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Abstract Alzheimer’s disease (AD) is a highly heritable
disease (with heritability up to 76 %) with a complex
genetic profile of susceptibility, among which large
genome-wide association studies (GWASs) pointed to
the phosphatidylinositol-binding clathrin assembly protein
(PICALM) gene as a susceptibility locus for late-onset
Alzheimer’s disease (LOAD) incidence. Here, we summa-
rize the known functions of PICALM and discuss its
genetic polymorphisms and their potential physiological
effects associated with LOAD. Compelling data indicated
that PICALM affects AD risk primarily by modulating
production, transportation, and clearance of β-amyloid
(Aβ) peptide, but other Aβ-independent pathways are
discussed, including tauopathy, synaptic dysfunction, dis-
organized lipid metabolism, immune disorder, and
disrupted iron homeostasis. Finally, given the potential
involvement of PICALM in facilitating AD occurrence
in multiple ways, it might be possible that targeting
PICALM might provide promising and novel avenues
for AD therapy.
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Introduction

As the most common cause of senile dementia, Alzheimer’s
disease (AD) has been increasingly known as a prominently
global health issue. AD has been classified into two major

forms: the early-onset type (<65 years of age) and late-onset
type (LOAD; >65 years of age). Its etiology and trajectory can
be characterized as a complex interaction effect between en-
vironmental and genetic factors [1–4]. For the genetic realm
specifically, mutations in multiple loci have been associated
with risk of developing AD of two forms. Rare but usually
highly penetrant mutations of genes encoding amyloid pre-
cursor protein (APP) [5], presenilin 1 (PSEN1) [6], and
presenilin 2 (PSEN2) [7] have been established as the suscep-
tibility genes for rare, Mendelian form of the disease, while
apolipoprotein allele epsilon 4 (APOE4) is convincingly con-
sidered a risk gene for a more common form of the disease
(namely LOAD) [8, 9]. However, it has been estimated that
the contribution from APOE4 may account for just less than
20% of LOAD risk [10]. Also, with 65% sensitivity and 68%
specificity, the diagnostic implication of APOE4 for LOAD is
to some extent constrained [11]. In this context, an array of
large genome-wide association studies (GWASs) according to
the AlzGene database (http://www.alzgene.org/geneoverview.
asp?geneid=636) have been conducted, pinpointing several
novel susceptibility loci, which altogether contribute to the
genetic mapping of etiology of AD along with APOE4 despite
that “genetic dark matter” still exists [12].

Among them, the gene encoding phosphatidylinositol-
binding clathrin assembly protein (PICALM; source: HGNC
Symbol; Acc: 15514) [13] has been considered to be one of
the numerous reproducible risk genes for LOAD [14], despite
with disputable results when it comes to concrete single
nucleotide polymorphism (SNP) locus. A large, two-stage
meta-analysis has showed that the population attributable
fraction [15] of one specific SNP at PILACM (rs10792832)
is estimated as 5.3 %, just next to the APOE4 (27.3 %) and
BIN1 (8.1 %) [16]. Also, rs3851179, which is the initial SNP
at PICALM identified to be associated with AD risk, has been
listed in top results (http://www.alzgene.org/TopResults.asp,
April 2011) despite as a protective locus in Caucasian
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ethnicity (odd ratio (OR)=0.879, 95 % confidence interval
(CI)=0.86–0.9, p value=2.85E−20). Accordingly, we can
make a preliminary postulation that PICALM may play a
certain role in AD. It is thus worthy to gain better
knowledge of PICALM for further advance in treatment and
prevention of the disease.

In this manuscript, we will review PICALM from perspec-
tives of biochemical properties and genetics. Special emphasis
will be put on discussing potential pathways of PICALM
involved in AD. Finally, we will probe into the therapeutic
significance of PICALM for AD.

Biochemical Properties of PICALM

PICALM which contains 112 kb is located on chromosome
11q14 (ENSG00000073921, chromosome 11: 85,668,727–
85,780,924 reverse strand) (Fig. 1), encoding a protein also
known as clathrin assembly lymphoid myeloid leukemia pro-
tein [17]. There are at least 14 transcripts which contain an
open reading frame (ORF) of PICALM according to Ensembl
Genome (http://www.ensembl.org) and Vega Genome
database (http://vega.sanger.ac.uk), despite disparity in total
number of spliced variants exists.

