lites was sufficient to distinguish them. Levels and ratios of
some purine metabolites, such as uric acid, hypoxanthine, and
xanthine, were significantly decreased in both kinds of PD
patients, when compared to control subjects [16].

Table 2 Significant KEGG pathways with P<0.05 in AD brain expression GWAS datasets

Pathway ID Pathway name C O E R rawP adjP Gene ID

hsa04612 Antigen processing and presentation 76 10 0.75 13.35 4.16E−09 9.98E−08 3821 3122 3308 3119 3823 6891
3107 3112 3822 3127

hsa04514 Cell adhesion molecules (CAMs) 133 11 1.31 8.39 9.63E−08 1.16E−06 3122 80380 5819 3119 923 3385
29126 3107 3112 3127 1366

hsa05332 Graft-versus-host disease 41 6 0.4 14.85 2.97E−06 2.38E−05 3821 3122 3107 3119 3112 3127

hsa05416 Viral myocarditis 70 7 0.69 10.15 6.03E−06 3.62E−05 3122 3107 8735 637 3119 3112 3127

hsa04145 Phagosome 153 9 1.51 5.97 2.30E−05 1.00E−04 3122 23480 3119 6891 3107 78989
1311 3112 3127

hsa05330 Allograft rejection 37 5 0.36 13.71 3.05E−05 1.00E−04 3122 3107 3119 3112 3127

hsa04940 Type I diabetes mellitus 43 5 0.42 11.8 6.42E−05 2.00E−04 3122 3107 3119 3112 3127

hsa05322 Systemic lupus erythematosus 136 8 1.34 5.97 6.54E−05 2.00E−04 3122 8361 3119 8364 8343 89
3127 3112

hsa05320 Autoimmune thyroid disease 52 5 0.51 9.76 2.00E−04 5.00E−04 3122 3107 3119 3112 3127

hsa05010 Alzheimer’s disease 167 8 1.65 4.86 3.00E−04 7.00E−04 6390 840 4707 637 517 4137
4311 2081

hsa03018 RNA degradation 71 5 0.7 7.15 7.00E−04 1.30E−03 22803 118460 1656 167227 2027

hsa05140 Leishmaniasis 72 5 0.71 7.05 7.00E−04 1.30E−03 3122 3119 3112 1378 3127

hsa04640 Hematopoietic cell lineage 88 5 0.87 5.77 1.80E−03 3.10E−03 3122 952 1378 3127 4311

hsa04650 Natural killer cell mediated cytotoxicity 136 6 1.34 4.48 2.40E−03 3.60E−03 3821 10451 3107 637 3823 3822

hsa05016 Huntington’s disease 183 7 1.8 3.88 2.40E−03 3.60E−03 1742 6390 84699 4707 5441
7802 517

hsa00240 Pyrimidine metabolism 99 5 0.98 5.13 3.00E−03 4.20E−03 5441 50484 51082 30834 5557

hsa04916 Melanogenesis 101 5 1 5.02 3.30E−03 4.40E−03 109 7479 84699 1638 8325

hsa00230 Purine metabolism 162 6 1.6 3.76 5.60E−03 7.10E−03 109 5441 50484 51082 30834 5557

hsa04510 Focal adhesion 200 6 1.97 3.04 1.48E−02 1.78E−02 10451 50509 5906 1290 1311 89

hsa04020 Calcium signaling pathway 177 5 1.74 2.87 3.15E−02 3.60E−02 109 952 2769 777 148

C the number of reference genes in the category,O the number of genes in the gene set and also in the category, E expected number in the category, R the
ratio of enrichment, rawP the P value from hypergeometric test, adjP the P value adjusted by the multiple test adjustment
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LeWitt et al. [17] analyzed cerebrospinal fluid (CSF) con-
centrations of homovanillic acid (the major catabolite of do-
pamine) and the purine compound xanthine for a comparison
of 217 unmedicated PD subjects and 26 healthy controls. The
xanthine/homovanillic acid ratio is different between PD cases
and controls. The mean xanthine/homovanillic acid quotient
from controls was 13.1±5.5 as compared to the PD value of
17.4±6.7 at an initial lumbar CSF collection (P=0.0017), and
19.7±8.7 (P<0.001) at a second CSF collection up to
24 months later. These observations further provide neuro-
chemical evidence that links purine metabolism to PD [17].

Here, a hypergeometric test was used for pathway analysis.
We set a high threshold (P≤1.00E−03) for the inclusion of
SNPs or cisSNPs, similar to Lambert and Jones et al. [4, 6].
Evidence suggests that using a stringent P value (P≤1.00E
−03) to define associated SNPs will accurately test whether
highly associated SNPs are enriched in a pathway [18]. Jia
et al. [19] suggested that a hypergeometric test performs better
and with a higher power than gene set enrichment analysis
(GSEA) or a SNP ratio test (SRT) for gene sets consisting of
markers that are highly associated with the disease (P≤1.00E
−03).

In this study, we used the pathway-based meta-analysis
method to integrate AD GWAS and expression datasets, as
this method is widely used in previous studies. Arasappan
et al. [20] applied a pathway-based meta-analysis into four
independent gene expression datasets to identify gene expres-
sion signatures for systemic lupus erythematosus, and identi-
fied a 37-gene expression signature for systemic lupus erythe-
matosus in human peripheral blood mononuclear cells. In
order to combine the results from different analyses, Kaever
et al. [21] introduce a methodical framework for the meta-
analysis of P values obtained from pathway enrichment anal-
ysis (set enrichment analysis based on pathways) of multiple
dependent or independent data sets from different omics plat-
forms. Shen et al. [22] proposed two approaches of meta-
analysis for pathway enrichment by combining statistical sig-
nificance across studies at the gene level or at the pathway
level. They applied these methods into real data on drug
response of breast cancer cell lines and lung cancer tissues
[22].

Here, we selected the pathways from the KEGG database,
but not the GO database, for pathway analysis based on the
following considerations. KEGG database is manually com-
piled on the basis of biological evidence and does not have a
hierarchical structure [4, 6]. The GO database is based mainly
on computer predictions as well as human annotation [4, 6].
The GO database has a hierarchical structure. GO analysis
typically assumes that each functional category is indepen-
dent, and less than 1 % of the GO annotations have been
confirmed experimentally [4, 6].

Despite these interesting results, we recognize some limi-
tations in our study. First, we selected expression datasets

from the human cerebellum and temporal cortex. We will
further verify our findings using expression data from other
human brain tissues such as the frontal cortex, hippocampus,
prefrontal cortex, and visual cortex in subsequent studies.
Second, for many long genes in the CAM pathway,
multiple-testing corrections may not be sufficient to account
for all biases. The results from the GERAD GWAS should be
adjusted using a permutation test. However, the original SNP
genotype data are not available to us, so future replication
studies using genotype data are required to replicate our
findings.

Collectively, our integrated analysis shows that (1) CAM is
a consistent signal in five AD GWAS, (2) CAM is the most
significant signal in AD, (3) we confirmed previous findings,
and (4) we highlighted the purine metabolism pathway
(hsa00230) in AD for the first time.We believe that our results
may advance our understanding of AD mechanisms and will
be very informative for future genetic studies in AD.
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