PICALMhas been reported to be expressed ubiquitously in
multiple vertebrate species, tissues, and cells [18]. In central
nervous system [19], presence of PICALMhas been identified
in neurons, astrocytes, and oligodendrocytes [20–23]. How-
ever, a recent study employing immunolabling technology
found that PICALM predominately exists in endothelial cells
of vascular walls, with weak labeling in neurons and glial cells
[24]. Otherwise, it was found in APP/PS1 mice that the

expression of PICALM colocalized with APP in neurons
[25]. Further elucidation of the distribution characteristics of
the protein especially under Alzheimer’s pathological condi-
tions may help us investigate its roles in AD pathogenesis.

PICALM was initially implicated to be involved in acute
myeloid leukemia and acute lymphoblastic leukemia by cre-
ating a PICALM/AF10 fusion gene through a rare transloca-
tion (t(10;11)(p13;q14)) [26, 27]. In addition to potential roles
in growth, haematopoiesis and iron metabolism [18, 28, 29],
the gene product (PICALM) play a major role in clathrin-
mediated endocytosis (CME) [20], a process which is further
associated with modulation of protein component of the plas-
ma membrane, management of the distribution of the recep-
tors, removal of apoptotic cells, promotion of sustained neu-
rotransmission [30] as well as the APP metabolism [31, 32],
which may be pivotal in AD pathological formation.

CME is virtually a receptor-mediated endocytosis (RME)
which transports ligands binding the receptor from extracel-
lular matrix to the cytoplasmic environment [22]. The cargo
list is not homogeneous (such as proteins, lipids, growth
factors, and neurotransmitters) [33]. There is a basic procedure
in CME (Fig. 2): after receiving the signal derived from
binding of target ligand to specific receptor on cell membrane,
clathrin triskelions and adaptor protein 2 (AP-2) assemble to
bind to the C-terminal region of PICALM on the cytoplasmic
side of membrane while the N-terminal region of PICALM
binds to phosphatidylinositol-4,5-bisphosphate (PIP2), which
is located in the plasma membrane. The binding then leads to
the formation of clathrin coating which consists of polyhedral
lattices of clathrin network and eventually the deformation of
membrane (invagination). Afterward, the newly formed
clathrin-coated vesicles (CCVs) segregate from the cell

Fig. 1 Schematic of PICALM.
PICALM structure spans 112 kb
(85,668,727–85,780,924 bp) on
chromosome 11q14 (hg19) and
encodes 20 exons (represented by
orange boxes). The most
replicated SNP (rs3851179)
associated with AD risk at
87.716 kb to 5′ terminal of
PICALM is highlighted on this
figure, which is depicted based on
data from NCBI Gene database
(http://www.ncbi.nlm.nih.gov/)
and UCSC Genome
Bioinformatics (http://genome.
ucsc.edu)
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membrane and enter into the cell plasma, after which the
clathrin cage disintegrates (the process is called uncoating,
which is a prerequisite for the vesicle to fuse with other
membranes), rendering the coat components free to return to
cell membrane and available for another round of CME, and
fusion with either endosomes or lysosomes occurs subse-
quently, through which the internalized target ligands are
modified or degraded [34].

Additionally, CCVs are also involved in intracellular
movement of macromolecules. These processes are employed
by synaptic vesicles (SV) and facilitate a rapid communication
pathway between neurons [35]. Also, PICALM has been
implicated in modulating the size of CCVs and endosomes
[36], which has been found aberrant in the context of AD [37].
Obviously, a better knowledge of effects of PICALM on
physiological processes may promote our understanding its
roles in AD pathogenesis.

Genetics of PICALM Gene in AD

In 2009, Harold et al. first reported in a large (recruiting over
16,000 individuals) two-stage GWAS of AD that a specific

SNP (rs3851179), at 5′ to the PICALM gene, is significantly
associated with AD risk in both stages (p value=1.9×10−8,
1.3×10−9, respectively; OR=0.86) [38]. Moreover, numerous
case–control GWASs have been subsequently published, un-
ambiguously verifying the association between various
PICALM loci and LOAD risk in the Caucasian population
[39–44] (Table 1). However, inconformity of the replication
results occurred when the initial SNP (rs3851179) was inves-
tigated in Asian population (Table 2). For example, in Han
Chinese population with a sample size of 1,065 [45], 609 [13],
2,486 [46], and 2,292 [47], respectively, researchers failed to
identify the association between rs3851179 and AD risk either
from allele frequency or genotypic association analysis.
Among others, Chen reported that the association between
LOAD and rs3851179 can only be observed in APOE epsi-
lon4 (−) subgroup [48], which is against the proposition that
APOE4 and PICALM (rs3851179) synergistically confer risk
to AD [49, 50]. On the other hand, Liu attributed these
replication failures to two basic reasons: (1) the genetic het-
erogeneity among different populations [51] and (2) the lim-
ited sample size compared with that in Caucasian descent
[52]. Consistent with which Liu observed no obvious genetic
heterogeneity of rs3851179 polymorphism between

Fig. 2 Basic procedure in CME. After receiving the signal derived from
binding of target ligand to specific receptor on cell membrane, clathrin
triskelions and adaptor protein 2 (AP-2) assemble to bind to the C-
terminal region of PICALM on the cytoplasmic side of the membrane
while the N-terminal region of PICALM binds to phosphatidylinositol-
4,5-bisphosphate (PIP2), which is located in the plasma membrane,
leading to the formation of clathrin coating which consists of polyhedral
lattices of clathrin network and eventually the deformation of membrane

(invagination); then the newly formed clathrin-coated vesicles (CCVs)
segregate from the cell membrane and enter into the cell plasma after
which the clathrin cage disintegrates, which is called uncoating (a pre-
requisite for the vesicle to fuse with other membranes), rendering the coat
components free to return to cell membrane and available for another
round of CME, and fusion with either endosomes or lysosomes occurs
subsequently, through which the internalized target ligands are modified
or degraded
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Caucasian and Asian population and reported significant as-
sociation with LOAD via pooled analysis and meta-analysis
approach [52]. Also, this polymorphism was also investigated
in a Japanese population with a result indicating a weak
association (p=0.02) [53].

Otherwise, it has been suggested that spurious association
may derived from the intervention of APOE4 status with a
robust association with AD [54], suggesting that we are sup-
posed to adjust APOE4 status in the GWA studies of AD.
However, it is still inconclusive whether there exits an

Table 1 Association between PICALM and AD in Caucasian populations

SNPs Case/control OR (95 % CI) p value Population type References

rs17159904 549/544 – 0.04243 Caribbean Hispanic ancestry [39]
rs541458 0.36300

rs543293 0.72240

rs7941541 0.73180

rs3851179 0.32050

rs3851179 349/359 0.98 (0.79–1.22) 0.85 Italy [40]

rs541458 561/521 0.85 (0.71–1.01) 6.8×10−2 Finland [41]
1,460/1,257 0.78 (0.69–0.88) 5.1×10−5 Italy

723/819 0.81 (0.69–0.95) 1.1×10−2 Spain

2,816/2,706 0.80 (0.74–0.88) 4.6×10−7 Meta-analysis of three populations above

rs3851179 342/277 1.387 (1.091–1.764) 7.4×10−4 Caucasian, African American, and others [42]

rs541458 1,322/1,338 0.890 (0.832–0.953) 0.087 Caucasian Americans [43]
rs3851179 1,328/1,337 0.889 (0.833–0.949) 0.071

rs541458 7,288/14,509 0.876 (0.838–0.915) 3.48×10−9 Caucasian Americans
rs3851179 7,294/14,508 0.880 (0.844–0.918) 3.35×10−9

rs10501602 1,291/958 0.7217 0.0102 Caucasian Americans [44]
rs10792820 – –

rs694011 – –

rs609903 – –

SNP single nucleotide polymorphism, OR odds ratio, CI confidence interval

Table 2 Association between PICALM and AD in Asia populations

SNPs Case/control size Allele, genotype, or models OR (95 % CI) p value Population type References

rs3851179 266/343 Dom 0.85 (0.60–1.19) 0.33 Han Chinese [13]
Rec 0.79 (0.46–1.35) 0.39

Add 0.86 (0.67–1.11) 0.26

rs3851179 474/591 AA 0.954 (0.632–1.440) 0.822 Han Chinese [45]
AG 0.987 (0.758–1.296) 0.948

GG – –

AA+AG 0.984 (0.760–1.275) 0.905

GG – –

rs3851179 1,197/1,275 – – 0.69 Han Chinese [46]

rs149406961 1,133/1,159 – – 0.001 Han Chinese [47]
rs592297 1.364 (1.020–1.824) 0.037

rs76710109 Dom 0.625 (0.424e0.922) 0.216

Add 0.728(0.549e0.966) 0.336

rs3851179 550/407 G 0.98 (0.80–1.20) 0.840 Southern Chinese population [50]
76/56 AA 0.94 (0.70–1.26) 0.679

rs541458 439/338 C 0.97 (0.79–1.18) 0.747

112/92 CC 1.02 (0.75–1.41) 0.882

rs3851179 825/2,934 – 1.23 (1.03–1.47) 0.02 Japanese population [51]

SNP single nucleotide polymorphism, OR odds ratio, CI confidence interval, Dom dominant model, Rec recessive model, Add additive model
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interaction between PICALM and APOE4 status in influenc-
ing the risk of AD [53, 13, 48, 50]. Nevertheless, given that
many common contributing genes (including PICALM) con-
fer large effects in aggregate but small effects singly, more
comprehensive analysis and studies with larger sample size
are therefore needed to elucidate the genuine association
between PICALM gene and AD risk in disparate ancestries.
Similarly, it is worthy to note that the effects of concomitant
presence of different alleles (such as PICALM and APOE4
[50], PICALM and BIN1 [55]) or SNPs, which is called multi-
locus genotype patterns (MLGPs), on the prediction effect of
AD-related phenotype as well as reduction of sample sizes
needed to detect therapeutic efficacy [56] may be more sig-
nificant than single locus alone [57–59]. These MLGPs may-
be naturally derived from epistatic genetic effect or being
located in a haplotype block, providing an alternative analyt-
ical approach for LOAD genetic risk as well as an avenue for
preclinical diagnosis of AD.

Moreover, in addition to genetic heterogeneity and sample
size, the ascertainment bias derived from classification meth-
od has also been implicated in influencing the effect size of
case–control genetic study [60]. Similarly, a confounding
factor inherent in the case–control GWASs design and derived
from the potential interference of normal individuals with a
long clinical silent prodromal phase has been proposed [61].
To address this confound, one approach is to use the
endophenotype based on the neuroimaging data. Despite
some contradictory [62], PICALM has been found to be sig-
nificantly associated with hippocampal volume [63, 64] and
entorhinal cortex thickness (ECT) [61, 64], both of which is
unequivocally affected by AD-related neurodegeneration. Ad-
ditionally, PICALM has also been linked to the earlier age at
onset (AAO), which is a specific clinical phenotype of AD
[65, 66].

To verify the potential mechanisms underpinning the
GWAS-validated association between PICALM and

LOAD risk and to translate them into meaningful clinical
predictors or therapies, great amounts of studies have
focused on investigating association between PICALM
and phenotypes relevant to AD such as specific anatom-
ical changes [61, 63, 64], rate of cognitive decline
[67–71], or progression of the disease (such as AAO)
(Table 3). For example, it has been found that a higher
PICALM rs3851179 A allele frequency was consistently
but weakly associated with better cognitive functioning in
nondemented old men [68, 72] while Sweet et al. reported
an association between PICALM and an earlier age at
midpoint of cognitive decline [70]. Still, some disagree-
ments exist [67, 69, 73].

On the other hand, two novel SNP loci at PICALM,
rs561655 (p value=1×10−7), which is within a putative
transcription factor binding site, and rs592297 (p val-
ue=2×10−7), which is a synonymous SNP in exon 5
that may influence a predicted exon splicing enhancer
(ESE) sequence, had been highlighted [74]. The associ-
ation with LOAD risk for rs561655 has been confirmed
subsequently [75, 76]. In addition, a recent study aiming
to examine the coding sequence of PICALM reported
that rs592297 is in robust linkage disequilibrium (LD)
with rs3851179 and deserved further investigation for its
functional significance in AD [77].

Potential Pathways Underpinning Roles of PICALM
in AD

Potential pathways underpinning roles of PICALM in
AD can be roughly sorted into two classifications:
amyloid-β (Aβ)-dependent (Fig. 3) and (Aβ)-indepen-
dent way (Fig. 4). The latter includes tauopathy, syn-
aptic dysfunction, disorganized lipid metabolism, im-
mune disorder, and disrupted iron homeostasis. Even

Table 3 Associations between PICALM and phenotypes relevant to AD

SNPs Phenotype Data source p value References

rs17148741 HV African American 9.4×10−5 [63]

rs3851179 HV USA and Canada 0.04 [64]
ECT 0.01

ENSG00000073921 ECT Finland, Italy, Greece, UK, Poland, and France 6.7×10−6 [61]

rs2888903 AAO of AD Patients with DS 0.011 [65]
rs7941541 0.016

rs10751134 0.040

rs3851179 AAO of AD ADC cohorts 0.0086 [66]

rs3851179 Cognitive function Danish birth cohort study 0.016 [68]

rs541458 Earlier age at midpoint of cognitive decline Caucasian – [70]

HV hippocampal volume, ECT entorhinal cortex thickness, AAO age at onset, ADAlzheimer’s disease, DS Down syndrome, ADC Alzheimer’s Disease
Center
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though the concrete molecule mechanism by which
PICALM acts in AD is still an enigma, the identifica-
tions of association between PICALM and molecular
pathways contributing to etiology of AD have been
suggestive of promising research targets and potential
intervention approaches.

Aβ Dependent Role of PICALM in AD

Role of PICALM in Amyloidogenesis

According to the amyloid cascade hypothesis, senile plaque
(SP), which is composed of aggregated Aβ peptides has been

Fig. 3 Aβ-dependent role of
PICALM in AD. PICALM may
facilitate not only the production
of Aβ peptide via endocytosis
mechanism but also its clearance
via promoting autophagic process
of APP-CTF and facilitating
extracellular Aβ to cross the
vascular endothelial cells of the
blood–brain barrier (BBB)

Fig. 4 Aβ-independent role of
PICALM in AD. PICALM may
contribute to AD risk by
influencing lipid metabolism,
synaptic function, immune
disorder, and iron homeostasis
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considered to be a special biomarker of AD. Kok et al. sug-
gested that PICALM (T-allele) is marginally associated with
lower coverage of SP [78] while Chibnik et al. found no
association between PICALM (rs7110631) and deposition of
SP [67]. On the other hand, increasing studies suggestive of
the mismatch between total amyloid deposition and degree of
AD [79] or cognitive deficits [80] and the clinical failure of SP
treatment for patient’s cognitive ability [81] have to some
degree moved the focus from SP to the soluble oligomeric
Aβ, which has been indicated to play a key role in synaptic
alteration, abnormal tau phosphorylation, glial activation, and
neuronal loss in AD pathogenesis [82]. Moreover, PICALM
has been reported to contribute to amyloid plaque load by its
influence on Aβ metabolism in cell culture models and APP/
PS1 mice [25].

Aβ peptides are generated via sequential proteolysis of
APP, a transmembrane protein primarily found in neurons
[83], by BACE1/β-secretase and presenilin/γ-secretase com-
plexes during the course of its trafficking along the secretory
pathway, before which APP needs to be internalized through
endocytosis mechanism [84], which was mediated by
PICALM. In accordance with this theory, inhibition of endo-
cytosis [85] or PICALM expression [25] has been found to
result in the reduced APP internalization and diminished Aβ
release. Also, endocytosis has been reported to be blocked by
degradation of PICALM and AP-2 by calpain and caspase
protease, levels of which rise in the context of AD [86, 87].
Therefore, PICALM may function as a modulator for APP
uptake, trafficking and processing. Both the internalization
and intracellular transportation of APP have been identified
to bemodulated by several key APs such as PICALM andAP-
2 which synergistically act for bridging as well as targeting.

Apart from affecting the trafficking of APP and thus gen-
eration of Aβ peptide [25], PICALMhas also been reported in
yeast to be a protective modifier of Aβ toxicity itself [88].
Treusch et al. also found that Aβ can disturb the distribution
of clathrin and the endocytosis process, which can be partially
reversed by YAP1802 (yeast ortholog of mammalian
PICALM) but not the secretory pathway [88]. Nonetheless,
another subsequent yeast model in which Aβ in fusion with
GFP directly enters the secretory pathway made an opposite
conclusion, suggesting that Aβ toxicity depends upon
concrete form of Aβ as well as the presence of PICALM
[89]. Moreover, D'Angelo et al. found that Aβ toxicity is
detected only when it enters the secretory pathway and
disturbance of intracellular trafficking pathway diminishes
the toxicity triggered by Aβ chimeric proteins [89], in
consistency with the notion that PICALM can promote
the Aβ toxicity through modulating its intracellular trans-
portation during the secretory stage.

Furthermore, Ando et al. detected neither PICALM
immune reactivity relevant to the Aβ deposition in the
core of SP nor Aβ immune reactivity in PICALM

immunoprecipitates in a postmortem examination of hu-
man LOAD brain sample, suggesting that PICALM may
not directly impart influence on aggregated or oligomer-
ic Aβ peptide [90]. On the other hand, one possible
explanation of the contradictory conclusions about the
role of PICALM in Aβ toxicity is that there is another
process in which PICALM facilitates the inhibition of
Aβ toxicity or generation. In accordance with this hy-
pothesis, Treusch et al. suggested that Aβ toxicity is
observed only when a huge amount of this peptide is
produced [88]. Therefore, we can deduce that PICALM
may play a role in the restraining Aβ production, which
will be reviewed subsequently.

Role of PICALM in Clearance of Aβ Peptide

Autophagy (namely “self-eating”) is defined as a degra-
dation process by lysosome in which lipids, proteins,
and organelles get degraded, facilitating the homeostasis
in cell and metabolic balance between synthesis, degra-
dation, and subsequent turnover of cytoplasmic sub-
stances [91]. Autophagy has been implicated in the
regulation of the levels of Aβ peptides [92, 93]. Re-
cently, Tian et al. had proposed that the clearance of
Aβ peptides results from the degradation of the APP-
cleaved C-terminal fragment (especially APP-βCTF) via
autophagy [93] and more recently reported that
PICALM/AP-2 complex played a pivotal role in the
recognizing and shipping of APP-CTF from the
endocytic pathway to the LC3-marked autophagic deg-
radation process [94]. In other words, PICALM is in-
volved in inhibiting production of Aβ peptides through
promoting the transportation of APP-CTF from the plas-
ma membrane into the process which allows the fusion
of autophagosomes and endosomes, ultimately leading
to the degradation of APP-CTF in lysosomes and indi-
rectly precluding the generation of Aβ peptides [95].
These findings obviously link the PICALM to the pro-
tective role in ameliorating neurotoxicity triggered by
Aβ peptides and may explain the conflicting results
shown above (Fig. 3).

On the other hand, the transportation of Aβ peptides across
the blood–brain barrier (BBB) and into the bloodstream is the
major pathway for removal of extracellular Aβ peptides in
brain parenchyma. The distribution of PICALM has been
found to be primarily restricted to the endothelial cells [24],
suggesting a potential role of PICALM to participate in the
elimination of Aβ through BBB (Fig. 3) In line with this
theory, it has been suggested that rs541458 at PICALM was
associated with descending level of Aβ42 (two-tailed p val-
ue=0.002) in cerebrospinal fluid (CSF) [96]. However, con-
tradictory result about the association between PICALM and
Aβ42 in CSF exists [97].
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Aβ-Independent Role of PICALM in AD

PICALM and Tauopathy in AD

Apart from the Aβ peptide, another typical pathological bio-
marker of AD is neurofibrillary tangles (NFTs), which consist
of hyper-phosphorylated tau (p-tau) protein and further con-
tribute to formation of intracellular aggregates of paired heli-
cal filament (PHF) tau proteins. Both total tau (t-tau) and p-tau
levels are associated with neuronal degeneration and reported
to rise in the context of AD [98].

Despite the substantial importance of tauopathy in AD, a
number of studies have failed to identify the association
between PICALM and CSF t-tau protein level [96], CSF p-
tau at threonine 181 (p-tau181) [97], as well as NTFs in brain
[67, 78]. Also, a qualitative review including 17 studies sum-
marized that PICALM exhibits consistency in affecting level
of Aβ but not tau. However, it was suggested that CSF profile
combining Aβ1–42 and p-tau181 was linked to rs541458
(OR=0.68, 95 % CI=0.47–0.98) rather than rs3851179 [99].
Further, a recent study employing Western blotting analysis
indicated the association between PICALM and NFTs pathol-
ogy in individuals with LOAD, EOAD, and DS [90]. Also, it
was found that PHF tau proteins coimmunoprecipitated with
PICALM [90]. All these results are suggestive of the involve-
ment of PICALM in tauopathy of AD.

PICALM and Synaptic Function in AD

Biological synapse is the communication hub in the neural
network and performs its function by delivering the chemical
signal called neurotransmitter. In the presynaptic terminal,
neurotransmitter release via exocytosis starts with the integra-
tion of SV to the presynaptic membrane [100]. In addition,
soluble N-ethyl-maleimide-sensitive fusion protein attach-
ment protein receptor (SNARE) proteins (such as VAMP2,
the most abundant SV protein) provide the majority of
the energy and specificity needed in the SV fusion
[101], following which the retrieval of SV components
(such as VAMP2) is achieved via CME [102], which is
mediated by PICALM [20].

It has been demonstrated that the expression level of
PICALM can affect the amount of VAMP2 at the plasma
membrane by regulating endocytosis [103]. Moreover, Miller
et al. suggested that PICALM/SNARE interaction is the pre-
requisite for recycling of SNARE between the plasma mem-
brane and endosomes [104]. We can therefore infer that
PICALM may be associated with the synaptic function via
mediating the retrieval of VAMP2 which facilitates SV fusion
and thus the neurotransmitter release. Furthermore, Aβ has
been implicated in affecting the neurotransmitter release by
disturbing the complex formed byVAMP2 and synaptophysin
[105], bolstering the conflicting role of PICALM versus Aβ

peptide. It is therefore possible that PICALM acts as a protec-
tor for AD pathology in this specific manner.

In addition to affecting SNAREs at the presynaptic mem-
brane, PICALM has also been found to modulate the abundance
of alpha-amino-3-hydroxy-5-methyl-4-isoaxolepropionate
(AMPA) receptor subunit GluR2 at the postsynaptic membrane
by influencing its endocytic trafficking [106]. Interestingly,
GluR2 levels on the surface of the postsynaptic terminal are
closely associated with the intensity of synaptic transmission
[107]. Also, dysfunction of AMPA receptor has been suggested
as a culprit for AD incidence [108]. All these results strengthened
the association between PICALM and synaptic function in trig-
gering onset of AD.

PICALM and Lipid Metabolism in AD

Aberrant concentration of lipid molecules in AD tissues has
been previously reported [109–111] and lipoproteins apolipo-
protein E (ApoE) and apolipoprotein J (ApoJ) were associated
with AD via genetic and proteomic studies [112]. Additional-
ly, researchers showed that statins (lipid-lowering drugs such
as simvastatin) may confer protection to AD risk [113–115]
despite contentious argument [116]. Based on these findings
which provide strong evidences linking AD and high-density
lipoproteins and related proteins in plasma, it is therefore of
great importance to understand the etiology of AD from the
perspective of PICALM’s potential role in lipid metabolism.

Given that PICALM played a key role in CME (or RME)
and lipid is on the cargo list of trafficking, we can therefore
postulate that PICALM may be involved in affecting the lipid
metabolism and thus the AD risk by modulating its internal-
ization and transportation. To our knowledge, there seems to
be however little evidence-based studies suggestive of this
association [117, 118] and given the complicated picture of
the genetic influence (of PICALM and ABCA7 [119]) on
cholesterol transport, more in-depth studies warrant to validate
and bolster the association among PICALM, AD risk, and
lipid metabolism.

PICALM and Immune Disorder in AD

Virus infection hypothesis posits that virus infections contrib-
ute to the etiology of AD onset [120]. Particularly, compelling
pieces of evidence have been strongly suggestive of the asso-
ciation between herpes simplex virus 1 (HSV-1) and AD
[121–125].

Licastro et al. and Carter et al. proposed that the presence of
susceptibility genes associated with AD (such as PICALM)
leads to some vulnerability of HSV-1 invasion to CNS by
affecting immune defense ability and viral invasiveness, and
thus results in subsequent neuropathological insults, such as
neuronal loss, inflammation, and amyloid deposition [126,
127], suggesting the causative interaction among genes,
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pathogens, and the immune system in etiology of sporadic
AD. Similarly, PICALM has been linked also to HSV-1 life
cycle, suggesting that PICALM binds to receptors used by
HSV-1 for cellular entry, intracellular trafficking, and nuclear
egress [128]. On the other hand, it has been suggested that the
amino acid stretches (namely vatches) in proteins expressed
by HSV-1 are homologous to PICALM and other risk loci and
pathogens relevant to AD [129]. Accordingly, immune
response triggered by HSV-1 infection may target their
human counterparts, leading to protein knockdown and
neurons killing [129].

As an environmental risk factor, roles of HSV-1 and other
pathogens in AD etiology are increasingly coming into the
spotlight. However, the specific role and therapeutic signifi-
cance of PICALM in the virus infection hypothesis still war-
rants more investigations.

PICALM and Iron Homeostasis in AD

Mounting pieces of evidence have indicated the robust asso-
ciation between iron homeostasis and AD. For example,
Crespo et al. hypothesize that the aberrant level of systemic
iron status observed in AD patients owe much to an iron
homeostasis dysregulation and the intracellular iron accumu-
lation result in increased oxidative damage which would
contribute to AD [130]. In accordance with this hypothesis,
it has been found that huperzine A (an anti-AD drug in China)
inhibits the rising level of iron in CNS, as well as the expres-
sion of transferrin-receptor 1 and the transferrin-bound iron
uptake in cultured neurons [131]. On the other hand, mito-
chondrial ferritin has been implicated in the protective mech-
anism of AD [132, 133]. Moreover, anemia [134] and iron
level in diet [135] have also been linked to AD prevalence.
Taken all together, we can make a preliminary conclusion that
maintenance in iron homeostasis plays a significant role in
prevention of AD.

However, it seems that little literatures have been focused
on the investigation of roles of PICALM in iron homeostasis
in the context of AD. Scotland et al. found that PICALM
function as a modulator of transferrin-receptor (TfR) internal-
ization and PICALM-deficient cells exhibit characteristics
associated with iron deficiency and extremely sensitive to iron
chelation [136]. It is imperative to know the specific mecha-
nism by which PICALM functions in iron homeostasis and
contributes to AD.

PICALM as a Therapeutic Target for AD

All in all, the potential pathways underpinning roles of
PICALM in AD etiology suggested by studies shown above
have provided several avenues for further investigations and

intervention of the disease. Among them, the focus should be
put on the Aβ-dependent pathways because of its direct
influence on Aβ pathology, which is the most proved culprit
of AD onset till now. However, it seems that PICALM can
simultaneously promote production [25, 88, 89] and elimina-
tion [93, 94] of Aβ peptide (or its neurotoxicity) via APP
internalization and transportation with however subsequently
disparate processing (enzymolysis in endosomes and degra-
dation in lysosomes). Still, we may target PICALM as a
potential modulator of tauopathy in the pursuit of therapeutic
strategies for AD [90].

Also, it has been suggested that the level of full-length
PICALM was substantially decreased while that of its abnor-
mally cleaved fragments increases in AD brains [90], suggest-
ing the possibility that impaired PICALM may contribute to
the dysfunction of endocytosis and therefore a series of rele-
vant physiological processes and eventually the onset of AD.
If it was the case, we could hypothesize that restoration of
normal PICALM may act as a protector for AD progression.
Before we achieve transition from experimental data to clin-
ical efficacy, however, more accurate and detailed mecha-
nisms by which PICALM contribute to AD etiology should
be further explored.

Concluding Remarks

PICALM gene is a novel and replicable contributor to AD risk
despite its transcript sorts warrant further expansion and con-
firmation. Moreover, although the association between
PICALM and AD risk have been well replicated and bolstered
in Caucasian populations, the results get contentious when it
comes to other populations such as Asian group. It is possible
that larger sample size, matching for significant confounding
factors like APOE4 status and employment of more precise
phenotype of the disease (such as neuroimaging data) may
improve the strength of association in case–control studies.
On the other hand, multi-locus genotype pattern (MLGPs)
provided a novel and promising strategy for future studies
and maybe preclinical diagnosis of AD. Even though there is
discrepancy in the distribution pattern (endothelial cells or
neurons) of PICALM in the CNS, investigation about roles
of PICALM in affecting production and clearance of intracel-
lular and extracellular Aβ peptide (especially the oligomers)
should be the priority in the future. Other potential pathways,
such as tauopathy, synaptic function, lipid metabolism, im-
mune disorder, and iron homeostasis, should also need more
investigations before translating into efficacy for clinical prac-
tice.We believe that figuring out the way in which PICALM is
involved in AD pathogenesis will facilitate our understanding
of the mechanism of the disease. Finally, given that LOAD is a
complex multifactorial neurodegenerative disease, we
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sincerely hope that these new findings of PICALM will open
up novel avenues for further studies on therapeutic
intervention.
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